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Abstract: Avalanche disasters are extremely destructive and catastrophic, often causing serious
casualties, economic losses and surface erosion. However, far too little attention has been paid
to utilizing remote sensing mapping avalanches quickly and automatically to mitigate calamity.
Such endeavors are limited by formidable natural conditions, human subjective judgement and
insufficient understanding of avalanches, so they have been incomplete and inaccurate. This paper
presents an objective and widely serviceable method for regional auto-detection using the scattering
and interference characteristics of avalanches extracted from Sentinel-1 SLC images. Six indices are
established to distinguish avalanches from surrounding undisturbed snow. The active avalanche
belts in Kizilkeya and Aktep of the Western TianShan Mountains in China lend urgency to this
research. Implementation found that smaller avalanches can be consistently identified more accurately
in descending images. Specifically, 281 and 311 avalanches were detected in the ascending and
descending of Kizilkeya, respectively. The corresponding numbers on Aktep are 104 and 114,
respectively. The resolution area of single avalanche detection can reach 0.09 km2. The performance
of the model was excellent in all cases (areas under the curve are 0.831 and 0.940 in descending
and ascending of Kizilkeya, respectively; and 0.807 and 0.938 of Aktep, respectively). Overall,
the evaluation of statistical indices are POD > 0.75, FAR < 0.34, FOM < 0.13 and TSS > 0.75. The results
indicate that the performance of the innovation proposed in this paper, which employs multivariate
comprehensive descriptions of avalanche characteristics to actualize regional automatic detection,
can be more objective, accurate, applicable and robust to a certain extent. The latest and more complete
avalanche inventory generated by this design can effectively assist in addressing the increasingly
severe avalanche disasters and improving public awareness of avalanches in alpine areas.

Keywords: Sentinel-1A SLC; scattering and interference characteristics of avalanches; principal
component analysis; support vector machine; machine learning; snow avalanche mapping
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1. Introduction

Snow avalanche (hereinafter “avalanche”) is among the most catastrophic natural disasters
worldwide and seriously threatens the safety of residents, socioeconomic development and
biodiversity [1–5]. From the perspective of geoscience, erosion from avalanches causes the
hazard-bearing bodies increasingly fragile, reshaping the micro-geomorphology and changing the type
and density of surface cover, these effects will be more conducive to its re-release, thus forming a vicious
circle [6]. Recently, frequent extreme snowfall events and the warming effect in mountainous areas
have aggravated the avalanche hazard [7]. Poor decision-making and forecasting are the main causes
of fatal avalanches. Therefore, there is an urgent need for avalanche spatial distribution mapping to
provide more efficient support in coping with increasingly harsh avalanche hazards.

Different approaches have been employed to produce avalanche maps. Through field observation,
some facts and data sets about avalanche activity are well-documented, providing a scientific basis for
the rational use of mountain land and effective avalanche governance [8–11]. However, avalanches
are ignored in areas without observation stations and inaccessible to observers [12], and this part
of the data gap accounts for a substantial proportion. The sound wave detection method [13,14],
the lake sediment method [15], and the tree-ring based avalanche reconstruction method [16] have
been proposed to update the methods of original investigation methods, but they can only identify
avalanches occurring at a local point or within a small range. The result is that there is still a need to
obtain accurate avalanche data on a regional scale to fill the huge data hole.

