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Abstract: As satellite observation technology improves, the number of remote sensing images
significantly and rapidly increases. Therefore, a growing number of studies are focusing on remote
sensing image retrieval. However, having a large number of remote sensing images considerably
slows the retrieval time and takes up a great deal of memory space. The hash method is being
increasingly used for rapid image retrieval because of its remarkably fast performance. At the same
time, selecting samples that contain more information and greater stability to train the network has
gradually become the key to improving retrieval performance. Given the above considerations, we
propose a deep hash remote sensing image retrieval method, called the hard probability sampling
hash retrieval method (HPSH), which combines hash code learning with hard probability sampling
in a deep network. Specifically, we used a probability sampling method to select training samples,
and we designed one novel hash loss function to better train the network parameters and reduce
the hashing accuracy loss due to quantization. Our experimental results demonstrate that HPSH
could yield an excellent representation compared with other state-of-the-art hash approaches. For
the university of California, merced (UCMD) dataset, HPSH+S resulted in a mean average precision
(mAP) of up to 90.9% on 16 hash bits, 92.2% on 24 hash bits, and 92.8% on 32 hash bits. For the aerial
image dataset (AID), HPSH+S achieved a mAP of up to 89.8% on 16 hash bits, 93.6% on 24 hash bits,
and 95.5% on 32 hash bits. For the UCMD dataset, with the use of data augmentation, our proposed
approach achieved a mAP of up to 99.6% on 32 hash bits and 99.7% on 64 hash bits.

Keywords: hash; remote sensing image retrieval; semantic similarity; quantization

1. Introduction

With the improvement in satellite observation technology, the number of remote sensing images
has significantly and rapidly increased [1,2]. This aspect has motivated many researchers to focus
on applications of remote sensing images, such as recognition, detection, classification, and retrieval.
Of the many processes involved, remote sensing image retrieval (RSIR) [3–5] is the most challenging.
The primary task of RSIR is to return all images that are visually similar to the given query image
in a retrieval dataset. Moreover, large collections of high-resolution remote sensing images are
continuously emerging. Usually, these remote sensing (RS) images include a large range of geographical
areas, and many of these areas contain a lot of semantic instances [6–11]. Establishing an optimal
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approach to building a remote sensing image system with high computational efficiency and accurate
results has become the biggest challenge in remote sensing image retrieval research.

In RSIR [6–11], in order to enhance retrieval effectiveness, deep metric learning (DML) is frequently
used to learn more representative high-level features, which are obtained through a convolutional
neural network (CNN). DML is used to learn the embedding space, in which similar samples from
the same category are pulled close to each other, and at the same time, dissimilar samples from different
categories are kept apart [12–14]. Generally, the main operation of DML contains two aspects. The first
is the selection of appropriate sample pairs during training. Sample pairs whose similarities are
incorrectly represented in a particular embedded space tend to have higher contributions to the loss
function calculation. These sample pairs are called informative samples in DML, and they lead
to fast convergence. The second aspect is the design of effective loss functions. The pairwise loss
function [15–19] is a typical choice in RSIR; it constructs pairwise samples for training, and examples
include contrastive loss [15], triplet loss [16], lifted structured loss [17], ranked list loss [18], and
margin-based loss [19]. Contrastive loss [15] does not take into account dissimilar pairs whose distance
is smaller than the given margin. Triplet loss [16] is based on triplets, which means that the triplet
selection is a significant step. It is more relaxed on the distance constraint between samples and is
faster. Lifted structured loss [17] assigns larger weights to more informative samples. Margin-based
loss [19] considers both distant positive pairs and close negative pairs. However, the random selection
of redundant and less informative samples leads to slow convergence and can obtain inferior results.

Sample selection in DML [6,15,17,19–24] takes an equal or more significant position than loss
functions. For example, in random sampling [15,20,21], no consideration is given to the distribution
of samples that are drawn randomly. Hard negative mining uses a fixed boundary to select hard
negative samples. Semi-hard negative mining [17,22] is widely adopted. This method jointly uses
the anchor and a given positive sample to choose negative samples. Thus, it can provide hard but
not too hard negative samples for training. The method for selecting informative samples is vital to
network training. At the same time, the approach to organizing the training samples plays an equally
important role. As has been proved in triplet loss [16], if hard mining is adopted, many images have
the same embedding, and this ultimately leads to model collapse. This means that training samples
cannot only consist of hard negative (positive) samples. Furthermore, most of the current mining
methods involve uniform sampling and ignore the sample distribution. We attempt to utilize a hard
negative probability sampling method to find more informative training samples while maintaining
the samples’ diversity.

Usually, having a large number of RS images substantially increases retrieval time and takes
up a great deal of memory space. Therefore, as a dimension reduction method, hash methods
are increasingly adopted in fast image retrieval because of their excellent retrieval performance.
The purpose of hashing is to learn several hash functions to compress high-dimensional features into
low-dimensional Hamming features. In other words, each image will be expressed as a binary hash
code. Ordinarily, there are two types of hashing: the conventional hashing method and the deep
hashing method. The inputs of conventional hashing methods are usually hand-crafted image features;
examples include scale invariant feature transform (SIFT) [25] and GIST [26]. These features mainly
take image contents into consideration, and they are not specific to the task. The design of hand-crafted
features often requires more professional domain knowledge and manual intervention. RSIR based on
hand-crafted features has limited representation capability and scarcely meets the practical retrieval
demand. In comparison with conventional hashing, deep hashing [27–34] obtains hash codes from
high-dimensional deep features. These deep features are acquired by deep neural networks without
human intervention and are thus more discriminative and robust. The purpose of the deep hashing
method is to bring hash codes from the same category closer together and separate those from different
categories in the Hamming sphere. It is worth noting that this is consistent with the goal of deep
metric learning. Typically, deep hashing feeds the images into a deep neural network and obtains
hash codes in an end-to-end manner. Specifically, the process can be separated into two parts. First,
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in order to obtain the embedding, we need to train a deep neural network to obtain the embedded
vectors. Compared with the deep neural network used in a classical image classification task, the deep
hashing network needs to drop the final fully-connected layers and add appropriate pooling layers to
fit the hash task. The second step is to use a property quantization method to generate binary hash
codes, and an excellent hash loss will significantly minimize the gap between hash-like codes and hash
codes. For convenience, we use the term “hash-like codes” to indicate the low-dimensional features
extracted from the deep hash network before binarization.

