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Abstract: Pansharpening is a typical image fusion problem, which aims to produce a high resolution
multispectral (HRMS) image by integrating a high spatial resolution panchromatic (PAN) image with
a low spatial resolution multispectral (MS) image. Prior arts have used either component substitution
(CS)-based methods or multiresolution analysis (MRA)-based methods for this propose. Although
they are simple and easy to implement, they usually suffer from spatial or spectral distortions
and could not fully exploit the spatial and/or spectral information existed in PAN and MS images.
By considering their complementary performances and with the goal of combining their advantages,
we propose a pansharpening weight network (PWNet) to adaptively average the fusion results obtained
by different methods. The proposed PWNet works by learning adaptive weight maps for different
CS-based and MRA-based methods through an end-to-end trainable neural network (NN). As a
result, the proposed PWN inherits the data adaptability or flexibility of NN, while maintaining the
advantages of traditional methods. Extensive experiments on data sets acquired by three different
kinds of satellites demonstrate the superiority of the proposed PWNet and its competitiveness with
the state-of-the-art methods.

Keywords: pansharpening; component substitution; multiresolution analysis; neural networks;
adaptive weight

1. Introduction

Due to technical limitations [1], current satellites, such as QuickBird, IKONOS, WorldView-2,
GeoEye-1, can not obtain the high spatial resolution multispectral (MS) images, but only acquire an
image pair with complementary features, i.e., a high spatial resolution panchromatic (PAN) image
and a low spatial resolution MS image with rich spectral information. To get high-quality products,
pansharpening is proposed with the goal of fusing MS and PAN images to generate high resolution
multispectral (HRMS) image with the same spatial resolution of the PAN image and the spectral
resolution of the MS image [2,3]. It can be cast as a typical kind of image fusion [4] or super-resolution [5]
problems and has a wide range of real-world applications, such as enhancing the visual interpretation,
monitoring the land cover change [6], object recognition [7], and so on.

Over decades of studies, a large number of pansharpening methods have been proposed
in the literature of remote sensing [3]. Most of them can be categorized into the following
two main classes [2,3,8]: (1) component substitution (CS)-based methods and (2) multiresolution analysis
(MRA)-based methods. The CS class first transforms the original MS image into a new space and
then substitutes one component of the transformed MS image by the histogram matched PAN
image. The representative methods of the CS class are Intensity-Hue-Saturation (IHS) [9], generalized
IHS (GIHS) [10], principal component analysis (PCA) [11], Brovey [12], among many others [13–17].
The MRA-based class is also known as the class of spatial methods, which extracts the high spatial
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frequencies of the high resolution PAN image through multiresolution analysis tools (e.g., wavelets
or Laplacian pyramids) to enhance the spatial information of MS image. The representative methods
belonging to the MRA-based class are high-pass filtering (HPF) [18], smoothing filter-based intensity
modulation (SFIM) [19], the generalized Laplacian pyramid (GLP) [20,21], among many others [22,23].
The two class methods are fast and easy to implement. However, for the CS-based methods, local
dissimilarities between PAN and MS images can not be eliminated, resulting in spectral distortion,
and for the MRA-based methods, they have a relatively less spectral distortion but with limited
spatial enhancement. From the above, the CS-based and the MRA-based methods usually have
complementary performances in improving the spatial quality of MS images while maintaining the
corresponding spectral information.

To balance the trade-off performances of the CS-based and MRA-based methods, the hybrid
methods by combining both of these two classes have been proposed in recent years. For example,
the additive wavelet luminance proportional (AWLP) [24] method is proposed by Otazu et al. via
implementing the “à trous” wavelet transform in the IHS space. Shah et al. [25] proposed a method by
combining an adaptive PCA method with the discrete contourlet transform. Liao et al. [26] proposed
an framework, called guided filter PCA (GFPCA), which performs a guided filter in the PCA domain.
Although the hybrid methods have an enhanced performance to the CS-based or MRA-based methods,
these improvements are limited due to their hand-crafted design.

Recently, significant progress on improving the spatial and spectral qualities of the fused images
for the classical methods has been achieved by variational optimization (VO)-based methods [27–31] and
learning-based methods, among which convolution neural network (CNN)-based methods are the most
popular, due to their powerful capability and the end-to-end learning strategy. For instance, Masi et al.
introduced a CNN architecture with three layers in [32] for the pansharpening problem. Another novel
CNN-based model, which is focused on preserving spatial and spectral information, is designed by
Yang et al. in [33]. Inspired by these work, Liu et al. [34] proposed a two-stream CNN architecture with
`1-norm loss function to further improve the spatial quality. Zheng et al. [35] proposed a CNN-based
method by using deep hyperspectral prior and dual-attention residual network to deal with the
problem of that the discriminative ability of CNNs is sometimes hindered. Though having great ability
of automatically extracting features and the state-of-the-art performances, CNN-based methods usually
require intensive computational resources [36]. In addition, unlike the CS-based and MRA-based
methods, CNN-based methods are lack of interpretability and are more like a black-box game.
A detailed summary and relevant works for the VO-based methods can be found in [2]. We do
not discuss the VO class for more since this paper focuses on a combination of the other three classes.

In this paper, we propose a pansharpening weight network (PWNet) to bridge the classical methods
(i.e., CS-based and MRA-based methods) and the learning-based methods (typically the CNN-based
methods). On one hand, similar to the hybrid methods, PWNet can combine the merits of the CS-based
and the MRA-based methods. On the other hand, similar to learning-based methods, PWNet is
data-driven and is very effective and efficient. To achieve this, PWNet uses the CS-based and
MRA-based methods as inference modules and utilizes CNN to learn adaptive weight maps for
weighting the results of the classical methods. Unlike the above hybrid methods with hand-crafted
design, the PWNet can be seen as an automatic and data-driven hybrid method for pansharpening.
In addition, the structure of PWNet is very simple to ease training and save computational time.

The main contributions of this work are as follows:

• A model average network, called pansharpening weight network (PWNet), is proposed. The PWNet
can be trained and is the first attempt to combining the classical methods via an end-to-end
trainable network.

• PWNet integrates the complementary characteristics of the CS-based and MRA-based methods
and the flexibility of the learning-based (typically the CNN-based) methods, providing an avenue
to bridge the gap between them.
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• PWNet is data-driven, and can automatically weight the contributions of different CS-based and
MRA-based methods on different data sets. By visualizing the weight maps, we prove that the
PWNet is adaptive and robust to different data sets.

• Extensive experiments on three kinds of data sets have been conducted and shown that the fusion
results obtained by PWNet achieve state-of-the-art performance compared with the CS-based,
MRA-based methods and other CNN-based methods.