The rapid development of remote sensing technology has yielded some cases of regional avalanches
being successfully identified using visual interpretation methods [17], object-oriented classification
methods [18] and change detection methods [19,20]. The clear differences in morphology and texture
patterns between an avalanche and the surrounding undisturbed snow are the main clues for
interpreting multispectral images. Even very small avalanches can be identified if the resolution is high
enough, but especially when the multispectral characteristics of avalanches become blurred, subjective
artificial interpretation may introduce significant errors. The object-oriented method uses a fuzzy
algorithm classification to distinguish an avalanche from the undisturbed snow around it, but it is
still inadvisable to rely heavily on subjective threshold settings in many segments [21]. The above
methods can identify avalanches in large areas, although recognition accuracy is limited by clouds
and terrain shadows in the images and human perception as well. To overcome the aforementioned
disadvantages, some researchers try to capture avalanches by detecting the change in backscatter in
active microwave images that are despite clouds and without daylight [22]. Currently, multiperspective
exploration attempts have been carried out [23,24]. Even so, this is not applicable in complicated
topography or areas with only sporadic small-scale avalanches. Actual observations reveal that the
echo causing an increase in backscatter was not necessarily an avalanche—other features specific to the
environment or complex qualitative changes in snow cover will also affect it. In addition to backscatter,
the characteristics of avalanches have not been fully revealed, such as other scattering and interference
properties. Therefore, a more objective, reliable and universal scheme to auto-detect avalanches on the
regional scale must be innovated.

Machine-learning methods—with the advantages of fast processing of multidimensional data,
automation, extraordinary generalization ability and reliability—have made significant contributions
to many studies. Among these, the support vector machine (SVM) method—especially designed for
binary classification problems—is the most widely used for accomplishing such tasks as assessment of
landslides, flood sensitivity analyses, and crop identification, However, it has been seldom applied for
avalanche research. SVM methods has been employed by only a few researchers to assess avalanche
sensitivity in conjunction with topographic and climatic factors [25–27]. Nonetheless, judging the
spatial distribution of avalanche sensitivity is too broad in the current form to effectively alleviate
worsening avalanche disasters. Therefore, the performance of SVM machine learning for automatic
detection of regional avalanches needs to be confirmed.
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The western part of the TianShan Mountains in China is a region prone to avalanches, frequent
and obviously hereditary and periodic [28]. Out of the urgent need for a systematic understanding
of avalanches, since the 1960s, researchers at TianShan Avalanche Station of the Chinese Academy
of Sciences (hereinafter “avalanche station”) have conducted a great deal of field investigations and
essential information about the location, type, scale and path distribution of avalanches have been
collected [29–32]. However, the quality and scope of artificial field investigation are essentially limited
by the professionalism of personnel and natural conditions, so the accuracy and quantity of avalanche
inventory are generally insufficient. Moreover, in the past 15 years, new construction of mountain
transportation corridors, the extension of energy and communication lines, and the emergence
of tertiary industry in the alpine mountains to accommodate winter sports have brought about
increased peril of avalanches to humanity, economic development, cultural exchange and ecological
conservation [33]. Furthermore, due to climate change and topographic evolution, historical record are
no longer applicable to examine and assess the current situation, but the changing circumstances has
not forced a new method of avalanche detection. Moreover, from the perspective of detected snow types,
the research on continental dry and cold snow has not been paid attention to, and this type of snow is
typical in the study area. Focusing on the significance of improving the accuracy of the avalanche data
sets, innovatively exploring the scattering and interference characteristics of continental dry and cold
snow, and balancing the contradiction between avalanche disaster and economic development of the
mountain area, it is imperative to carry out automatic avalanche detection in the region.

To address increasingly severe avalanche disasters in a complex climate and social environment,
having a complete avalanche map that is more meticulous in space is essential. This paper aims to mine
the response characteristics of scattering and interference on Sentinel-1 SLC (Single Look Complex)
images, to find a more robust and applicable regional automatic detection method on this basic,
to support auxiliary decision-making for avalanche prevention. The main objectives of this research are:
(1) mining the scattering and interference characteristics of continental dry and cold snow avalanches in
the active microwave C-band; (2) using SVM machine-learning method to perform automatic mapping
of avalanches; and (3) verifying the accuracy and evaluating the performance of the method.

2. Study Site

The present study targets avalanches on Kizilkeya and Aktep in the west TianShan Mountains,
China (Figure 1), a vital location that figures prominently in the development and promotion of the
Silk Road core economic belt and is a traffic focal point connecting Eurasia. Two critical national
transport lines transit the depressions of these mountains—G217 on Kizilkeya and G218 on Aktep.
Kizilkeya (84◦18′–84◦29′E, 43◦25′–43◦32′N) is isolated by the east–west section of highway G217
and has a natural window connecting to the external environment to the northwest. G217 is closed
annually from October to April because roads and tunnel portals are often buried by avalanches. Aktep
(84◦18′–84◦27′E, 43◦14′–43◦17′N) is located on the east line of G218, on the west is the main water
vapor exchange exposure. The statistics and comparison of other detailed geographic information
between the two places are shown in Table 1.