Given the above considerations, we improved remote sensing image retrieval in two ways. First,
from the perspective of DML, in order to better learn the difference between images of distinct classes
and optimize the use of the information on batch samples, we explore the distribution relationship
of samples and adopt hard negative probability sampling methods. Second, from the perspective of
deep hashing methods, we use a deep neural network (DNN) to learn hash functions and propose
two hash losses. This can reduce the binarization loss greatly. Furthermore, the learned hash code is
more representative.

In sum, we propose a new deep hard probability sampling hash retrieval method. First, we use
a hard probability sampling method [19] to enhance the information carried by a training batch. Then,
we apply a novel loss function, which is composed of an embedding loss and two hash losses, to train
the deep hash neural network effectively.

The main work and contributions of the paper are as follows:

(1) We designed a non-uniform hard negative sampling method to find more informative training
samples. Meanwhile, the proposed mining strategy could keep the diversity of training samples
to make the learned embedding discriminative and stable.

(2) We showed a new deep hash structure to learn hash functions by DNN. It used hard samples to
fully train the network weights, and it used margin-based loss and two hash losses for better
hash retrieval results.

(3) Experimental results on two remote sensing data sets UCMD and AID suggest that our
proposed HPSH can get excellent retrieval performance compared to other state-of-the-art
deep hash methods.

Our code for HPSH can be found at: https://github.com/danxue98/HPSH.git.
The rest of this article can be divided into four parts. Section 2 introduces related work. Section 3

introduces the implementation details of HPSH, and Section 4 lists the comparative experimental
results of our HPSH method. Section 5 summarizes the conclusions of the HPSH method.

2. Related Work

The main work involving DML contains two aspects. The first is the design of informative
sample pairs, and the second is the design of an efficient loss function. A pairwise loss function
is used in most DML studies, but the existent loss functions cannot fit all metric learning tasks
properly. For example, contrastive loss [15] encourages similar images in the metric space to be as
close as possible, while dissimilar images in the metric space are as far from the given threshold as
possible. Nevertheless, applying the same distance constraint to different kinds of images will result in
a substantial decrease in performance, and it is not compatible with any change in the embedding
space. In order to solve this problem, triplet loss [6] places relaxed restrictions on distance. It only
demands that the distance between dissimilar images be greater than the distance between similar
images. Thus, it greatly alleviates the limitation on the threshold between positive and negative
samples, so the learned metric is more flexible. Lifted structured loss [17] makes full use of pairs’
information; it calculates the loss between each dissimilar pair in a given sample. However, it cannot
properly maintain space distribution. Ranked list loss [19] relaxes the restriction on similar pairs and
requires that the distance within positive pairs be closer than a given margin. Wu et al. [19] depicted
a new loss named margin-based loss, which is based on learning to rank in information retrieval. It
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relaxes the constraint of contrastive loss and enjoys the flexibility of triplet loss. In our task, we used
the margin-based loss [19], which is proved to more effectively learn the embedding.

In DML, the sample selection strategy also occupies an important position in metric learning
for the goal of fast convergence. There are two issues that need to be addressed. The first one
is finding informative samples, and the second one is building a training batch. Some sampling
methods have been proposed to tackle the first issue. For example, in random sampling [15,20,21],
samples are drawn at random. However, this method does not consider the spatial distribution of
the samples. Hard negative mining sets a fixed threshold for selecting negative samples, and semi-hard
negative mining [17,22] is widely adopted; these methods consider the characteristics of different
samples and prefer to select negative samples with the highest similarity to the anchor among negative
samples whose similarities are less than the given positive samples. However, all of these methods are
uniform sampling with limited conditions and cannot produce a sufficient number of difficult samples.
Moreover, these methods are case-specific and are not used in conjunction with DML. On the other
hand, to deal with the second issue, we need to answer the following: Can we use only hard samples
to build training batches? In embedding learning, we use a deterministic gradient estimate. If only
informative samples (too hard or close negative samples) are provided, the gradient will have high
variance [19]. In other words, the gradient is nearly close to random [19], which is far from the expected
deterministic one. Furthermore, these gradients might lead to noise in embedding learning. This
has been proven in triplet loss. When hard negative mining is adopted in triplet loss, many images
generate an identical embedding, which ultimately leads to model collapse. In the approach proposed
in this paper, we use a sample mining strategy to retain the sample diversity. In this mining method,
the selected samples consist not only of informative (too hard) samples but also other samples that take
part in loss calculations to produce a gradient that is definitive. We attempt to utilize hard negative
probability sampling method to mine a more informative training network.

The purpose of hashing is to learn a series of hash functions to compress high-dimensional features
into low-dimensional features. Each image will be denoted as a binary hash code. Normally, hashing
contains two parts: conventional hashing and deep hashing methods. For example, locality-sensitive
hashing (LSH) [35] passes two adjacent data points in the original data space through the same mapping
or projection transformation, and the probability that the two data points are still adjacent in the new
data space is very high; in contrast, the probability that non-adjacent data points are mapped to the same
bucket is very low. Spectral hashing (SH) [36] uses the analysis of the eigenvalues and eigenvectors
of the Laplace matrix of similar graphs to provide a relaxation solution to the graph segmentation
problem. From spectral clustering, the eigenvectors of the Laplace matrix of a similar graph are actually
the vector of the original feature after dimension reduction, but it is not a binary vector, which can
produce spectral hashing binary coding by thresholding the eigenvector. The kernel-based supervised
hashing (KSH) method [37] uses the equivalence of the Hamming distance and coded inner product to
calculate the objective function. At the same time, it utilizes the separation of the inner product to
design a greedy algorithm to solve the hash function. However, hand-crafted image features that are
used in hashing methods have limited representation capability. Therefore, researchers are increasingly
focusing on deep hash methods. They learn hash codes through a CNN without human intervention.

