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Abstract: Radar images suffer from the impact of sidelobes. Several sidelobe-suppressing methods
including the convolutional neural network (CNN)-based one has been proposed. However, the point
spread function (PSF) in the radar images is sometimes spatially variant and affects the performance
of the CNN. We propose the spatial-variant convolutional neural network (SV-CNN) aimed at this
problem. It will also perform well in other conditions when there are spatially variant features.
The convolutional kernels of the CNN can detect motifs with some distinctive features and are
invariant to the local position of the motifs. This makes the convolutional neural networks widely used
in image processing fields such as image recognition, handwriting recognition, image super-resolution,
and semantic segmentation. They also perform well in radar image enhancement. However, the local
position invariant character might not be good for radar image enhancement, when features of motifs
(also known as the point spread function in the radar imaging field) vary with the positions. In this
paper, we proposed an SV-CNN with spatial-variant convolution kernels (SV-CK). Its function is
illustrated through a special application of enhancing the radar images. After being trained using radar
images with position-codings as the samples, the SV-CNN can enhance the radar images. Because the
SV-CNN reads information of the local position contained in the position-coding, it performs better
than the conventional CNN. The advance of the proposed SV-CNN is tested using both simulated
and real radar images.

Keywords: spatial-variant convolution neural network (SV-CNN); spatial-variant convolution kernel
(SV-CK); radar image enhancing; MIMO radar; neural networks; imaging radar

1. Introduction

Convolutional neural networks (CNNs) make good use of the convolution kernels in the first
several layers to detect distinctive local motifs and construct feature maps. The convolution kernel
functions are similar to the filter banks. All the units in a feature map share the same filter bank.
As a result, the total number of layer nodes in a CNN is drastically reduced. For this reason, the CNN
has been widely used and has become the state-of-the-art image processing method [1]. In [2–5],
the researchers used the CNN to perform the whole image and handwriting recognition task. Authors
of [6–8] introduced the advantages of CNN in the applications of the edge and keypoint detection.
Researchers in [9,10] made a further step; they replaced all the fully connected layers with convolution
layers and used the modified CNNs to classify each pixel of an image and then semantic segmentation
could be made. In [11–14], the researchers removed both the pool layers and the fully connected
layers of a CNN and obtained a pixel-to-pixel convolutional neural network, which can evaluate the
super-resolution task of an image. In [15–18], the researchers approved that CNN can also be used to
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deal with the complex-valued data, and to enhance the radar images. The purpose of the enhancement
is to sharpen the main lobes of the radar image and suppress the sidelobes.

The function of the convolution kernels in these CNNs is detecting the local motifs of the images,
which are assumed to be spatially invariant. However, features of motifs in images are sometimes
related to the motifs’ positions, such as the radar images, especially those of the near-field radar
systems. The point spread function (PSF) of a near-field radar system is spatially varying. Accordingly,
the features of the motifs in those images are spatially varying. Thus, it is more reasonable to consider
a spatial-variant convolutional neural network (SV-CNN) which consists of spatial-variant convolution
kernels (SV-CK) to deal with the radar images.

The local position information is sometimes important, such as when evaluating the language
translation [19], the photo classification [20], and the point cloud classification [21]. The local position
information plays a more important role in radar image processing, because of the spatially varying
PSF in the radar images. The local position information can be extracted by several kinds of layers.
The most commonly used ones are the fully connected layers; the local position information can be
learned by the network cells. However, when the network is used to convert one image to another,
at least the connection number equals to the product of the input number and output number are
needed, which will make the network hardly acceptable for the current devices. Besides, the network
will lack generation ability. The self-attention layers tackle spatial awareness well [19]. However,
a huge number of connections are still needed. Thus these layers are commonly used in the translation
and the picture recognition field [20]. The graph convolution layers are with spatial awareness and are
widely used for dealing with the point, such as the protein and gene recognition [21] as well as figure
classification [22]. All the above neural networks are not capable of converting a big size image to
another while taking the spatial information into account.