In winter, the two mountainous areas are influenced by distorted polar air masses with a warm
and humid climate and abundant snowfall. Moreover, metamorphism makes the deep frost develop
excessively in the snow layer. Due to unique topographic factors, the avalanche path is widely
distributed. The superposition of all these unfavorable factors causes frequent avalanches. Documented
avalanches always obstruct traffic (up to four months) and cause casualties (a total of more than
100 people) in Kizilkeya and Aktep, 1967–2020.
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Figure 1. Schematic diagram of the study area. (a) Avalanche blocked the national highway G217;
(b) avalanches threaten the safety of human life and appendages.

Table 1. Statistics of geographical attributes statistics for the implementation regions.

Characteristic Kizilkeya Aktep

Area 150.08 km2 54.74 km2

Elevation 2400–4162 m 1608–2659 m
Snowline 3700 m 3000 m
Forest line 2400 m 2800 m

Snow type Continental dry cold snow

Multiyear stable snow days 187 d 180 d
Average precipitation 339 mm/year 312 mm/year

Slope range 0◦–79.31◦ 0◦–74.08◦

Number of avalanche paths 681 172

Avalanche type
trench-type, slope-type,

groove-slope-type,
slab avalanches

trench-type, slope-type,
groove-slope-type

3. Materials and Methodology

The materials and methodology used for automatic detection of regional avalanches can be
summarized into (presented visually are shown in Figure 2): (1) Material acquisition and preparation.
This includes acquiring and preprocessing Sentinel-1A SLC images and SuperView-1 images separately
and conducting avalanche field surveys. Among them, the Sentinel-1A SLC image is used to extract
the entropy, alpha, backscatter and coherence of avalanches and establish the corresponding indicators,
which in turn are ∆H, ∆α, ∆σVV, ∆σVH,γVV andγVH. These indicators will be employed to automatically
detect avalanches. The optical SuperView-1 image is used to generate a high-precision avalanche
inventory map; (2) Identifying the characteristic variables ∆H, ∆α, ∆σVV, ∆σVH, γVV and γVH using the
principal component analysis (PCA); (3) Avalanche mapping. Use SVM to learn the simplified variable
data set, and then use the training model generated by the learning sample to automatically detect
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avalanches; (4) Verifying the model’s performance. Take the avalanche inventory map derived from
SuperView-1 as a reference to evaluate the performance of the model through statistical indicators.
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Figure 2. Schematic diagram of the overall workflow.

3.1. Sentinel-1 Image Acquisition and Processing

The Sentinel-1 satellite is specially designed for the Global environment and safety monitoring
system (“Copernicus”) Project. In Kizilkeya and Aktep, only VV–VH polarized images (one image
can cover the two study areas completely) in the IW (interferometric wide swath) mode are available.
For this study, the SLC image with geo-reference, satellite attitude, and phase information is preferable
between the two archived level-1 products of Sentinel-1A. A total of four Sentinel-1A SLC images were
acquired for this study. It contains a pair of ascending orbit images and a pair of descending orbit
images, and each pair of them includes a scene pre- and post-event conditions of avalanches (Table 2).

Table 2. Parameter statistics of collected Sentinel-1A SLC images.