The paper is organized as follows. In Section 2, we briefly introduce the background of the
CS-based, MRA-based and learning-based methods. Section 3 introduces the motivation, network
architecture, and other details of PWNet. In Section 4, we conduct the experiments, analyze the
parameter setting and time complexity and present the comparisons with the-state-of-art methods at
the reduced and full scales. Finally, we draw the conclusion in Section 5.

2. Related Work

Notations. We denote the low resolution multispectral (LRMS) image by MS ∈ RH×W×N , where
H, W, and N are the width, the height, and the number of spectral bands of the LRMS image,
respectively. We denote the high resolution PAN image by P ∈ RrH×rW , where r is the spatial
resolution ratio between MS and PAN, denote by M̂S ∈ RrH×rW×N the reconstructed HRMS image.
We let MSk to represent the kth band of the LRMS image, where k = 1, . . . , N, and let M̃Sk ∈ RrH×rW

to represent the upsampled version of MSk by ratio r. For notational simplicity, we also denote by P
the histogram matched PAN image. Based on these symbols, we next briefly introduce the main idea
of the CS-based, MRA-based and learning-based methods.

2.1. The CS-Based Methods

The CS-based methods are based on the assumption that the spatial and spectral information of
LRMS image can be separated by a projection or transformation of the original LRMS image [3,37].
The CS class usually has four steps: (1) upsample the LRMS image to the size of the PAN image;
(2) use a linear transformation to project the upsampled LRMS image into another space; (3) replace
the component containing the spatial information with the PAN image; (4) perform an inverse
transformation to bring the transformed MS data back to their original space and then get the
pansharpened MS image (i.e., the estimated HRMS). Due to the changes in low spatial frequencies
of the MS image, the substitution procedure usually suffers from spectral distortion. Thus, spectral
matching procedure (i.e., histogram matching) is often applied before the substitution.

Mathematically, above fusion process can be simplified without the calculation of the forward
and backward transformation as shown in Figure 1, which leads the CS class to have the following
equivalent form as

M̂Sk = M̃Sk + gk(P− IL), (1)

k = 1, . . . , N,

where g1, . . . , gN are the injection gains, and IL is a linear combination of the upsampled LRMS image
bands and often called intensity component, defined as

IL =
N

∑
k=1

wk M̃Sk, (2)

where w1, . . . , wN usually correspond to the first row of the forward transformation matrix, which is
used to measure the degrees of spectral overlap between the MS and PAN channels.
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Figure 1. Flowchart of the CS-based methods for pansharpening.

Numerous CS-based methods have been proposed to sharpen the LRMS images according to
Equation (1) and flowchart in Figure 1. The CS class includes IHS [9] which exploits the transformation
into the IHS color space and its generalized version GIHS [10], PCA [11] based on the statistical
irrelevance of each principal component, Brovey [12] based on a multiplicative injection scheme,
Gram-Schmidt (GS) [13] which conducts the Gram-Schmidt orthogonalization procedure and by a
weighted average of the MS bands minimizing the mean square error (MSE) with respect to a low-pass
filtered version PAN image in the adaptive GS (GSA) [15], band-dependent spatial detail (BDSD) [14] and
its enhanced version (i.e., BDSD with physical constraints: BDSD-PC) [16], partial replacement adaptive
component substitute (PRACS) [17] based on the concept of partial replacement of the intensity component
and so on. Each method differs from the others by the different projections of the MS images used in
the process and by the different designs of injection gains. Although they show extreme performances
in improving the spatial qualities of LRMS images, they usually suffer from heavily spectral distortions
in some scenarios due to local dissimilarity or the not well-separated spatial structure with the spectral
information. Refer to [3] for more detailed discussions about this.

2.2. The MRA-Based Methods

Unlike the CS-based methods, the MRA class is based on the operator of multi-scale decomposition
or low-pass filter (equal to a single scale of decomposition) over the PAN image [3,37]. They first
extract the spatial details over a wide range of scales from the high resolution PAN image or from the
difference between the PAN image and its low-pass filtered version PL, and then inject the extracted
spatial details into each band of upsampled LRMS image. Figure 2 shows the general flowchart of the
MRA-based methods.

Generally, for each band k = 1, 2, · · · , N, the MRA-based methods can be formulated as

M̂Sk = M̃Sk + gk(P− PL). (3)

As we can see from above Equation (3), different MRA-based methods can be distinguished
by the way of obtaining PL and by the design of injection gains g1, g2, · · · , gN . Several methods
belonging to this class have been proposed, such as HPF [18] using the box mask and additive injection,
the SFIM [19], decimated Wavelet transform using additive injection model (Indusion) [23], the AWLP [24],
GLP with modulation transfer function (MTF)-matched filter (denoted by MTF-GLP) [21], its HPM
injection version (MTF-GLP-HPM) [22] and context-based decision version (MTF-GLP-CBD) [38],
a trous wavelet transform using the model 3 (ATWT-TM3) [39], and so on.

The MRA-based methods highlight the extraction of multi-scale and local details from the PAN
image, well in reducing the spectral distortion but compromising the spatial enhancement. To make
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up this problem, many approches have been proposed by the utilization of different decomposition
schemes (e.g., morphological filters [40]) and the optimization of the injection gains.

Figure 2. Flowchart of the MRA-based methods for pansharpening.

2.3. The Learning-Based Method

Apart from the traditional CS-based and MRA-based methods, the learning-based methods have
been proposed or applied to the pansharpening, among which the CNN-based methods are the most
popular [41]. The CNN-based methods are very flexible, and one can design a CNN with different
architectures. Due to the end-to-end and data-driven properties, they achieve the state-of-the-art
performances in some studies [32–35]. After a network architecture design, training image pairs with
low resolution MS (LRMS) images as network input and high resolution MS (HRMS) images as network
output, are needed to learn the network parameters θ. The learning procedure is based on the choice of
loss function and optimization method, and the effect of learning is different from each other according
to these choices of loss function and optimization strategy. However, these ideal image pairs are
unavailable, and usually simulated based on scale invariant assumption by properly downsampling
both PAN and the original MS images to a reduced resolution. Then, the resolution reduced MS images
and the original MS can be used as an input-output pair.