In this paper, we propose a special SV-CNN with SV-CKs. It can take the spatial information into
account and hardly increase the size of the network compared to a conventional CNN. In this paper,
the proposed SV-CNN is used to suppress the sidelobes of a multi-input–multi-output (MIMO) imaging
radar. (In our condition, the target is near the radar, and the PSF is spatially varying.) The images
of a MIMO radar suffer from sidelobes because of the limitations on the signal bandwidth and the
total aperture length of the MIMO array. The sidelobes can be considered as false peaks and severely
impact the quality of the radar images. A lot of research has been proposed to suppress the sidelobes
such as the coherence factor (CF) algorithm [23,24], the sparsity-driven methods [25–27], and the
deconvolution methods [28]. However, the CF algorithm suppresses the weak targets as it suppresses
the sidelobes. The sparsity-driven methods are faced with a heavy computation burden and the lack
of robustness. The deconvolution method also suffers from a heavy computation burden. Besides,
it needs a precise PSF of the imaging system. However, for the MIMO radar, it is a spatially variant
one. Recently, research has focused on the CNN to suppress the sidelobes [29]. However, as illustrated,
the PSF of the MIMO radar is a spatially variant one while the convolution kernels of the CNN are
spatially invariant ones. So, the proposed SV-CNN has better performance in this task. The SV-CNN is
with spatial awareness, so it performs better than the conventional CNN. Besides, it performs better
than the conventional sidelobe-suppressing algorithms.

The rest of this paper is organized as follows: Section 2 illustrates the MIMO radar imaging
and the spatial-variant characters of the MIMO radar image. Section 3 illustrates the structure of
the SV-CNN and the training method. Section 4 validates the enhancement ability of the SV-CNN,
and some of its features through simulation. In Section 5, the advantage of SV-CNN is verified using
experimental data. Finally, Section 6 gives the conclusion.

2. Spatial-Variant Characters of MIMO Radar Image

MIMO imaging radars are widely used for its low complicity and more degrees of freedom.
They are well suited for the near-field imaging applications, such as the through-wall radar, the security
inspection radar, and the ground-penetrating radar. A real implementation of a MIMO radar is
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illustrated in the experiment part. However, due to the spatial variance of the radiation pattern
of the MIMO radar antenna array, the PSF of the MIMO imaging radar systems are spatial-variant.
Correspondingly, the features/shapes of the motifs in MIMO radar images are spatial-variant. So, it is
more reasonable to use an SV-CNN to enhance the MIMO radar images. In this section, the MIMO radar
imaging procedure and the spatial-variant feature of the motifs/PSF in radar images are introduced.

2.1. MIMO Radar Imaging

Wide-frequency band MIMO radar with a two-dimensional antenna array has the capability of obtaining
three-dimensional radar images. Radar devices transmit the radar signal through each of the transmitting
antennae and record the echo signal from the target using each receiving antenna. The transmitted
wide-frequency band radar signal can be expressed by (1), and its corresponding echo signal from the target
can be expressed by (2).

s(t) =
∫

W( f )e− j2π f td f (1)

secho(t) = σs(t− τ) (2)

where W( f ) is the amplitude–frequency function of the radar signal, and it is usually a square window
function on a certain frequency band. σ is the radar cross-section of the target and t represents the time.

τ is the time interval between the transmitted signal and the received signal and is defined as (3).
r represents the position of the target, rt and rr represent the positions of the transmitting antenna and
the receiving antenna of the radar, respectively. c is the velocity of light.

τ =
‖r− rt‖2 + ‖r− rr‖2

c
(3)

Back-projection (BP) algorithm is a commonly used radar imaging algorithm. Its main procedure
is to back-project and accumulate the echo signal to a matrix that corresponds to the imaging scene.
Considering a MIMO imaging radar with NT transmitting antennas and NR receiving antennas,
the intensity of each pixel r can be written as

I(r) =
NT∑
i=1

NR∑
j=1

si, j

(
‖r− ri‖2 + ‖r− rj‖2

c

)
(4)

where ri and rj represent the position of the ith transmitting antenna and the jth receiving antenna
respectively. si, j(t) is the range compressed echo signal which is transmitted by the ith transmitting
antenna and received by the jth receiving antenna. When the position vector r erodes all the pixels
(or voxels) in the imaging scene, a radar image is obtained. The intensity of each pixel indicates the
reflected power of the corresponding position in the imaging scene.

The substance of the radar detecting is the sampling of the imaging scene. An ideal radar image
is the radar cross-section (RCS) distribution map of the imaging scene. However, for the real radar
systems, the wideband signal offers high range resolution of the radar system. However, according to
the principle of Fourier Transform, when recovering the signal according to the echo with a limited
bandwidth, sidelobes occur on the range profile. Correspondingly, the function of the antennas is the
spatial sampling of the echo signal, and the sidelobes will also occur on the azimuth profile because
of the limitation on the total aperture length of the antenna array. The sidelobes severely impact the
quality of the radar images and form false peaks. Thus, they should be removed.