Owing to the excellent results of the deep CNN, many deep hashing methods that take full
advantage of deep neural networks have been proposed to improve retrieval performance. For example,
Krizhevsky et al. [29] first used the features extracted from the fully connected layer to retrieve similar
images, and they obtained excellent results on ImageNet. Li et al. [31] proposed a deep hashing neural
network (DHNN) for widespread RSIR. In this method, the deep neural network not only learns deep
features but also learns a series of hash functions; as a result, it can learn high-level semantic feature
representation and compact hash codes, respectively. MiLan [33], a metric and hash code learning
network, was proposed to learn a semantic-based metric space while simultaneously producing binary
hash codes for fast and accurate retrieval of remote sensing images. However, in these methods, either
the performance drops after binarization or long hash codes are used to solve the accuracy problem.
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In this work, we propose a new hash approach with hard negative sampling to realize accurate and
efficient RSIR.

3. HPSH Method

In this part, Section 3.1 defines the problem. Section 3.2 explains the probability sampling method.
Section 3.3 explicates the loss function of our HPSH method. The particulars of the overall structure
are illustrated in Section 3.4.

3.1. Symbol Interpretation

We suppose that the collection of training images is denoted as X = {x1, x2, . . . , xN}, where each xi
is related to a homologous class label yi ∈ Y, Y = {y1, y2, . . . , yP}. N represents the size of the dataset, and
P represents the number of categories. Then, x j

m denotes the m-th class’ j-th image, xp
m denotes the m-th

class’ p-th image, and xn
l denotes the l-th category’s n-th image. RS images from the same class are

more similar than RS images from different classes. Our HPSH intends to obtain a set of hash functions
that can map original samples to hash codes while maintaining the similarity accordingly. Specifically,
Hd

(
xi

m, xp
m

)
needs to be smaller than Hd

(
xi

m, xn
l

)
, where Hd(., .) denotes the Hamming distance. Table 1

defines all of these symbols.

Table 1. Definition of some symbols.

Symbol Definition

X The set of the remote sensing (RS) images
Y The set of the labels
x j

m The m-th class j-th image
xp

m The m-th class p-th image
xn

l The l-th class n-th image
f (.) The high dimensional embedding
fh(.) The low dimensional embedding

si The i-th hash-like code
hi The i-th hash-code

Hd(., .) The Hamming distance

3.2. Probability Sample Method

Normally, most of the negative data selected by random sampling methods have limited
information. Although hard sampling is mostly realized by the distance limitation between positive
and negative samples, it generally applies uniform sampling. In this case, the training process
cannot be optimized. Therefore, in order to train the model to best fit our RS retrieval task, we
need more hard negative samples that can carry more information and, at the same time, maintain
the comprehensiveness of sampling, which is meaningful to the training network parameters. Therefore,
we propose a hard negative probability method. Our probability sampling method is non-uniform,
based on finite distance, and calculated by probability.

The distance between two points in n-dimensional space can be calculated using the Euclidean
distance. It can be calculated by

D(xi , x j
)
=

√∑(
f (xi) − f

(
x j

))2
, (1)

where f (.) represents the feature embedding of a deep network before compression. Using the above
formula, we can calculate the distance matrix between points.
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We now pose another question: For any given point fixed on the surface of n-dimensional space,
what happens when we randomly select training samples, and what is the nature of the distribution of
distance? In [38], we came to the conclusion that the distribution of distance is as follows:

Y(D) =
Dn−2

an−1

[
1−

1
4a2 D2

] n−3
2

, (2)

where n denotes the dimension of the sphere space, in other words, the length of the deep embedding,
and a denotes the radius of the n-dimensional sphere, which is a constant parameter. We can omit
the constant a and rewrite Equation (2) as

Y(D) = Dn−2
[
1−

1
4

D2
] n−3

2
, (3)

where n is larger than eight, Y(D) is the function of distance D, and Y(D) approximately follows a normal

distribution N
(√

2 , 1
√

2n

)
. This means that we would obtain samples whose Euclidean distance equals

√
2 if we select them randomly. In Figure 1, we show a graphical interpretation of hard samples.
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Figure 1. Different colors represent different categories: the centered yellow point is the anchor.
The yellow point with the red “1” is the positive sample farthest from the anchor, which represents
the hardest positive sample. Then, blue with the red “0” is the closest negative sample to the anchor.
We draw two semicircles on the basis of these two points, and then all points inside the ring are
informative samples because, in loss computation, they can provide more valuable information and
make the training process converge quickly.

In Figure 1, we can see that hard samples contain two aspects. One is negative samples that
are too close to the anchor, and the other is positive samples that are too far from the anchor. In our
work, we only focus on hard negative samples, which are called informative samples. These samples
cause network training to converge quickly. Then, if we only select hard samples, as we discussed in
related work, too hard samples will increase the randomness of the gradient and further introduce
noise to embedding learning, which will impair the robustness of the model. This requires that we
maintain diversity in sample mining. From the above analysis, we could attempt to build training
sample sets based on distance distribution by reducing the samples that are easy to select (Euclidean
distance near

√
2) and adding the samples that are difficult to mine (Euclidean distance far from

√
2

and Euclidean distance less than
√

2). In this way, the collected samples are scattered and evenly
distributed throughout the sample space to achieve more comprehensive training. Furthermore, many
of our samples will be informative. This can be achieved by sampling using the inverse of the distance
distribution as the probability.