Given the input-output MS pairs of M̃S
i

with low resolution and Yi with high resolution,
and aided by the auxiliary PAN image Pi, i = 1, 2, . . . , n, the CNN-based methods optimize the
parameter by minimizing the following cost function

L(θ) =
n

∑
i=1
|| f (Pi, M̃S

i
; θ)−Yi||2F (4)

where f (Pi, M̃S
i
; θ) denotes a neural network which takes θ as parameters, and || · ||F is the Frobenius

norm, which is defined as the square root of the sum of the absolute squares of the elements.
To further improve the performances of CNN-based methods, recent work mainly resorts

to the deep residual architecture [42] or to increase the depth of the model to extract multi-level
abstract features [43]. However, these will require large number of network parameters and burden
computation [36]. Unlike the above CNN-based methods that aim at generating the HRMS images or
their residual images, we here to reduce the number of parameters and reduce the requirements on the
computation capacity of the computer by learning weight maps for the CS-based and the MRA-based
methods. Refer to the following section for more detailed discussions about this.
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3. The Proposed PWNet Method

3.1. Motivation and Main Idea

According to the above analysis, the CS-based and MRA-based methods are simple and usually
have complementary performances, i.e., the CS-based methods are good at spatial rendering but
sometimes suffer from severe spectral distortions, while the MRA-based methods performance well in
keeping the spectral information of the MS images but may have limited spatial enhancements. And the
performances of the CS-based and MRA-based methods show data uncertainty, i.e., they have different
fusion performances on different scenarios. The learning-based methods, especially the CNN-based
methods, perform well in reducing spatial and spectral distortions due to their powerful feature
extraction capabilities and data-driven training scheme. However, they usually need an extremely
large data set to train the model parameters and are difficult to be interpretable.

Is there a way to make full use of the complementary performances of the CS-based and
MRA-based methods at the same time reducing their data uncertainty? A straightforward idea is
to firstly generate multiple fusion results by multiple methods (i.e., the CS-based and MRA-based
methods), and then automatically combine them with weights based on performances within different
scenarios to boost the fusion result. This may be realized by using a trainable CNN since it is data-driven
and has strong abilities in the field of image processing.

Motivated by the above, we propose a novel model average method, referred to as pansharpening
weight netowrk (PWNet), for the pansharpening. Specifically, rather than generating only one estimated
HRMS image at a time, we use multiple inference modules to generate distinct estimated HRMS
images at a time. Each inference module produces a distinct estimate of HRMS with bias, and multiple
estimates have the positive and negative deviations. And then the biases can be complemented by
averaging the multiple results, thus leading to the distortions of average are smaller than that of
a single estimate. In order to make use of the simplicity and complementary characteristics of the
CS-based and MRA-based methods, we choose them as inference modules, i.e., use each CS-based or
MRA-based method as an inference module, and then design an end-to-end trainable network with
the original MS and PAN images as input to simultaneously obtain weight maps for all fusion results
obtained by the CS and MRA inference modules. Based on the powerful capability and data-driven
training scheme of nerual network, the output weight maps are context and method dependent. Finally,
we get an estimated HRMS image through adaptively averaging all the fusion results obtained by the
CS-based and MRA-based methods. Figure 3 depicts the main procedures of the proposed PWNet
for pansharpening.

3.2. Network Architecture

Pansharpening Weight Network (PWNet): The key of model average is to assign proper weights
to different models depending on their performances. Unlike traditional model average methods
that are based on hand-crafted design to assign weights, we resort the neural network to adaptively
generate weights. The proposed PWNet is composed of two subnet: the CS weight network and the
MRA weight network. For each subnet, the original LRMS and/or PAN images are took as input.
Similar to [33], high-pass filter operation is first implemented in order to preserve edges and details.
For the CS weight subnet, the high-pass filtered MS image is upsampled though a transpose convolution
and concatenated with the high-pass filtered PAN image, and then fed into four residual blocks [44].
Different from this, the MRA weight subnet only passes the high-pass filtered PAN image into the
subsequent residual blocks. Each of the residual blocks consists of three convolutional layers with
each having a learnable filter of size 3× 3 and a rectified-linear unite (ReLU) activation function [45].
To generate weight maps, the activation function of the output layer is set to be a softmax function.
By considering computation efficiency and also for keeping the proportions between each pair of the
MS bands unchanged, the PWNet only outputs one weigh map for each CS-based or MRA-based



Remote Sens. 2020, 12, 2804 7 of 23

method to achieve a pixel-wise aggregation, which will be discussed below. The detailed architecture of
PWNet for generating the weight maps is shown in Figure 4.

Figure 3. Blockdiagram of the proposed PWNet for pansharpening. The proposed method can be
divided into three independent part, i.e., the weight maps network, the CS inference modules and
the MRA inference modules. The weight maps network takes the reduced MS and PAN image as
inputs, and outputs weight maps for each of the CS-based and MRA-based methods. At the same
time, the CS inference modules and the MRA inference modules generate HRMS images according
to specific pansharpening methods. Finally, the estimated HRMS image is obtained by averaging all
HRMS images estimated by the selected CS-based and MRA-based methods with the weight maps
generated by the weight maps network.

Figure 4. The architecture of proposed PWNet for generating the weight maps.

The CS-based Result Average: Suppose we have nCS kinds of CS-based methods for our PWNet,
and then, for the ith CS-based method, we have its estimated HRMS image as[

M̂SCSi1 , M̂SCSi2 , · · · ,M̂SCSiN

]
= CSi(P, M̃S) (5)

i = 1, 2, · · · , nCS (6)
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where M̂SCSik , k = 1, 2, · · · , N, is the kth MS band and CSi(·) denotes the ith CS-based method.
According to the CS weight network, we get adaptive weight maps for the used CS-based methods as:[

WCS1 , WCS2 , · · · , WCSnCS

]
= f (G(P), G(MS); θCS) (7)

where WCSi is the ith output weight map generated by the CS weight network, f (G(P), G(MS); θCS)

denotes the CS weight network, θCS is the parameter set, the function G(·) is the high-pass filter.
At last, we conduct pixel-wise multiplication for each estimated HRMS image and its corresponding
weight map WCSi and sum the multiplication results to get the CS-based result average, i.e., for each
band, we have the averaged result as

M̂SCSk =
nCS

∑
i=1

M̂SCSik �WCSi , (8)

k = 1, ..., N, (9)

where M̂SCSk denotes the result of the kth band of CS-based method module and � denotes the
point-wise multiplication.

The MRA-based Result Average: Consistent with the procedures of the CS-based method
module, the averaged results for the nMRA MRA-based methods can be given as

M̂SMRAk =
nMRA

∑
i=1

M̂SMRAik �WMRAi (10)

k = 1, ..., N, (11)

where M̂SMRAik and WMRAi are the kth HRMS band obtained by the ith MRA-based method and the
ith output weight map generated by the MRA weight network, which respectively are given as[

WMRA1 , WMRA2 , · · · , WMRAnMRA

]
= g(G(P); θMRA) (12)

and [
M̂SMRAi1 , M̂SMRAi2 , · · · , M̂SMRAiN

]
= MRAi(P, M̃S), i = 1, 2, · · · , nMRA (13)

where g(G(P); θMRA) denotes the MRA weight network, θMRA is the parameter set, and MRAi(·) is
the ith MRA-based method. Note that, different from the CS-based weight network, we only take the
PAN image as the input of the MRA-based weight network since the MRA-base methods extract the
spatial details only rely on the PAN image.