2.2. Spatial Variance Motifs in the Radar Image

The output of the imaging system for an input point source is called the point spread function
(PSF). The radar image can be considered as the convolution of PSF and the RCS distribution map of
the imaging scene. For a point target at the position of r0, its echo radar signal can be represented as
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(5). Thus, the corresponding radar image which is also the PSF of the radar system at the position r0

can be expressed as (6).

Secho(t) = σ
∫

W( f )e− j2π f (t−
‖r0−rt‖2+‖r0−rr‖2

c )d f (5)

I(r) =
NT∑
i=1

NR∑
j=1

{
σ

∫
W( f )e− j2π f (

‖r−ri‖2+‖r−rj‖2
c −

‖r0−ri‖2+‖r0−rj‖2
c )d f

}
(6)

As we can see in (6), there will be cross-terms of r and r0 after simplification. So, the shape of the
PSF varies with the change of position r0. Accordingly, the shape of the main lobe in the radar image for
a point target depends on its position r0. It can be illustrated in the following figure. Figure 1a shows
an imaging scene with nine point targets. Figure 1b is the corresponding radar image. The shapes of
the main lobes of the nine point targets are different due to the difference in their positions.
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Figure 1. Imaging scene and imaging results; (a) imaging scene; (b) original radar image.

3. Conventional Radar Image-Enhancing CNN and SV-CNN

The proposed SV-CK is an evolution of the conventional convolution kernel. The proposed SV-CK
contains two parts: a basic data kernel and a position kernel. The position kernel reads information of
local position from the position coding embedded into the input sample and controls the data kernel.
Thus, the SV-CK has spatial-variant characters.

In this section, the conventional radar image-enhancing CNN in [18] is introduced firstly. Then the
SV-CK and SV-CNN are proposed. The enhancing results of the two neural networks are compared in
Section 4 to show the advantage of the proposed one.

3.1. Conventional Radar Image-Enhancing CNN

In [18], a convolutional neural network is constructed and trained to enhance the radar image.
After enhancement, the main lobes of targets in the radar image are sharpened, and the sidelobes in
the radar image are suppressed. Its structure is shown in Figure 2.
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In this paper, a CNN with a similar structure of [18] is constructed to serve as the comparison of
the SV-CNN. The CNN is composed of several convolution layers with the rectified linear unit (ReLU)
as activation. What is special is that its first layer contains some two-channel convolution kernels.
They can take the complex-valued two-dimensional radar image as the input samples (one channel
for the real part and the other for the imaginary part). The last convolution layer comprises only one
kernel and is not followed by a ReLU. Its output is the final enhanced radar image. The enhancing
results can be seen in the next section. The function of this neural network is to sharpen the main lobes
and suppress the sidelobes of the radar image. In this way, the radar image is enhanced. However,
while enhancing the radar image, the whole CNN can be seen as a spatial-invariant weighted function.
The result of each pixel in the enhanced radar image can be seen as the convolution result of the pixels
around it and the spatial-invariant weighted function. As discussed earlier, it is more reasonable
to use a CNN with spatial-variant convolution kernels to enhance the radar image because of the
spatial-variant feature of the motifs in the radar image.

3.2. SV-CK and Position-Coding

As discussed above, a CNN with spatial-variant convolution kernels will give better results when
enhancing a MIMO radar image. So, in this section, the SV-CNN is proposed.

The SV-CK and its input sample are shown in the lower half and upper half of Figure 3, respectively.
Two parts constitute the SV-CK, which are the data kernel and the position kernel. After being trained,
the data kernel reads features from the data channels of the input sample while the position kernel reads
the corresponding position information from the position-coding. The position kernel has an influence
on the data kernel, and determines what feature it reads and outputs. Thus, an SV-CK is obtained.