p
(
xpos = x j

∣∣∣xi
)
= e−Y(D), (4)
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Furthermore, in order to avoid noisy sampling, we use the parameter λ to filter out the negative
samples with too small distances to the anchor. The modified sampling strategy can correct the bias
while controlling the variance and is thus better suited to our hash task. Through the above formula,
we can acquire more comprehensive sample points so as to train the network more effectively. We
present the diagram in Figure 2.Remote Sens. 2020, 12, 2789 7 of 21 
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Although the principle is simple, our experimental data exhibit the superiority of the hard
probability sampling method. We illustrate the sampling method in Figure 3.
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N(
√

2, 1/
√

2n), we put the mean at
√

2, and τ is a randomly selected boundary to denote a centrally
symmetrical distribution area (the shaded zone). In the subfigures below, the centered yellow point
represents the anchor, and the blue points represent the negative samples selected by different sampling
methods. In (a), most of the selected samples are gathered in the shaded zone around

√
2 in random

sampling. (b) represents semi-hard sampling. The selected samples need to be close to the anchor, but
not as close as that needed in hard mining. (c) shows hard sampling. A predefined boundary (denoted
by the blue circle) is used to filter hard negative samples. Thus, the selected samples are gathered
more closely to the anchor than those in semi-hard sampling. (d) Our proposed sampling strategy.
The selected samples have a scattered distribution to maintain diversity in the training batch.

3.3. Hash Loss Function with a Margin

Compared with metric learning approaches using a triplet loss or contrastive loss, the proposed
HPSH method uses a margin loss [19] to learn the similarity between RS images, as a margin loss can
maintain the flexibility of a triplet loss while offering computational efficiency. The objective of our
HPSH is to obtain some hash functions, and these functions can project input embedding features into
hash codes. Thus, an anchor and sample from the same class tend to be close, while an anchor and
sample from different classes tend to be far apart. The margin loss function can be defined as

lmargin(xi , x j
)
= max

[
0,

(
α+ yi j

(
D
(

f (xi), f
(
x j

))
− β

))]
, (5)

where β represents the boundary between dissimilar pairs, and α controls the margin of separation.
In yi j ∈ {−1 , 1}, when xi and x j come from the same class, yi j = 1, and when xi and x j come from
different categories, yi j = −1. D(. , .) calculates the Euclidean distance. However, the equation above
cannot entirely meet our demand. We need to learn not only excellent metric spaces but also efficient
low-dimensional hash codes. In order to carry out the retrieval with hash codes, we input deep features
from the convolutional neural network to the deep hash network. Given the consideration above, we
can rewrite Equation (5) to obtain

lpmargin(xi , x j
)
= max

[
0,

(
α+ yi j

(
D
(
s(xi), s

(
x j

))
− β

))]
, (6)

where s(xi) denotes the result of dimension reduction before quantization, as well as the embedding
features extracted from the deep hash network, which can learn hash codes more effective.
The optimization result is shown in Figure 4.

Then, we use a loss function between compressed codes before binarization and hash codes to
minimize quantitative losses. We use the hash-like loss, which is extracted by the deep hash network
before the binarization loss, as suggested by iterative quantization [39]:

lhash−like =
∑M

m=1

(
‖sm − hm‖

2
1

)
, (7)

where ‖.‖1 denotes an l1-norm vector to reduce computation time. M denotes the batch size, sm denotes
the m-th deep feature’s quantization result extracted by the deep hash network, and hm is the m-th
hash code of the anchor image. lhash−like denotes the hash-like loss that can minimize the gap between
the hash-like code and hash code and achieves better hash retrieval results.
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It is hard to calculate derivatives for this equation because of the discrete values [19]. Inspired
by [40], we use the smooth surrogate function |x| = log coshx to substitute Equation (7). The surrogate
function can map discrete values to a continuous range and solve the problem that discrete values are
difficult to derive. Then, the hash-like loss turns into

lhash−like =
∑M

m=1

(
(log cosh|sm − hm|)

2
)
, (8)

where |.| denotes the absolute value.
Finally, for the sake of balancing the numbers 0 and 1 in the hash code, inspired by [9], we define

the lbalance loss function as

lbalance = −
λ1

L

∑M

i=1
‖sm − 0.5I‖2 + λ2

∑M

i=1
(avg(sm) − 0.5)2, (9)

where avg(.) calculates the mean of the hash-like codes, λ1 and λ2 represent the weight of the above
two parts, and L represents the length of the hash code.

The final objective function can be written as

l = lpmargin + αlhash−like + lbalance

=
M∑

m=1

(
lpmargin(xi , x j

))
+ α

M∑
m=1

((
log cosh

∣∣∣qm − hm
∣∣∣)2

)
+ − λ1

K
∑M

i=1 ‖qm − 0.5I‖2 + λ2
∑M

i=1(avg(qm) − 0.5)2,

(10)

We used Adam to optimize the deep hash network. The hash-like loss lhash−like ensures that a hash
code before binarization is closer to a binary hash code. The hash code balance loss lbalance can balance
the numbers 0 and 1. Algorithm 1 details the optimization procedure.
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Algorithm 1: Optimization algorithm for learning HPSH.

Input:
A batch of RS images.

Output:
The parameter W of the deep hash network;

Initialization:
Use random distribution to give W initial value.

Repeat:
1: Hard negative probability sampling: Compute distance matrix all samples in batch by Equation (1).

Compute probability matrix using Equation (4). Finally, according to the probability, we select samples
inequality.

2: Compute hash-like code sa
m, sp

m, and sn
m by forward propagation;

3: Use binarization function to compute hash-code ha
m, hp

m, and hn
m.

4: Utilize sa
m, sp

m, sn
m, ha

m, hp
m, and hn

m to calculate loss function according to Equation (10)
5: Recalculate W by exploiting Adam;
Until:
A fixed number of iterations or a stopping criteria is satisfied
Return: W.