The Final Result Aggregation: After we have obtained the averaged results of the CS-based
method module, M̂SCS = [M̂SCS1 , · · · , M̂SCSN ], and the averaged results of the MRA-based method
module, M̂SMRA = [M̂SMRA1 , · · · , M̂SMRAN ], then we can aggregate them for compensating their
spatial and/or spectral distortions. The final estimated HRMS image M̂S can be given as

M̂S = M̂SCS + αM̂SMRA (14)

where α is a factor for balancing the contributions between the CS-based methods and the
MRA-based methods.

The Loss function: To learn the model parameters θ = {θCS, θMRA}, we would like to minimize
the reconstruction errors between the estimated HRMS image, M̂S, and its corresponding ideal one,
Y, i.e.,

min
θ

1
n

n

∑
i=1
||M̂S

i −Yi||2F (15)
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where n is the number of training samples.

4. Experiments

4.1. Data Sets and Implementation Details

We conduct several experiments using three data sets respectively collected by the GeoEye-1,
WorldView-2, and QuickBird satellites. Each data set is split into two nonoverlapping subset: a training
data set and a testing data set. Each sample in the data set consists of an MS and PAN image pairs with
the PAN image of size 64× 64 and the MS image of size 16× 16. In order to verify the generalization
of the proposed method, we also perform pansharpening on a scene taken on other days for QuickBird
satellite at the full resolution experiment. More detailed information of the three data sets is reported
in Table 1.

Table 1. Information of the three data set.

Satellite Resolution of PAN Resolution of MS Number of Training Data Set Number of Test Data Set

GeoEye-1 0.5 m 2.0 m 182 21
WordView-2 0.5 m 2.0 m 224 32

QuickBird 0.6 m 2.4 m 529 60

As for the training of our proposed PWNet, due to the unavailable of the ideal HRMS
images, similar to the other CNN-based pansharpening methods [32–34], we first follow the Wald’s
protocol [46] to generate the training input MS and PAN pairs by downsampling both the original
PAN and MS images with scale factor r = 4 (i.e., the resolution of the MS and PAN images is reduced
by applying the MTF-matched low-pass filters [21]), and then the the original MS images are treated as
target outputs.

The PWNet is implemented in Tensorflow and trained on a Intel(R) Core(TM) i5-4210U CPU.
We use the Adam algorithm [47] with an initial learning rate of 0.001 to optimize the network
parameters. And we set the maximum number of epoch to 1000 and mini-batch sample size to
32. It takes about 1 h to train our network.

We first evaluate the methods at a reduced resolution, in addition to visual analysis on the
experimental results, the proposed PWNet and other compared methods are also evaluated by
five widely used quantitative metrics, namely, universal image quality index [48] averaged over
the bands (Q_avg) and its four band extension, Q4 [3], spectral angle mapper (SAM) [49], Erreur
Relative Globale Adimensionnelle de Synthése (ERAGS) [50] and the spatial correlation coefficient (SCC) [46].
The closer to one the Q_avg, Q4, and SCC, the better the quality of fused results, while the lower the
SAM and ERGAS, the better the fusion quality.

We also evaluate the methods at a full resolution. In this case, the quality with no-reference index
(QNR) [51] and its spatial index (DS) and spectral index (Dλ) are employed for the quantitative
assessment. It should be pointed out that the quantitative assessment at full resolution is challenging
since these indexes (i.e., QNR, DS and Dλ) are not computed with unattainable ground truth, but rely
heavily on the original MS and PAN images [43]. This tends to quantify the similarity of certain
components in the fused images to the low-resolution observations, which will lead biases in these
indexes estimation. Due to this reason, some methods can generate images with high QNR values but
poor image qualities [52].

In the following, we have carried out five sets of experiments to perform comprehensive analysis
on the proposed PWNet, typically the effect of the hyperparameter α, the number of CS-based and
MRA-based methods, the weight maps channels, and the quantitative, visual and running time
comparisons with the CS-based, MRA-based and learning-based methods at reduced resolution and
full resolution.
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4.2. Analysis to the Hyper-Parameters α

There is a hyper-parameter α in our proposed PWNet, which is to balance the contributions of the
CS-based and MRA-based methods. In this experiment, we will analyze this parameter to optimize the
performance of PWNet. We fix the number of CS-based and MRA-based methods to six and change
α from 0.1 to 1 with interval 0.1. The results obtained are shown in Table 2. As we can see from it,
the PWNet attains constantly good performances when α varies from 0.7 to 0.9. Specially, the best
results can be obtained for α = 0.7. It is worth noting that when α goes to 1, the quantitative indexes
seem to become worse. Thus, α = 0.7 can be a relatively good choice in the following experiments.

Table 2. Quantiative results obtained by PWNet with different α.

α Q_avg SAM ERGAS SCC Q4

0.1 0.9807 3.0250 2.5026 0.9831 0.9836
0.2 0.9825 2.9946 2.3140 0.9855 0.9854
0.3 0.9824 3.0216 2.2994 0.9858 0.9851
0.4 0.9831 2.9901 2.2947 0.9861 0.9856
0.5 0.9811 3.2168 2.3072 0.9854 0.9852
0.6 0.9807 3.3581 2.3935 0.9843 0.9854
0.7 0.9834 3.0276 2.2191 0.9866 0.9863
0.8 0.9831 3.0429 2.2504 0.9867 0.9859
0.9 0.9832 3.0543 2.2536 0.9862 0.9863
1 0.9493 3.2763 3.9663 0.9582 0.9546

4.3. Impact of the Number of the CS-Based and MRA-Based Methods

This experiment shows what influences would be produced by the different number of the
CS-based and MRA-based methods under the condition of nCS = nMRA for simplicity and also for
keeping the balance between the CS class and the MRA class methods. The number of methods to be
averaged is very important to balance the spectral and spatial information from the LRMS and high
resolution PAN images. Too few methods might extract features incompletely and result in a poor
performance, while too many would suffer from computational burden during testing. We would like
to find a trade-off value according to the performance and running time. Therefore, we limit the range
of nCS (or nMRA) to between 5 and 8.