The structure of the input samples is shown in the upper half of Figure 3. As discussed before,
the first two channels are the input data (complex-valued radar image) and the rest of the four channels
are the position-coding. The essences of the position-coding are tensor meshes which indicate the
position of each pixel in the data channels. They bring position information into the SV-CNN while
training. Consequently, the spatial-variant features can be extracted by the SV-CKs. As shown in the
figure, two channels are used to indicate position on one dimension, and the remaining two are used
to indicate position on the other dimension. For the two channels of position-coding on the same
dimension, the corresponding two elements are complementary, and their sums equal to a constant.
Just as shown in Figure 3, the third and fourth channels of the input are the position-coding on the
horizontal dimension. The values of the elements on one channel linearly increase, while the values of
the elements on the other channel decrease gradually. On the upper right corner of Figure 3, one of
the position-coding channels is zoomed in to illustrate its structure more clearly. Specifically, if there
is only one channel indicating the position in one direction, the convolution kernels might take it as
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a constant weighted function of the features, and consequently be confused. The advantage of using
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3.3. SV-CNN

The structure of the SV-CNN is illustrated in Figure 4. There are several convolution layers with
SV-CK. The comparison of the CNN and the SV-CNN is shown in Figure 5. During training, the input
samples are organized as illustrated in Section 3.2, and the labels are the amplitude of ideal radar
image with sharp main lobes and no sidelobe. After being trained, the network takes complex-valued
radar images with four-channel position-coding as the input and outputs amplitude of enhanced radar
images with sharp main lobes and low sidelobes.
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Figure 4. Structure of SV-CNN.

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 25 

 

data are contained in the convolution kernels and can be optimized through training. Thus, an SV-
CNN is obtained and its superiority is tested in the next section. 

 
Figure 4. Structure of SV-CNN. 

 
 

 

(a) 

 

(b) 

Figure 5. Structure and parameters of (a) CNN; (b) SV-CNN. 

4. Implementation and Simulation 

In this section, some features of the SV-CNN are tested. Firstly, in part A, the training procedure 
of the SV-CNN and its enhancing results are given. Then, in part B, the training loss and the testing 
loss of the SV-CNN are compared to those of a CNN with a similar structure to show the superiority 
of the SV-CNN. In part C, the guided backpropagation method is used to discover the influential 
information in the input samples. The results showed that the position-coding does offer useful 
information for the SV-CNN. Finally, in part D, the guided backpropagation method is used to show 
the importance of position-coding on each layer. Then, the position-codings which make no 
difference to the final result are cut off to reduce the complexity of the SV-CNN. 
  

Conv: in×n×n×out

Input channels × kernel size × kernel size × output channels

Joint on channel dimension

O
ut

pu
t/

La
be

N×
N×

1

Da
ta

N×
N×

2

Co
nv

:2
×

5×
5×

32

Re
lu

Co
nv

:3
2×

5×
5×

64

Re
lu

Co
nv

:6
4×

3×
3×

64

Re
lu

Co
nv

:6
4×

3×
3×

64

Re
lu

Co
nv

:6
4×

3×
3×

64

Re
lu

Co
nv

:6
4×

3×
3×

32

Re
lu

Co
nv

:3
2×

3×
3×

1

In
pu

t/
Sa

m
pl

e

O
ut

pu
t/

La
be

N×
N×

1

Da
ta

N×
N×

2

Co
nv

:6
×

5×
5×

28

Re
lu

Po
sit

io
n-

co
di

ng
N ×

N
×
4

Co
nv

:3
2×

5×
5×

60

Re
lu

Co
nv

:6
4×

3×
3×

60

Re
lu

Co
nv

:6
4×

3×
3×

60

Re
lu

Co
nv

:6
4×

3×
3×

60

Re
lu

Co
nv

:6
4×

3×
3×

28

Re
lu

Co
nv

:3
2×

3×
3×

1

In
pu

t/
Sa

m
pl

e

Figure 5. Structure and parameters of (a) CNN; (b) SV-CNN.

As shown in Figures 4 and 5b, there are two streams in the SV-CNN. (1) The first one is the data
stream. The data kernel extracts the features from the input sample or the output of the former layer
and outputs feature maps to the next layer until the final output (the enhanced radar image) is obtained.
(2) The second one is the position-coding stream. Position-codings are transmitted to position kernels
in each layer through skip connection. It helps the position kernels to read the information of the local
position and guides them to control the corresponding data kernel. The input data are covered by
four channels of position-codings. The convolution kernels process the data and the position-coding
together, and the ReLU after each of the convolutional layers will totally mix them up. The parameters
which determine the relationships between the position-codings and the data are contained in the
convolution kernels and can be optimized through training. Thus, an SV-CNN is obtained and its
superiority is tested in the next section.