3.4. Global Architecture

The architecture of our HPSH method is demonstrated in Figure 5. We used the pre-trained
Inception Net. In the training stage, first, the deep features of all images from the RS dataset are
generated in the Inception-V3 Net pool-3 layer. The embedding features are denoted as f (xi) ∈ R2048.
We did not fine-tune Inception Net. Then, we sent the deep features to the sampling structure to
produce the training batch. We sent the batch to the deep hash network, which is composed of three
fully connected layers that can project features from R2048 to R1024, from R1024 to R512, and from R512 to
RK, respectively. The first two layers are followed by LeakyRelu [41], which can be calculated as

y =

{
x, x > 0,

x/a, x ≤ 0
(11)

where a represents a constant value set to 0.2, and x represents the output of the full connected (FC)
layer. The last layer is followed by a sigmoid function, which can be calculated as

y =
1

1 + e−x (12)

The specific structure of the hash network is given in Table 2. Then, we used our hash loss function
l to train the deep hash network. For the testing process, we used a sign function to generate the hash
code: hi = sign(qi), where hi represents the i-th hash code, qi denotes the i-th hash-like code, and
sign(x) = 1 if x > 0; otherwise sign(x) = −1.
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Figure 5. The architecture of our HPSH with hard probability sampling (HPSH+S) method. It can be
divided into four parts. First, we use Inception Net to extract deep embedding of the remote sensing
dataset. Second, we obtain hard negative examples by a probability sampling method and create
a training batch at the same time. Third, the training batch is sent to the deep hash network, which
uses a deep neural network to obtain compacted hash-like codes. Finally, we calculate the loss function
to backpropagate in the deep net. An additional binarization process was used in the testing process.

Table 2. The hash network structure. It consists of three fully connected (FC) layers and three activation
functions. The first two layers are followed by LeakyRelu activation. The last layer is followed by
Sigmoid activation.

Layers Input Dimension Output Dimension Filter Size Stride

FC_1 2048 1024 1 1
LeakyRelu 1024 1024 - -

FC_2 1024 512 1 1
LeakyRelu 512 512 - -

FC_3 512 L 1 1
Sigmoid L L - -

4. Experiments

In this part, Section 4.1 introduces two remote sensing image datasets and evaluation protocols.
Section 4.2 describes the concrete realization of our HPSH, and Section 4.3 reports comparison
experiments with state-of-the-art hash retrieval approaches. Section 4.4 lists the result of various
parameters for the HPSH method. In Section 4.5 we discuss our results.

4.1. Dataset and Evaluation Protocols

We used two popular RS datasets to demonstrate the effectiveness of our HPSH approach and
compared the results with those of other RSIR methods. The first remoting sensing image dataset is
publicly available from the University of California, Merced (UCMD, which can be downloaded at:
http://weegee.vision.ucmerced.edu/datasets/landuse.html) [10]. UCMD includes 21 various land-cover
classifications, where each classification contains 100 images. The images’ pixel size is 256 × 256,
and the spatial resolution is 0.3 m. The second is the Aerial Image Dataset [11] (AID, which can be

http://weegee.vision.ucmerced.edu/datasets/landuse.html
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downloaded at: https://captain-whu.github.io/AID/) obtained from Google Earth, and each image
pixel is equal to 600 × 600. AID consists of 30 different classes for a total of 10,000 images. Images that
come from the same class can be counted as ground-truth neighbors.

The training effect of each method was evaluated by two parameters. The first is the Mean
Average Precision on the top K retrieved images (mAP@K), and the second is computational time.
Specifically, the mAP value is calculated as

mAP =
1
|Q|

|Q|∑
i=1

1
ni

ni∑
j=1

precision
(
R j

i

)
(13)

where qi∈Q is the query, and i represents the i-th query sample. |Q| is the quantity of the query set, and
ni is the number of images that are retrieved from the proposed network by qi. The retrieved images
are denoted by {r1,r2, . . . rni }, and R j

i is the set of ranked results from the r j-th query image. mAP@K is
based on the top K retrieved images, which means it is calculated when ni is equal to K.

There were two aspects of testing. First, we used the fundamental UCMD without augmentation
for training. In the second phase, we used the data augmentation technology adopted in [8]. We
obtained 8400 UCMD images by rotating the original image by 90, 180, and 270 degrees and retaining
the primitive images.

4.2. Implementation Details

Sampling batch was set to 5, which means that we selected 5 negative images from each class using
a probability sampling mechanism. Consequently, the batch size of UCMD containing 21 different
classes was set to 105; the batch size of AID containing 30 different classes was set to 150 more than
UCMD’s batch size. The hyper-parameters λ1 = 0.001 and λ2 = 1 were set. We set the margin α1 to 0.6,
α2 to 0.2, and η to 0.01. We used cross-validation to choose their values. Adam Optimizer was applied
to train our network, and the learning rate was set at η = 10−4. Another two Adam hyper-parameters,
β1 and β2, were set to 0.5 and 0.9, respectively. We extracted a 2048-d embedding from the Inception
network’s pool-3 layer (Inception Net is pre-trained on the ImageNet dataset). Then, we fed the deep
features into the network designed by MiLan [33] to obtain hash-like features with different bits.

4.3. Comparison with Baselines

To illustrate the availability of our HPSH, our experiments were carried out in two ways. In this
subsection, we divide the HPSH method into two parts. The first describes the basic framework of
HPSH applied without the sampling stage. The second part discusses HPSH+S, which means that
hard probability sampling is added to the framework. Then, we report the results. At last, we also
show the results of the Euclidean counterpart feature of HPSH, which refers to the float-type feature
before the last binarization stage. This is denoted as HPSH+S (Euclidean).

4.3.1. Results on UCMD

To assess the validity of HPSH, we compared it with different hash methods, including KSLSH [9],
MiLan [34] with Hamming distance, MiLan with Euclidean distance, MiLan with hard probability
sampling, and HPSH with hard probability sampling on the UCMD dataset. Figure 6 shows the result
of the top 20 retrieved images using our HPSH method for four query images. Figure 7 depicts the loss
during training. These results show that the loss drops quickly before the first 2000 iterations, after
which it stabilizes.
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Remote Sens. 2020, 12, 2789 13 of 22

Remote Sens. 2020, 12, 2789 12 of 21 

 

embedding from the Inception network’s pool-3 layer (Inception Net is pre-trained on the ImageNet 

dataset). Then, we fed the deep features into the network designed by MiLan [33] to obtain hash-like 

features with different bits. 