Table 3 gives the quantitative results and the running time (in second) when the number of
averaged methods varies from 5 to 8. Note that, nMRA and nCS equal 5, which means that the selected
CS-based are PCA [11], GIHS [10], Brovey [12], GS [13], GSA [15] and the selected MRA-based
methods are HPF [18], SFIM [19], AWLP [24], MTF-GLP-HPM [22], MTF-GLP-CBD [38], respectively.
When both nCS and nMRA are equal to 6, the PRACS [17] and the ATWT-M3 [39] methods are added
into the CS-based and MRA-based methods, respectively. When nMRA and nCS are equal to 7, we add
the BDSD [14] into the CS weight network and the Indusion [23] into the MRA weight network,
and the BDSD-PC [16] and the MTF-GLP [21] are added into the CS weight network and the MRA
weight network as method modules when nMRA and nCS are equal to 8. As reported in Table 3,
the performance of the proposed PWNet is improved when the number of averaged methods increases
from 5 to 7, while it decays when nCS and nMRA are equal to 8. This reveals that the use of less
number of averaged methods will reduce the performances of the PWNet and increasing the number
of averaged methods will not continuously bring improvements but will suffer from more computation.
In principle, our proposed PWNet is data-driven and thus can automatically weight different kinds
of CS-based and/or MRA-based methods. In practice, we suggest two criteria for the selection of
CS-based and MRA-based methods for the proposed PWNet. First, the number of CS-based methods
and the number of MRA-based methods should be equal in order to keep the balance contribution of
the CS class and MRA class. And then, to further improve the performances and robustness of the
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PWNet, we suggest selecting the CS-based and MRA-based methods according to their performances
reported in [3].

Table 3. Quantitative results and running time with different number of the averaged methods.

nCS and nMRA Q_avg SAM ERGAS SCC Q4 Time

5 0.8781 5.9214 3.5179 0.8609 0.8761 0.3800
6 0.9079 5.7174 3.0616 0.9073 0.9062 0.5900
7 0.9209 5.1654 2.8986 0.9131 0.9165 0.9200
8 0.8781 5.4549 3.6942 0.8633 0.8615 1.6200

4.4. Impact on the Number of Weight Map Channels

In order to reduce the number of parameters and the computational cost, we set the weight map
for each CS-based or MRA-based method to be one channel. That is, each MS band of a HRMS image
obtained by a CS-based or MRA-based method share the same weight map. In general, the model
capacity will be increased with the number of model parameters. Thus, we conduct the experiments
based on different output weight map channels to verify whether the capacity of our model has
suffered from the reduction of channels.

The results of PWNet with one shared weight map channel and with four different weight map
channels for each CS-based or MRA-based method are reported in Table 4. As we can see from it,
the PWNet with one shared weight map channel attains constantly good performances in terms of
the five commonly used metrics on three different kinds of satellite data sets, while the PWNet with
four different weight map channels for each method has a relatively poor performances with the same
training conditions. This may due to that an under-fitting phenomenon caused by excessive parameters
has happened in the PWNet with four weight map channels. It further verifies the advantages of the
PWNet with one shared weight map channel, which can lower the training difficulty.

Table 4. Results of the proposed PWNet with one shared weight map channel or four different weight
map channels for each CS-based or MRA-based method. The best results are highlighted in bold.

Index
Satellite Number of Channels

Q_avg SAM ERGAS SCC Q4

1 channel 0.9874 2.7582 2.3830 0.9813 0.9805WordView-2 4 channels 0.3390 14.7379 14.2755 0.8378 0.8007

1 channel 0.9207 4.2120 2.6868 0.9384 0.9117GeoEye-1 4 channels 0.3585 19.9451 14.5300 0.8141 0.5585

1 channel 0.8941 2.8252 1.8102 0.9480 0.8227QuickBird 4 channels 0.3442 19.6107 14.6745 0.8867 0.1462

4.5. Comparison with the CS-Based and MRA-Based Methods

One key issue of the proposed PWNet method is whether its fusion result is better than that
of each participating method. Only when the answer to this question is yes, we can claim that the
proposed PWNet can produce appropriate weight maps for each CS-based or MRA-based method,
so that the methods involved in model average can complement each other and the result can be
improved. Here we set nMRA and nCS to 7 as we have proved in above that this setting has a good
balance for performances and running times. The compared pansharpening methods include seven
methods belonging to the CS class, namely, PCA [11], GIHS [10], Brovey [12], BDSD [14], GS [13],
GSA [15], PRACS [17], and seven methods belonging to the MRA class such as HPF [18], SFIM [19],
Indusion [23], AWLP [24], ATWT-M3 [39], MTF-GLP-HPM [22], MTF-GLP-CBD [38]. All methods
follow the experimental settings recommended by the authors.
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We first inspect the visual quality of the pansharpening results. Figures 5–7 present the
pansharpened images on all the three data sets, obtained by our proposed PWNet and the other
fourteen methods. As we can see from theses figures, the CS-based methods produce a relatively
sharper spatial features in Figure 5a–g, but they suffer from spectral distortions, as highlighted in the
small window, where the trees around buildings in Figure 5 and the bare soil in Figure 6 are a little
darker than that of ground truth. In contrast, less spectral distortions are appeared in the results of
the MRA-based methods, however, they show poor spatial rendering as they present a little blurring
in Figure 6h–n, especially for the results of AWLP and ATWT-M3. Compared with the CS-based
and MRA-based methods, the proposed PWNet can achieve more similar results to the ground truth.
From the enlarged area in the upper left corner of the Figure 7o, we can see that PWNet has the best
performance in both improving the spatial details and keeping spectral fidelity of the roads and trees.
In summary of the visual analysis, the proposed PWNet method can debias the spectral and spatial
distortions in the CS-based and the MRA-based methods, and can effectively combine the advantages
of these two types of methods, thus shows better visual performances.

Besides visual inspection, we apply numeric metrics to assess the quality of pansharpened images.
Tables 5–7 report the comparison results of the CS-based methods, MRA-based methods, and the
proposed PWNet method on the three data sets. As we can find from these tables, for the WordView-2
and GeoEye-1 data sets, the BDSD method shows the best performances among the fourteen traditional
methods, the AWLP achieves the best performance among the CS-based and MRA-based methods for
the QuickBird data set. None of the CS-based and MRA-based methods systematically obtain the best
performances for all the three data sets. The proposed PWNet yields results with the best spatial and
spectral accuracy over the CS-based and MRA-based methods on all the three data sets. This proves
once again that the proposed method can combine the advantages of the two types of methods to
produce an optimal result.