4. Implementation and Simulation

In this section, some features of the SV-CNN are tested. Firstly, in part A, the training procedure of
the SV-CNN and its enhancing results are given. Then, in part B, the training loss and the testing loss
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of the SV-CNN are compared to those of a CNN with a similar structure to show the superiority of the
SV-CNN. In part C, the guided backpropagation method is used to discover the influential information
in the input samples. The results showed that the position-coding does offer useful information for the
SV-CNN. Finally, in part D, the guided backpropagation method is used to show the importance of
position-coding on each layer. Then, the position-codings which make no difference to the final result
are cut off to reduce the complexity of the SV-CNN.

4.1. Structure of the SV-CNN and the Training Procedure

A seven-layer SV-CNN was proposed to enhance the radar image. An illustration of the structure
is shown in Figure 4 and its specific structure and the compared CNN are shown in Figure 5. The input
samples are organized as illustrated in Section 3.2. There are two channels for data and four channels
for the position-coding. The four position-coding channels are inset into the input of each layer through
the skip connection as illustrated in Figures 4 and 5b.

The samples and the labels are valued while training the neural network. While generating
the samples, three steps are taken. Firstly, simulate several point scatterers in the imaging scene.
Then, simulate the radar signal and the corresponding echo of these point scatterers. Finally, calculate
the original radar images as the input samples. As for the labels, just project the RCS of each simulated
point on the RCS distribution maps whose value of each pixel equals to the RCS of the point target at
the corresponding position. If the pixel does not correspond to a point scatterer, then its value is zero.
A total of 22,000 sample label pairs like this were simulated; 20,000 of them were randomly chosen to
train the neural network and 2000 of them were chosen to test it.

The training procedure is evaluated on a PC with a CPU of I7, two pieces of 16 GB RAM,
and a GPU of 2080 Ti. The networks are established using the PyTorch. After being trained,
the SV-CNN is given the ability to enhance the radar image. The original radar images and the
enhanced ones are shown in Figure 6. Besides, the enhancing results of the SV-CNN are compared to
the enhancing result of the CNN trained using the same procedure. The structure of the compared CNN
is illustrated in Figure 5a. Two imaging scenes were simulated as shown in Figure 6a,b. The original
radar images are shown in Figure 6c,d. The enhancing results of the CNN are shown in Figure 6e,f,
and the enhancing results of the SV-CNN are shown in Figure 6g,h. As we can see in the figure,
after enhanced, the main lobes of motifs in the radar image are sharpened and the sidelobes are
suppressed. However, there are false peaks in the enhancing result of the CNN. The false peaks might
result in false alarms in the detection procedure, which is unacceptable. So, the SV-CNN performs
better while enhancing radar images. The detailed performance of the networks is summarized
in Table 1.
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Table 1. MSLL comparison of the above networks.

Scene 4 Targets 9 Targets
Networks

Original image −9.51 dB −7.24 dB
CNN −22.3 dB −18.7 dB

SV-CNN with 2-channel
Position-codings −22.2 dB −8.6 dB

SV-CNN with 4-channel complementary
position-codings −31.8 dB −32.4 dB

SV-CNN with 4-channel
orthogonal position-codings −42.2 dB −25.7 dB

Simplified SV-CNN with 4-channel complementary
position-codings −38.5 dB −33.3 dB

Simplified SV-CNN with 4-channel orthogonal
position-codings −43.8 dB −46.9 dB

4.2. Comparison of CNN and SV-CNNs Trained Using Samples with Different Forms of Position-Coding

In this part, the training loss and the testing loss of the proposed SV-CNN are compared to the
other three networks. (1) The conventional CNN; (2) the SV-CNN trained using samples with two
position-coding channels. Its input samples are with the similar structure shown in Figure 3, however,
only the third and the fifth channels serve as the position-coding, and each channel indicates the
position on one direction; the fourth and the sixth channels are deleted. (3) SV-CNN trained using
samples with four orthogonal position-coding channels. The four complementary position-coding
channels are processed by the sinusoidal function, and then they became orthogonal to each other,
while training with the same parameters. The training loss and the testing loss of these CNNs are
shown in Figure 7a,b, respectively.
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As shown in the figure, both the training loss and the testing loss of the SV-CNN trained using
samples with four position-coding channels (both complementary and orthogonal) decrease the fastest,
and after the networks stabilize, both the training loss and the testing loss of the SV-CNN trained using
samples with four position-coding channels are lower.