4.3. Comparison with Baselines 

To illustrate the availability of our HPSH, our experiments were carried out in two ways. In this 

subsection, we divide the HPSH method into two parts. The first describes the basic framework of 

HPSH applied without the sampling stage. The second part discusses HPSH+S, which means that 

hard probability sampling is added to the framework. Then, we report the results. At last, we also 

show the results of the Euclidean counterpart feature of HPSH, which refers to the float-type feature 

before the last binarization stage. This is denoted as HPSH+S (Euclidean). 

4.3.1. Results on UCMD 

To assess the validity of HPSH, we compared it with different hash methods, including KSLSH 

[9], MiLan [34] with Hamming distance, MiLan with Euclidean distance, MiLan with hard probability 

sampling, and HPSH with hard probability sampling on the UCMD dataset. Figure 6 shows the result 

of the top 20 retrieved images using our HPSH method for four query images. Figure 7 depicts the 

loss during training. These results show that the loss drops quickly before the first 2000 iterations, 

after which it stabilizes. 

 

Figure 6. The top 20 retrieval results of HPSH+S on the UCMD dataset. The black lines separate the 

search results for four images. The query image is bordered by the blue square. The wrong retrieved 
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Table 3 shows mAP@20 and retrieval time results of KSLSH [9], MiLan [33] with Hamming
distance, MiLan [33] with Euclidean distance, HPSH, HPSH+S with Hamming distance, and HPSH+S
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with Euclidean distance on the UCMD dataset with different hash bits. It is worth pointing out that for
the results of the MiLan approach, “MiLan” means that the original framework was adopted with
semi-hard sampling; “MiLan+S” means that semi-hard sampling is replaced by the proposed hard
probability sampling.

Table 3. mAP@20 and average time on the UCMD dataset.

Methods
L = 16 Bits L = 24 Bits L = 32 Bits

map@20 Time (ms) map@20 Time (ms) map@20 Time (ms)

KSLSH [9] 0.557 25.3 0.594 25.5 0.630 25.6
MiLan [33] 0.875 25.3 0.890 25.5 0.904 25.6

MiLan (Euclidean) [33] 0.903 35.3 0.894 35.8 0.916 36.0
MiLan+S 0.904 25.3 0.911 25.5 0.918 25.6

HPSH 0.815 25.3 0.841 25.5 0.850 25.6
HPSH+S 0.909 25.3 0.922 25.5 0.928 25.6

HPSH+S (Euclidean) 0.923 35.3 0.929 35.8 0.930 36.0

The results in Table 3 illustrate that our HPSH+S produces state-of-the-art hash retrieval results
on the UCMD dataset. Specifically, compared with KSLSH, we achieve significant improvements.
When the number of hash bits is 16, 24, and 32, the improvements are 35% (from 55.7% to 90.9%), 33%
(from 59.4% to 92.2%), and 30% (from 63% to 92.8%), respectively. All of the results of HPSH+S are
better than those of the existing state-of-art hash method. When compared with MiLan, the results are
increased by 3.4% (from 87.5% to 90.9%), 3.2% (from 89.0% to 92.2%), and 2.4% (from 90.4% to 92.8%),
respectively. We can see from the results that sampling can greatly improve the retrieval performance.
For HPSH, the performance is improved from 0.815 to 0.909 for 16 bits; from 0.841 to 0.922 for 24 bits;
and from 0.850 to 0.928 for 32 bits. Moreover, it can also be proved that the proposed hard probability
mining method works well not only in the HPSH framework but also in the MiLan [33] framework.
If we substitute the semi-hard mining strategy in MiLan [33] with the proposed hard probability
sampling strategy, the performance is improved from 0.875 to 0.904 for 16 bits; from 0.890 to 0.911 for
24 bits; and from 0.904 to 0.918 for 32 bits.

We can see from Table 3 that as the hash codes lengthen, mAP@20 becomes better. We can see that
when L = 16 bits, the results of retrieval are the worst, and dimensional reduction has a serious impact
on the results. When the number of hash bits is 24 and 32, the mAP@20 values improve. Therefore, for
the hashing method, shorter lengths of hash codes cause the performance to drop. However, when
the hash code becomes longer, the impact becomes smaller. From the HPSH+S, HPSH+S (Euclidean),
MiLan [33], and MiLan [33] (Euclidean) results listed in Table 3, we can observe the degradation of
retrieval performance due to binarization. For MiLan [33], when the number of hash bits is 16, 24, and
32, the results are reduced by 2.8% (from 90.3% to 87.5%), 0.4% (from 89.4% to 89.0%), and 1.2% (from
91.6% to 90.4%). For HPSH+S, when the number of hash bits is 16, 24, and 32, the results are reduced
by 1.4% (from 92.3% to 90.9%), 0.7% (from 92.9% to 92.2%), and 0.2% (from 93.0% to 92.8%). We find
that our HPSH+S method results in less of a decline because of binarization compared with MiLan.
This benefit is the result of our two hash loss functions. Binary hash codes can save a lot of retrieval
time. For MiLan, when the number of hash bits is 16, 24, and 32, the time saved is 10 ms (from 35.3 ms
to 25.3 ms), 10.3 ms (from 35.8 ms to 25.5 ms), and 10.4 ms (from 36.0 ms to 25.6 ms). At the same time,
the needed space to store binary codes is much less, and as the length of data increases, this decrease
becomes more pronounced.

The improvement demonstrates that our hard sample method can select more informative and
stable samples to produce better retrieval results. It is noteworthy that the results of the HPSH+S
method with Hamming distance are even better than the results of Euclidean distance with MiLan. We
observe improvements of 0.6% (from 90.3% to 90.9%), 2.8% (from 89.4% to 92.2%), and 1.2% (from



Remote Sens. 2020, 12, 2789 15 of 22

91.6% to 92.8%), respectively. In order to complete the control trial, we also analyzed the results
calculated by Euclidean distance; obviously, the results are better.