(a) PAN (b) LRMS (c) PCA (d) GIHS (e) Brovey (f) BDSD

(g) GS (h) GSA (i) PRACS (j) HPF (k) SFIM (l) Indusion

(m) AWLP (n) ATWT-M3 (o) MTF-GLP-HPM (p) MTF-GLP-CBD (q) PWNet(ours) (r) Ground Truth 

Figure 5. Visual comparison of the CS-based and MRA-based methods and the proposed PWNet
method on the WorldView-2 images, (a) PAN; (b) LRMS; (c) PCA; (d) GIHS; (e) Brovey; (f) BDSD; (g)
GS; (h) GSA; (i) PRACS; (j) HPF; (k) SFIM; (l) Indusion; (m) AWLP; (n) ATWT-M3; (o) MTF-GLP-HPM;
(p) MTF-GLP-CBD; (q) PWNet (ours); (r) Ground Truth.
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(a) PAN (b) LRMS (c) PCA (d) GIHS (e) Brovey (f) BDSD

(g) GS (h) GSA (i) PRACS (j) HPF (k) SFIM (l) Indusion

(m) AWLP (n) ATWT-M3 (o) MTF-GLP-HPM (p) MTF-GLP-CBD (q) PWNet(ours) (r) Ground Truth 

Figure 6. Visual comparison of the CS-based and MRA-based methods and the proposed PWNet
method on the GeoEye-1 images, (a) PAN; (b) LRMS; (c) PCA; (d) GIHS; (e) Brovey; (f) BDSD; (g) GS;
(h) GSA; (i) PRACS; (j) HPF; (k) SFIM; (l) Indusion; (m) AWLP; (n) ATWT-M3; (o) MTF-GLP-HPM;
(p) MTF-GLP-CBD; (q) PWNet (ours); (r) Ground Truth.

(a) PAN (b) LRMS (c) PCA (d) GIHS (e) Brovey (f) BDSD

(g) GS (h) GSA (i) PRACS (j) HPF (k) SFIM (l) Indusion

(m) AWLP (n) ATWT-M3 (o) MTF-GLP-HPM (p) MTF-GLP-CBD (q) PWNet(ours) (r) Ground Truth 

Figure 7. Visual comparison of the CS-based and MRA-based methods and the proposed PWNet
method on the QuickBird images, (a) PAN; (b) LRMS; (c) PCA; (d) GIHS; (e) Brovey; (f) BDSD; (g) GS;
(h) GSA; (i) PRACS; (j) HPF; (k) SFIM; (l) Indusion; (m) AWLP; (n) ATWT-M3; (o) MTF-GLP-HPM;
(p) MTF-GLP-CBD; (q) PWNet (ours); (r) Ground Truth.
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Table 5. Quantitative comparison of the CS-based and MRA-based methods and the proposed PWNet
method on the WorldView-2 images. The best and second best results are highlighted in bold.

Method Q_avg SAM ERGAS SCC Q4

PCA 0.8885 5.3974 5.8650 0.9419 0.8705
GIHS 0.8858 5.6820 5.9937 0.9289 0.8777

Brovey 0.8852 5.3037 5.9038 0.9357 0.8748
BDSD 0.9709 4.4274 3.2701 0.9641 0.9628

GS 0.8924 5.2195 5.7536 0.9428 0.8817
GSA 0.9675 4.0382 3.6693 0.9542 0.9581

CS

PRACS 0.9224 4.5298 5.2480 0.9248 0.9143

HPF 0.9454 4.1524 4.4125 0.9521 0.9372
SFIM 0.9498 4.2046 4.2015 0.9578 0.9426

Indusion 0.8651 5.3162 6.4696 0.9025 0.8502
AWLP 0.9617 3.7299 3.6508 0.9593 0.9529

ATWT-M3 0.8723 6.1898 6.5592 0.9067 0.8696
MTF-GLP-HPM 0.9676 3.9731 3.5227 0.9607 0.9589

MRA

MTF-GLP-CBD 0.9620 4.0397 3.4418 0.9575 0.9620

PWNet 0.9836 3.5489 2.4584 0.9801 0.9723

Table 6. Quantitative comparison of the CS-based and MRA-based methods and the proposed PWNet
method on the GeoEye-1 images. The best and second best results are highlighted in bold.

Method Q_avg SAM ERGAS SCC Q4

PCA 0.8110 6.3414 4.8720 0.8544 0.8175
GIHS 0.8125 6.3189 4.8534 0.8539 0.8197

Brovey 0.8063 6.5103 4.9593 0.8496 0.8120
BDSD 0.9211 5.3528 3.8133 0.8721 0.9309

GS 0.8119 6.3199 4.8650 0.8544 0.8188
GSA 0.8959 6.3157 4.0425 0.8598 0.9079

CS

PRACS 0.8274 6.1486 4.7254 0.8483 0.8342

HPF 0.8562 6.3038 4.4650 0.8596 0.8638
SFIM 0.8596 6.3688 4.4152 0.8599 0.8655

Indusion 0.7518 7.1286 5.8135 0.7849 0.7579
AWLP 0.8723 6.6096 4.3918 0.8548 0.8835

ATWT-M3 0.7193 7.9694 5.7994 0.8118 0.7218
MTF-GLP-HPM 0.9016 6.3340 3.9931 0.8639 0.9108

MRA

MTF-GLP-CBD 0.9198 6.3207 3.9122 0.8638 0.9198

PWNet 0.9543 5.3245 2.8405 0.9380 0.9593

To be interpretable, we also visualize the some weight maps of the selected traditional methods
used in the PWNet, as shown in Figures 8–10. It can be seen from these figures that, the edges of
the road and the buildings are extracted by the weight maps of both the CS-based and MRA-based
methods. Typically, we can see that, for the WorldView-2 and GeoEye-1 data sets, the BDSD method
plays an important role as its weight map is clearer than any others, as showin in Figures 8b and 9b,
while the AWLP and MTF-GLP-CBD methods show a little greater contribution to the averaged results
of the PWNet for the QuickBird data set, as can be see from Figure 10d,e. As for the PCA method,
the weight maps are all black, which means that PCA method almost makes no contribution to the final
result on all the three tested data sets. This conclusion is consistent with the previous visual inspection
in Figures 5–7 and quantitative results reported in Tables 5–7. This proves the adaptive characteristic
of our PWNet as it considers different performance of the selected CS-based and MRA-based methods.
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From these experimental results, we can conclude that the proposed PWNet are adaptive and robust
to different data sets.

Table 7. Quantitative comparison of the the CS-based and MRA-based methods and the proposed
PWNet method on the QuickBird images. The best and second best results are highlighted in bold.

Method Q_avg SAM ERGAS SCC Q4

PCA 0.5754 7.4697 4.5931 0.7911 0.7165
GIHS 0.7965 4.2120 2.9488 0.9067 0.7906

Brovey 0.8169 3.9059 2.7937 0.9187 0.8044
BDSD 0.8977 4.2954 2.6979 0.9398 0.8906

GS 0.7856 4.7382 3.1700 0.8874 0.7838
GSA 0.8860 4.0225 2.5359 0.9252 0.8814

CS

PRACS 0.8510 3.8935 2.6258 0.9076 0.8319

HPF 0.8856 3.8858 2.4156 0.9278 0.8778
SFIM 0.8902 3.8065 2.3617 0.9316 0.8818

Indusion 0.7131 4.3943 3.5650 0.8664 0.7004
AWLP 0.9068 3.5775 2.2182 0.9425 0.8982

ATWT-M3 0.8059 4.5073 2.9060 0.8982 0.7912
MTF-GLP-HPM 0.9056 3.7543 2.3366 0.9378 0.8985

MRA

MTF-GLP-CBD 0.8877 4.0365 2.5360 0.9261 0.8877

PWNet 0.9196 3.5275 2.1635 0.9431 0.9109

(a) PCA (b) BDSD (c) PRACS (d) AWLP (e) MTF-GLP-HPM (f) MTF-GLP-CBD

Figure 8. Visualization of weight maps on the WorldView-2 images, (a) PCA; (b) BDSD; (c) PRACS;
(d) AWLP; (e) MTF-GLP-HPM; (f) MTF-GLP-CBD.