Besides, the enhancing results of the four CNNs are shown in Figures 6 and 8. The imaging scenes
are set as Figure 6a,b. Their corresponding imaging results are shown in Figure 6c,d. The enhancing
results of the CNN are shown in Figure 6e,f. The enhancing results of the SV-CNN trained using samples
with four complementary position-coding channels are shown in Figure 6g,h. The enhancing results
of the SV-CNN trained using samples with two position-coding channels are shown in Figure 8a,b,
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and those of the SV-CNN trained using four orthogonal position-coding channels are shown in
Figure 8c,d. The dynamic ranges of all these figures are assigned as 60 dB. As shown in the figures,
the false peaks occur in the enhancing results of the conventional CNN and the SV-CNN trained using
samples with two position-coding channels. What is even worse is that the enhancing results of the
SV-CNN trained using samples with two position-coding channels become asymmetric due to the
asymmetric position-coding values. Both the SV-CNNs trained using samples with four position-coding
channels have better effects on suppressing the sidelobes.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 25 
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4.3. Testing the Function of SV-CK and Position-Coding

In this part, the guided backpropagation method is used on the SV-CNN to show if the SV-CKs extract
local position information from the position-coding. The guided backpropagation is a combination of the
deconvolution method and the backpropagation method [29–31]. It is an efficient way of visualizing what
concepts in the graph have been learned by the neural network. An imaging scene shown as Figure 6b is
simulated. There are nine point targets in the simulated imaging scene, and the corresponding radar image
is as shown in Figure 6d. The guided backpropagation method is used to show what concepts the network
took while enhancing this sample. The influential concepts on each channel of this sample are shown in
Figure 8. The results on two data channels are shown in Figure 9a,b. The reception field and important
features that the network used to enhance the radar image can be seen in these figures. The guided
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backpropagation results on the four position-coding channels are shown in Figure 9c–f. The influential
features on the horizontal dimension are shown in Figure 9c,d, and the influential features on the vertical
dimension are shown in Figure 9e,f. As shown in these figures, the tendency of values read from the two
complementary position-codings on the same dimension is contrary. This tendency is in accord with the
tendency of the position-codings. This phenomenon confirms that the position information contained in
the position-coding is extracted by the network.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 25 
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4.4. Simplification of the SV-CNN

As shown in Figures 4 and 5b, the four position-coding channels are inset into the input of
each layer through the skip connection. These skip connections increase the complexity of the
SV-CNN. In this part, the guided backpropagation method is used to evaluate the weightiness of the
position-codings inset into each layer, and cut off the unnecessary ones. The guided backpropagation
method is used to show what the SV-CNN extracts from the input of each layer. If there is no obvious
spatial-variant feature extracted from the position-codings of one layer, then they are not necessary.

The guided backpropagation results on the position-codings of each layer are calculated, and those
of the first, the sixth, and the seventh layers are shown in Figures 9–11, respectively. As we can see,
for the simulated nine point scatterers, the guided backpropagation results on the position-codings of
the first layer vary tremendously. The backpropagation results on the position-codings of the sixth
layer only vary slightly. As for the seventh layer, the backpropagation results have hardly any variety.
The results mean that, for the first and the sixth layer, the spatial-variant features in the input data
are extracted by the SV-CK, while the SV-CKs in the seventh layer do not extract these spatial-variant
features. Thus, the corresponding skip connection from the position-codings to the seventh layer is
unnecessary and can be cut off. In this way, the SV-CNN is simplified. Then, using the same training
method in Section 3.1 to train the network, the training loss and testing loss of the simplified SV-CNN
are shown and compared in Figure 12. As we can see in the figure, after simplification, there is no
significant degradation on both the training loss and the testing loss. Besides, after simplification,
its training loss and testing loss are still lower than those of the conventional CNN, and they may
sometimes be even lower than those of the SV-CNN that has not been simplified.
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The enhancing results of the simplified SV-CNN are shown in Figure 13. The imaging scene is
the same as those illustrated in Figure 6. The upper row is the enhancing result of the simplified
SV-CNN trained using samples with four complementary position-coding channels, while the lower
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row is the enhancing result of the simplified SV-CNN trained using samples with four orthogonal
position-coding channels. The dynamic ranges of all the figures are set to 60 dB. Compared to the
enhancing results shown in Figures 6 and 7, there is no obvious degradation in the performance of the
simplified SV-CNN. The performance of the simplified SV-CNN is still higher than that of the CNN.
Besides, the simplified SV-CNN trained using samples with four orthogonal position-coding channels
sometimes performs better in sidelobe suppression (Figure 13d).
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Figure 13. Enhancing results of the simplified SV-CNNs; (a,b) enhancing results of the simplified
SV-CNN trained using samples with four-channel complementary position-coding; (c,d) enhancing
results of the simplified SV-CNN trained using samples with four-channel orthogonal position-coding.