We report the t-distributed stochastic neighbor embedding (t-SNE) results in Figure 8. We can see
that our HPSH method produces the best distinguishing effect, and the aggregation of similar samples
is better. The improved hash retrieval results on the dataset of UCMD [10] indicate that HPSH is more
effective than and superior to other excellent hash retrieval methods.
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Figure 8. t-SNE 2D scatterplots comparing the 2D projection of the L-dimensional binary hash codes of
the test images in the UCMD dataset. We map the tiny image in the small red box to the big red box,
the number under the picture in the big red box represents the category label of the current picture,
and the specific category is given in the blue box. The leftmost diagram is the t-SNE 2D scatterplot
of KSLSH [9], the middle one is the t-SNE 2D scatterplot of MiLan, and the last one is the t-SNE 2D
scatterplot of HPSH+S.

4.3.2. Results on Enhanced UCMD

We also report experimental results on UCMD with an enhanced dataset. We exploited data
augmentation as in DHNN [5]. Specifically, each image in the UCMD dataset was rotated by 90,
180, and 270 degrees, which resulted in an augmented UCMD dataset with 8400 images. Then, we
selected 7400 images at random for training, and the remaining 1000 images were chosen for evaluation.
Table 4 compares the HPSH+S method with DPSH, DHNN, and MiLan. As Table 4 shows, our HPSH
improves the mAP@20 with 32 bits from DPSH (74.8%), DHNN (93.9%), and MiLan (97.7%) to 99.6%,
and with 64 hash bits, the proposed HPSH method improves the mAP from DPSH (81.7%), DHNN
(97.1%), and MiLan (99.1%) to 99.7%. These results prove that the HPSH method is able to produce
better results when hash bits are small, and the volume of the training set affects the performance.

Table 4. mAP@20 result with data augmentation for hash retrieval on the UCMD dataset.

DPSH [8] DHNN [31] MiLan [33] HPSH+S

L = 32 bits 0.748 0.939 0.977 0.996
L = 64 bits 0.817 0.971 0.991 0.997

4.3.3. Results on AID

In experiments on the AID dataset, we used 60% of samples from each class for training and
the remaining 40% for testing. The results on AID show the same tendency as those on UCMD.
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We show the results of the top 20 retrieved images for query images from four different classes,
namely, airport, beach, desert, and church, in Figure 9. Figure 10 depicts the loss trend during training.
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Table 5 shows the results of KSLSH [9], MiLan [33] with Hamming distance, MiLan [33] with
Euclidean distance, MiLan+S, HPSH, HPSH+S with Hamming distance, and HPSH+S with Euclidean
distance on the AID dataset with different hash bits. We mainly list the mAP@20 values to demonstrate
the validity of our HPSH on the AID dataset. The results prove that our HPSH exceeds the retrieval
results of state-of-the-art hash methods on the AID dataset.

Table 5. mAP@20 and average time on the AID dataset.

Methods
L = 16 Bits L = 24 Bits L = 32 Bits

map@20 Time(ms) map@20 Time(ms) map@20 Time(ms)

KSLSH [9] 0.426 115.3 0.467 116.1 0.495 117.5
MiLan [33] 0.876 117.5 0.891 116.0 0.926 114.5
MiLan+S 0.914 117.5 0.930 116.0 0.946 114.5

HPSH 0.723 117.5 0.767 116.0 0.807 114.5
HPSH+S 0.898 117.5 0.936 116.0 0.955 114.5

Specifically, compared with KSLSH, our HPSH+S achieves significant improvements when
the number of hash bits is 16, 24, and 32 with improvements of 46% (from 42.6% to 89.8%), 47% (from
46.7% to 93.6%), and 44% (from 49.5% to 94.2%), respectively. We can see that all of our proposed
methods are better than the existing best method (MiLan): the results improve by 2.2% (from 87.6%
to 89.8%), 4.5% (from 89.1% to 93.6%), and 1.6% (from 92.6% to 94.2%), respectively. These results
prove that sampling can greatly improve the retrieval performance. For HPSH, the performance is
improved from 0.723 to 0.898 for 16 bits; from 0.767 to 0.936 for 24 bits; and from 0.807 to 0.942 for 32
bits. Moreover, it can also be proved that the proposed hard probability sampling method works well
not only in the HPSH framework but also in the MiLan framework. If we substitute the semi-hard
mining strategy in MiLan with the proposed hard probability sampling strategy, the performance
improves from 0.876 to 0.914 for 16 bits; from 0.891 to 0.930 for 24 bits; and from 0.926 to 0.946 for
32 bits. Since the MiLan+S method and HPSH+S only change the sampling method compared with
the MiLan and HPSH, the improvement of our retrieval results confirms that our hard sampling
method is effective, we can obtain more useful samples for training, and at the same time, random
sampling will worsen the retrieval results to some extent on the AID dataset. Notably, our hard
sampling method has a greater promoting effect on the AID dataset than on UCMD. The improvement
demonstrates that our hard probability sampling can obtain more informative and stable samples to
produce better retrieval results on AID. As for time consumption, we can see that we did not need
extra time to improve retrieval precision. Clearly, our HPSH+S works well not only on the UCMD
dataset but also on the AID dataset. We also provide the t-SNE results of AID in Figure 11. KSLSH [9]
gets the worst discriminate t-SNE results. MiLan [33] and HPSH obtained better clustering results on
AID. However, the best results came from our HPSH.
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Figure 11. t-SNE 2D scatterplots comparing the 2D projection of the L-dimensional binary hash codes
of the test images in the AID dataset. We map the tiny image in the small red box to the big red box.
The number under the picture in the big red box represents the class label of the current image, and
the specific class is given in the blue box. The leftmost diagram is the t-SNE 2D scatterplot of KSLSH,
the middle one is the t-SNE 2D scatterplot of MiLan, and the last one is the t-SNE 2D scatterplot of
HPSH+S.