(a) PCA (b) BDSD (c) PRACS (d) AWLP (e) MTF-GLP-HPM (f) MTF-GLP-CBD

Figure 9. Visualization of weight maps on the GeoEye-1 images, (a) PCA; (b) BDSD; (c) PRACS;
(d) AWLP; (e) MTF-GLP-HPM; (f) MTF-GLP-CBD.

(a) PCA (b) BDSD (c) PRACS (d) AWLP (e) MTF-GLP-HPM (f) MTF-GLP-CBD

Figure 10. Visualization of weight maps on the QuickBird images, (a) PCA; (b) BDSD; (c) PRACS;
(d) AWLP; (e) MTF-GLP-HPM; (f) MTF-GLP-CBD.
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4.6. Comparison with the CNN-Based Methods

Currently, the proposed PWNet has shown its priority over the selected traditional CS-based and
MRA-based methods. In this subsection, we are going to compare it with the CNN-based methods
to verify its effectiveness. The other four stat-of-the-art (SOTA) methods including pansharpening by
convolutional neural networks (PNN) [32], deep residual pan-sharpening neural network (DRPNN) [42],
multiscale and multidepth convolutional neural network (MSDCNN) [43], are used as alternative methods
for comparison. All the compared methods follow the experimental setting of their original papers.
Note that the source codes of PNN is provided by the original authors and the codes of DRPNN,
MSDCNN are available at https://github.com/Decri.

Figures 11–13 show some example regions selected from the pansharpened images on the three
test data sets. In Figure 11, by magnifying the selected area in the image three times, it can be
obviously seen that the other CNN-based methods have a little blurring to the ground truth, while the
edges produced by our proposed PWNet method are more clear and natural as shown in zoomed
areas. Although MSDCNN, DRPNN and PNN can produce better results with less spatial distortions,
they sometimes suffer from a little spectral distortions, as shown in Figure 12b–d, where the bare soil
is a little darker than the reference. This can also be seen in Figure 13b where the buildings in this
scene is dark yellow while they are white in the ground truth as shown in Figure 13f. Compared with
other CNN-based methods, the proposed PWNet shows a good balance between the injected spatial
details and the maintain of original spectral information, this is clearly visible on the vegetable areas
and textures (e.g., edges of the roof and road), as shown in Figures 11e–13e.

In addition, Table 8 shows the quantitative results for the three tested data sets obtained by the
compared CNN-based methods and our proposed PWNet. It should be pointed out that, for each
test experiment, we would choose one test sample randomly from the test data set rather than a
cherry-picked sample, thus the results listed in Table 8 and Tables 5–7 are based on different PAN and
MS image pairs and have different quantitative results. For better comparison, the best results among
the four methods are highlighted in boldface. According to this table, one can see that performances of
the proposed PWNet is better than the other three CNN-based methods in terms of the five indexes.

(a) LRMS (b) PNN (c) DRPNN (d) MSDCNN (e) PWNet(ours) (f) Ground Truth

Figure 11. Visual comparison of the CNN-based methods on the WorldVie-2 data set, (a) LRMS;
(b) PNN; (c) DRPNN; (d) MSDCNN; (e) PWNet (ours); (f) Ground Truth.

(a) LRMS (b) PNN (c) DRPNN (d) MSDCNN (e) PWNet(ours) (f) Ground Truth

Figure 12. Visual comparison of the CNN-based methods on the GeoEye-1 data set, (a) LRMS; (b) PNN;
(c) DRPNN; (d) MSDCNN; (e) PWNet (ours); (f) Ground Truth.

https://github.com/Decri
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(a) LRMS (b) PNN (c) DRPNN (d) MSDCNN (e) PWNet(ours) (f) Ground Truth

Figure 13. Visual comparison of the CNN-based methods on the QuickBird data set, (a) LRMS; (b) PNN;
(c) DRPNN; (d) MSDCNN; (e) PWNet(ours); (f) Ground Truth.

Table 8. Quantitative comparison of the CNN-based methods on three test data sets. The best results
are highlighted in bold.

Method Q_avg SAM ERGAS SCC Q4

PNN 0.9479 5.2180 5.1040 0.8975 0.9256
DRPNN 0.9292 4.4765 5.3072 0.8887 0.9030

MSDCNN 0.9443 4.4135 6.8478 0.9407 0.8512WorldView-2

PWNet 0.9874 2.7582 2.3830 0.9813 0.9805

PNN 0.8639 4.8190 3.5224 0.8888 0.8435
DRPNN 0.7934 4.8685 3.7746 0.8931 0.7733

MSDCNN 0.8462 4.9707 3.3115 0.9093 0.8518GeoEye-1

PWNet 0.9207 4.2120 2.6868 0.9384 0.9117

PNN 0.7047 3.3113 2.6980 0.9258 0.5950
DRPNN 0.7648 2.4289 1.7544 0.9473 0.7750

MSDCNN 0.7727 2.7034 1.8429 0.9450 0.7845QuickBird

PWNet 0.8258 2.2163 1.5525 0.9644 0.8234

4.7. Comparison at Full Resolution

The comparison results on three tested images at full resolution are shown in Figures 14–16 and
Table 9. As we can see from the table that, for the WordView-2 and GeoEye-1 data sets, the DRPNN and
PNN method respectively show the best performances, while the proposed PWNet holds the second
best position for all the three data sets. On a whole, the CNN-based methods perform better than the
traditional methods (i.e., the CS-based and MRA-based methods). By a visual inspection, the PNN,
DRPNN, and MSDCNN methods tend to produce blurring results while the proposed PWNet is able
to enhancing the spatial quality and shows clearly sharper fusion results, as shown in Figures 14–16r.
As a summary, compared to the other methods at the full resolution, the proposed PWNet could
consistently reconstruct sharper HRMS image with less spectral and spatial distortion.
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(a)PCA (b)IHS (c)Brovey (d)BDSD (e)GS (f)GSA

(g)PRACS (h)HPF (i)SFIM (j)Indusion (k)AWLP (l)ATWT-M3

(m)MTF-GLP-HPM (n)MTF-GLP-CBD (o)PNN (p)DRPNN (q)MSDCNN (r)PWNet

Figure 14. Visual comparison of different methods on the WorldVie-2 data set at full resolution,
(a) PCA; (b) GIHS; (c) Brovey; (d) BDSD; (e) GS; (f) GSA; (g) PRACS; (h) HPF; (i) SFIM; (j) Indusion;
(k) AWLP; (l) ATWT-M3; (m) MTF-GLP-HPM; (n) MTF-GLP-CBD; (o) PNN; (p) DRPNN; (q) MSDCNN;
(r) PWNet (ours).