The SV-CNNs are trained and analyzed in this simulation part. It can be seen from the simulation
results that compared to the CNN and the SV-CNN trained using samples with two position-coding
channels, the SV-CNN trained using samples with four position-coding channels performs better
in enhancing radar images. The SV-CNN trained using samples with both four complementary
position-coding channels and four orthogonal position-coding channels has good performance in
enhancing radar images. Besides, the performance of the simplified SV-CNN does not degrade
obviously, and is sometimes even better. The maximum sidelobe levels (MSLLs) of the enhancing
results of the above networks are listed in Table 1. The results also support the conclusion that the
networks with four channels of position-codings perform better. For the original radar images, there is
more than one point target in both of the images. So, their sidelobes are accumulated and higher than
the theoretical value of −13.2 dB.
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4.5. Comparison to Other Existing Methods

In this part, the enhancing results of the four-target scene in Section 4.1 are reviewed, and another
three existing methods are added into the comparison. This time, the Gaussian noise is added to the
simulated signal and makes the signal-to-noise ratio 15 dB. The original radar image, the enhancing
results of the CF algorithm [23,24,32,33], the results of the orthogonal matching pursuit (OMP) sparsity
driven method [27], and the Lucy–Richardson deconvolution algorithm [28] are shown in Figure 14a–e,
respectively, and the results of the CNN and the SV-CNN are shown in Figure 14f,g, respectively.
Besides, the MSLLs of these methods are listed in Table 2.

It can be seen from the results that all of these methods can suppress the sidelobes and improve
the quality of the images. In the original, the sidelobes of these four points overlap, and this makes the
MSLL higher than the test theoretical value of −13.2 dB. The Lucy–Richardson deconvolution and the
CF algorithm can suppress the sidelobes to −28.39 dB and −27.75 dB, respectively. The performance
of the OMP algorithm strongly depends on the parameter of the sparsity. If it is set as 4 and equals
the number of the targets, there will be no sidelobes. However, in real-world detection, it cannot be
foreseen. So, a result of the OMP with the sparsity of 10 is also given. With the interference of noise,
there are sidelobes with MSLL of −22.85 dB. In the results of the CNN and the SV-CNN, the MSLL
is −25.11 dB and −42.71 dB, respectively. According to the above results, the SV-CNN offers better
results, especially when compared to the conventional CNN.
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the Lucy–Richardson algorithm; (c) the result of the CF algorithm; (d) the enhancing result of the OMP
with the sparsity of 4; (e) the enhancing result of the OMP with the sparsity of 10; (f) the enhancing
result of the CNN; (g) the enhancing result of the SV-CNN.
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Table 2. MSLL comparison of the above different methods on simulated images.

Methods Original Image Lucy–Richardson Deconv CF OMP_4

MSLL −9.48 dB −28.39 dB −27.75 dB −180 dB

Methods OMP_10 CNN SV-CNN

MSLL −22.85 dB −25.11 dB −42.71 dB

5. Experiment

In this experiment part, a radar device is implemented to obtain the radar image of the imaging
scene and test the proposed SV-CNN. The MIMO radar is shown in Figure 15. The small units fixed
on the plane are its antenna. Eight of them are transmitting antennas and 10 of them are receiving
antennas. During operation, the transmitting antennas take turns to transmit L/S band signal with
600 MHz bandwidth, and the receiving antennas take turns to receive the echo signal. It takes 0.1 s to
switch all the antenna channels. Then, the radar images of the imaging scene can be obtained through
the BP algorithm illustrated in Section 2.
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5.1. Performance for Point Targets

In this part, the imaging and enhancing results of two corner reflectors are given. The imaging
scene in this experiment is shown in Figure 16a. Two corner reflectors are placed in front of the radar
system. The point scatterers are 3 m away from the center of the radar antenna array. The original radar
image of the imaging scene is shown in Figure 16b, and the enhancing results of the Lucy–Richardson
deconvolution and the CF algorithm are shown in Figure 16c,d, respectively. The enhancing results of the
OMP with the sparsity of 2 and 5 are shown in Figure 16e,f, respectively. Finally, the enhancing results
of the conventional CNN and the simplified SV-CNN trained using samples with four position-coding
channels are shown in Figure 16g,h, respectively. The MSLLs of these results are listed in Table 3.
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Table 3. MSLL comparison of the above different methods on real recorded images.