4.4. Ablation Study

In this section, we report the results of an ablation study conducted on a remote sensing dataset,
and we analyze the hyper-parameters of the HPSH loss. Comparative results of different hash bits,
different top K, and different training/testing ratios are listed. We also change the main metric learning
loss to illustrate the margin loss’s effectiveness. The experimental results are presented in tabular
form. In Table 6, we report the results of different mAP@K values when hash codes vary from 8
bits to 40 bits on the UCMD dataset. Table 7 shows the results of different hash code lengths with
different training/testing ratios on the UCMD dataset. Clearly, the higher the proportion of training
data, the better the retrieval result. We also change our metric learning loss and present the results of
a contrastive loss and triplet loss in Table 8.

Table 6. Different mAP@K results when hash bits vary from 8 bits to 40 bits on the UCMD dataset with
our HPSH+S method.

mAP@K 8 Bits 16 Bits 24 Bits 32 Bits 40 Bits

mAP@10 67.08 90.92 92.63 92.87 92.55
mAP@20 76.76 90.90 92.25 92.80 92.85
mAP@40 81.88 88.22 90.95 92.32 90.71

Table 7. Different mAP@20 results when hash bits vary from 8 bits to 40 bits and the training ratio
varies from 0.4 to 0.8 on the UCMD dataset with our HPSH+S method.

Train Test Ratio 8 Bits 16 Bits 24 Bits 32 Bits 40 Bits

4:6 70.87 88.41 89.62 90.61 90.87
5:5 71.71 89.30 91.22 91.45 91.83
6:4 76.82 90.91 92.25 92.80 92.88
7:3 79.88 91.92 93.22 93.25 93.69
8:2 82.82 92.74 93.28 93.29 93.89
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Table 8. Different mAP@20 results when using a different metric learning loss and hash bits vary from
8 bits to 40 bits on the UCMD dataset.

Loss Function 8 Bits 16 Bits 24 Bits 32 Bits 40 Bits

Contrastive loss 74.20 80.37 82.00 85.20 91.84
Triplet loss 37.20 81.22 85.40 89.23 90.26
Margin loss 76.76 90.90 92.25 92.80 92.85

We performed experiments by fixing the most appropriate two parameters, α and β of Equation
(5), on the UCMD dataset. The first step was to fix the value of α at 0.3, and the value of β was varied
from 0.0 to 1.0. Table 9 lists mAP@20 values, which show that the best results are obtained with β
value of 0.6. The second step was to fix the value of β at 0.6. We changed α from 0.0 to 1.0. Table 10
shows mAP@20 values, which shows that the best results are obtained with a β value of 0.6. Therefore,
the values of α and β are set to 0.6 and 0.3, respectively.

Table 9. Different mAP@20 results when hash bits vary from 8 bits to 40 bits and margin β varies from
0.0 to 1.0 on the UCMD dataset.

Margin-β 8 Bits 16 Bits 24 Bits 32 Bits 40 Bits

0.0 5.87 56.13 69.15 81.33 84.82
0.2 8.83 67.23 76.39 82.29 84.83
0.4 46.18 89.70 91.24 91.75 91.86
0.6 76.76 90.90 92.25 92.80 92.85
0.8 75.29 81.32 88.04 88.85 89.32
1.0 62.37 67.36 76.24 80.85 82.03

Table 10. Different mAP@20 results when hash bits vary from 8 bits to 40 bits and margin α varies from
0.0 to 1.0 on the UCMD dataset.

Margin-α 8 Bits 16 Bits 24 Bits 32 Bits 40 Bits

0.0 65.04 76.61 77.00 77.64 79.08
0.1 69.01 85.52 87.00 87.25 89.57
0.2 69.55 87.89 90.16 90.38 91.21
0.3 76.76 90.90 92.25 92.80 92.85
0.4 72.27 86.83 90.28 90.52 91.15
0.5 71.57 85.21 87.41 89.52 89.88

4.5. Discussion

Overall, when considering these methods of hash image retrieval, our loss gains a novel result
and achieves state-of-the-art performance on UCMD and AID. Moreover, we find that longer hash
codes work better. This reveals that feature representation with a relatively high dimension will yield
a more discriminative performance. However, by using the binarization of low dimensional features,
we greatly reduce the occupied storage space and the retrieval time. Moreover, our HPSH could
also obtain excellent and competitive results with hard probability sampling when compared with
the baselines. The results verify the validity of our HPSH.

5. Conclusions

A new hash retrieval method named HPSH is proposed in this paper, which makes full use of
a sample selection strategy to acquire informative training samples and a hash margin loss to carry out
hash code learning in RSIR. First, we established a hard negative probability sampling method that
picks more scattered samples to train the network: this is the key to improving retrieval performance.
Second, we designed a novel hash loss function with three components, and a margin loss is used to
calculate feature similarity; the hash-like loss function is used to make hash-like codes more similar
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to hash codes; a hash code balance loss is used to balance the 0 and 1 in hash codes. The final loss
function can better train the network parameters while reducing the hashing accuracy loss due to
quantization. Finally, the HPSH method achieves superior results to those of other state-of-the-art hash
image retrieval methods. For the UCMD dataset, our HPSH+S obtained a mAP@20 of up to 90.9%
on 16 hash bits, 92.2% on 24 hash bits, and 92.8% on 32 hash bits. For the AID dataset, our HPSH+S
obtained a mAP@20 value of 89.8% on 16 hash bits, 93.6% on 24 hash bits, and 95.5% on 32 hash bits.
For the UCMD dataset with data augmentation, our HPSH obtained a mAP@20 value of 99.6% on
32 hash bits and 99.7% on 64 hash bits. In the future, we will consider designing a more advanced
deep hash network in which the hash code carries more accurate information, and we will also verify
the scalability of our work on other retrieval tasks.
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