(a)PCA (b)IHS (c)Brovey (d)BDSD (e)GS (f)GSA

(g)PRACS (h)HPF (i)SFIM (j)Indusion (k)AWLP (l)ATWT-M3

(m)MTF-GLP-HPM (n)MTF-GLP-CBD (o)PNN (p)DRPNN (q)MSDCNN (r)PWNet

Figure 15. Visual comparison of different methods on the GeoEye-1 data set at full resolution,
(a) PCA; (b) GIHS; (c) Brovey; (d) BDSD; (e) GS; (f) GSA; (g) PRACS; (h) HPF; (i) SFIM; (j) Indusion;
(k) AWLP; (l) ATWT-M3; (m) MTF-GLP-HPM; (n) MTF-GLP-CBD; (o) PNN; (p) DRPNN; (q) MSDCNN;
(r) PWNet (ours).
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(a)PCA (b)IHS (c)Brovey (d)BDSD (e)GS (f)GSA

(g)PRACS (h)HPF (i)SFIM (j)Indusion (k)AWLP (l)ATWT-M3

(m)MTF-GLP-HPM (n)MTF-GLP-CBD (o)PNN (p)DRPNN (q)MSDCNN (r)PWNet

Figure 16. Visual comparison of different methods on the QuickBird data set at full resolution,
(a) PCA; (b) GIHS; (c) Brovey; (d) BDSD; (e) GS; (f) GSA; (g) PRACS; (h) HPF; (i) SFIM; (j) Indusion;
(k) AWLP; (l) ATWT-M3; (m) MTF-GLP-HPM; (n) MTF-GLP-CBD; (o) PNN; (p) DRPNN; (q) MSDCNN;
(r) PWNet (ours).

Table 9. Performance comparison on three test data sets at full resolution. The best and second best
results are highlighted in bold and underlined, respectively.

GeoEye-1 WorldView-2 QuickBird

Methed Dλ DS QNR Dλ DS QNR Dλ DS QNR

PCA 0.1020 0.1542 0.7595 0.0265 0.2143 0.7649 0.0527 0.1036 0.8491
GIHS 0.0347 0.1812 0.7903 0.0767 0.0845 0.8453 0.0819 0.0815 0.8432

Brovey 0.0337 0.1769 0.7954 0.0377 0.1008 0.8653 0.0545 0.0577 0.8910
BDSD 0.2103 0.3887 0.4827 0.1016 0.2569 0.6676 0.2748 0.3250 0.4895

GS 0.0379 0.1816 0.7873 0.0167 0.1049 0.8802 0.0443 0.0613 0.8971
GSA 0.2925 0.1226 0.6207 0.1079 0.1444 0.7633 0.0940 0.1126 0.8040

PRACS 0.0587 0.1533 0.7970 0.0231 0.0908 0.8882 0.0492 0.0845 0.8704
HPF 0.1500 0.2023 0.6780 0.0533 0.1028 0.8494 0.0603 0.0515 0.8913
SFIM 0.1469 0.1971 0.6849 0.0532 0.0974 0.8546 0.0587 0.0517 0.8926

Indusion 0.0867 0.1126 0.8105 0.0312 0.0544 0.9161 0.0691 0.0444 0.8895
AWLP 0.1621 0.1914 0.6776 0.0437 0.0908 0.8695 0.0575 0.0583 0.8875

ATWT-M3 0.1198 0.1782 0.7234 0.0617 0.0818 0.8615 0.0588 0.0806 0.8653
MTF-GLP-HPM 0.1810 0.1986 0.6563 0.0604 0.1096 0.8366 0.0827 0.0675 0.8554
MTF-GLP-CBD 0.2199 0.2009 0.6234 0.0752 0.1282 0.8062 0.0800 0.0673 0.8580

PNN 0.1042 0.0404 0.8596 0.0636 0.0322 0.9062 0.0306 0.0490 0.9218
DRPNN 0.0268 0.0764 0.8988 0.0359 0.0636 0.9027 0.0199 0.0954 0.8866

MSDCNN 0.0699 0.0795 0.8562 0.0282 0.0734 0.9004 0.0946 0.1068 0.8087
PWNet 0.0289 0.1127 0.8616 0.0172 0.0700 0.9139 0.0428 0.0559 0.9037

4.8. Running Time Analysis

In this subsection, we compare the running time of the proposed method with the others on a
64× 64 LRMS and 256× 256 PAN image pair. The experiments are performed by MATLAB R2016b on
the same platform with Core i5-4210U/1.7 GHz/4G. The running times of different methods are listed
in Table 10, in which the time is measured in second. From this table, it can be found that DRPNN is
the most time-consuming method, because the number of hidden layers within DRPNN is more than
the other CNN-based methods. In addition, the MSDCNN needs a little more time to obtain the fusion
result than that of the proposed PWNet. In a word, the proposed PWNet method is more efficient than
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the CNN-based methods due to less hidden layers and that it only outputs weight maps rather than
directly producing an estimated HRMS image.

Table 10. Running time comparison of different methods (in second).

Method Time Methed Time

PCA 0.0900 Indusion 0.0600
GIHS 0.0100 AWLP 0.0400

Brovey 0.0010 ATWTM3 0.1100
BDSD 0.2700 MTF_GLP_HPM 0.0400

GS 0.0300 MTF_GLP_CBD 0.0500
GSA 0.1000 PNN 0.5900

PRACS 0.1000 DRPNN 6.5100
HPF 0.0100 MSDCNN 1.9900
SFIM 0.0100 PWNet 1.0200

5. Conclusions

In this paper, we presented a novel model average network for pansharpening, and is referred
to as PWNet. The proposed PWNet attempts to integrate the complementary characteristics of the
CS-based and MRA-based methods through an end-to-end trainable neural networks, and thus it is
data-driven and able to adaptively weight the results of the classical methods depending on their
performances. Experiments on several data sets collected by three kinds of satellites demonstrate that
the pansharpened HRMS images by the proposed PWNet can not only enhance the spatial qualities
but also can keep the spectral information of the original MS images. In addition, the proposed
PWNet has some distribution structures. Thus, we will extend the proposed model to a distribution
version by using the techniques of distributed processing [53] to further reduce the running time while
maintaining the quality of the results.
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