Methods Original Image Lucy–Richardson Deconv CF OMP_2

MSLL −8.87 dB −15.46 dB −25.32 dB −180 dB

Methods OMP_5 CNN SV-CNN

MSLL −7.4 dB −26.95 dB −34.84 dB

It can be seen in the results that the sidelobes in the real recorded radar image are a little higher
than in the simulation one, because the scatterers used are slightly expanded ones. Compared to the
simulation results, the performance of the Lucy–Richardson deconvolution slightly degrades, because
of these expanding characters. The results of the OMP with the sparsity of 2 is still free of sidelobes.
However, the performance of the OMP with the sparsity of 5 degrades because of the inevitable noise
and the mismatch between the real system and the theoretical model. From the results, we can see that
the SV-CNN also offers the best results in our occasion.

5.2. Performance for Extending Targets

In this part, the SV-CNN is used to enhance the radar images of human targets to evaluate the
degradation in a real setup. The radar images of a human body are enhanced using the SV-CNN. The photo
of the imaging scene is as shown in Figure 17a,b. A human stands 3 m away from the radar and with his
arms opening and dropping, respectively. The original radar images are shown in Figure 17c,d, respectively.
The enhancing results of the Lucy–Richardson deconvolution algorithm, the CF algorithm, the OMP
algorithm, the CNN, and the SV-CNN are shown in Figure 17. The power reflected by the human limbs
varies strongly with the variety of the incident angle of the radar signal. So, the final enhanced radar image
is obtained through accumulating the enhancing results of several continuous frames of images. Because of
the accumulation, the quality of all these images is improved. As can be seen, for these extremely extended
targets, the sidelobes of the Lucy–Richardson is the highest for it is originally proposed for real-valued
optical images. The results of the OMP are faced with several sidelobes when dealing with the real recorded
targets, as well as the CNN (at about (0◦, −42◦)). The sidelobes in both results of the CF and the SV-CNN are
low. However, the proposed SV-CNN offers sharper main lobes. In all of these enhanced results, the actions
can be easily discriminated. However, the SV-CNN offers the best results.
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6. Discussions

In this paper, we proposed the SV-CNN to deal with images with spatially variant features.
Compared to conventional CNN, the proposed SV-CNN is with spatial awareness. Thus, the SV-CNN
performs better when faced with spatially variant features.

In Sections 4 and 5, we use the proposed SV-CNN to suppress the sidelobes in MIMO radar
images as an illustration. The enhancing results of the proposed SV-CNN are compared to several
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state-of-art methods including the CF algorithm [23,24,32,33], the OMP sparsity driven method [27],
and the Lucy–Richardson deconvolution algorithm [28], as well as the conventional CNN.

Since the MIMO radar images in our condition are with spatially variant features (as illustrated in
Figure 1), our proposed SV-CNN performs best among these methods. The superiority of the SV-CNN
can be seen in Figures 14, 16 and 17.

Besides, it is pointed out that the SV-CNN should extract spatial information from four-channel
position-codings. The enhancing results will degrade and even become asymmetric when there are only
two channels of position-coding, because the network might take the two channels of position-coding
as a weight function to show the degree of importance of the input samples. Simulation results in
Section 4.2 support this standpoint.

7. Conclusions

In this paper, a spatial-variant convolutional neural network (SV-CNN) with spatial-variant
convolution kernels (SV-CK) is proposed. While extracting features, the proposed SV-CNN can take
the local position information into account compared to conventional CNNs. Thus it has better
performance when the shapes of the motifs in the images depend on the local position.

The proposed SV-CNN is trained to enhance the radar images to illustrate its function. After
being trained using radar images with position-codings, it can suppress the sidelobes in the radar
images. The SV-CKs can extract spatial-variant features from the radar image. Thus it has better
enhancing results and leaves less false peaks in the enhanced image. Simulation and experimental
results showed that the SV-CNN trained using samples with four position-coding channels gives good
results, even after simplification.

The proposed SV-CNN is a special CNN and is with spatial awareness. It shall have better
performance in tasks with spatially variant features. In future works, we will test its performance in
image segmentation and even try to use it as an imaging algorithm.
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