Characteristic. Ascending Descending

Dates 18 February 2019 9 October 2018 24 January 2019 8 October 2018
Slave/master Master Slave Master Slave

Track 12 165
Width 250 km

Ground resolution 5 × 20 m
Baseline 124.536 m 79.657 m

Sentinel-1A SLC image preprocessing:
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• Split. The Sentinel-1A SLC image carries three sub-swath (IW1, IW2, IW3), while the study
area is completely located in the IW2. Hence, only split IW2 for processing to reduce the
computational burden;

• Orbital fine correction. Update the inaccurate information in the abstract meta data of the product
with precision satellite position and velocity information which contained in POD (precise orbit
determination) restituted orbit file;

• Radiation calibration. Typical SAR (synthetic aperture radar) data processing, which produces
level-1 images, does not include radiometric corrections and significant radiometric bias remains.
The significance of radiation correction is to make the pixel values of the SAR images truly
represent the radar backscatter of the reflecting surface;

• Debrust. For the IW model SLC products, each sub-swath consists of a series of burst in azimuth.
The individually focused complex burst data are included, in azimuth-time order, into a single
sub-swath image, with black-fill demarcation in between. Debrust processing can eliminate
black-fill demarcation by resampling and merging;

• Multilooking. Average the resolution of the range and azimuth direction of the image, suppress
the speckle noise of the image and improve the radiation resolution of the image. Number of
range looks: 4. Number of azimuth looks: 1;

• Range Doppler terrain correction. The topographical variations of the scene and the tilt of the
satellite sensor may distort the distance in the SAR image. Terrain correction makes the geometric
representation of the image as close as to the real world. Map projection: WGS84;

• Speckle filtering. The Lee sigma filter method is used to remove the noise in the Sentinel-1 image
caused by the random superposition of multiple scattering sources in space. Filter: Lee sigma.
Target window size: 3 × 3. Sigma: 0.9.

3.1.1. Generating Scattering Characteristics of Avalanche

Polarization decomposition breaks down the complex scattering of surface echoes into several
single scattering processes, each corresponding to a specific scattering matrix [34]. H-alpha dual
polarization decomposition breaks down Sentinel-1 images based on feature vectors and does not
change with modifications of the antenna coordinate system, so the information of polarization entropy
and scattering angle is more reliable. Based on the feature spaces of entropy (H) and alpha (α), surface,
volume and multiple scattering components can be accurately extracted [35]. Entropy characterizes
the degree of polarization of ground features; can be expressed as:

H = −
2∑

i=1

pi log2(pi), pi = λi/
2∑

k=1

λk k = 1, 2 (1)

Based on the backscatter mechanism, the H parameter can be regarded as the output of a stochastic
calculation within a resolution unit. According to Equation (1), the range of H is 0–1. Random scattering
works when H approaches 1. The system changes from simple isotropic scattering to completely
random scattering when H is between 0 and 1. The types of ground objects recognized become fewer
as H increases. Therefore, the use of H alone would be inadequate. Alpha can assist in recognition of
the type of scattering mechanism and can be expressed as:

α =
2∑

i=1

piαi (2)

When α approaches π/4, it represents the volume scattering component. When α is π/2, it denotes
the multiple scattering component and when α is 0, it represents the surface scattering component.
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The characteristic index of polarization entropy can be expressed as:

∆H = (H)m
− (H)s (3)

Alpha’s characteristic index can be expressed as:

∆α = (α)m
− (α)s (4)

In Equations (3) and (4), m is the master image and the transit time of the image starts after the
avalanche; s is the slave image, which is before the avalanche.

In addition at the air–snow interface, snow’s volume, depth, water equivalent, density and surface
roughness change conspicuously after an avalanche. These changes will eventually be reflected by
changes in the backscatter of the Sentinel-1 image [36], which can be expressed as:

σ0(dB) = 10 log10

(
abs

(
σ0

))
(5)

where σ0 (dB) represents the backscatter image in dB and σ0 represents the sigma naught image.
Two indices related to backscatter are created, namely ∆σVV and ∆σVH. They can be expressed as:

∆σVV = (σVV)
m
− (σVV)

s (6)

∆σVH = (σVH)
m
− (σVH)

s (7)

3.1.2. Generating Interference Characteristics of Avalanche

The phase and intensity similarity of radar echo reflected by coherence and the similarity of target
scatterers are the pivotal references for ground interpretation [37,38]. The coherence for a stack with
the master image m is defined as:

γ =

Looks∑
i=1

(C1 ∗C2)√
Looks∑
i=1

(
|C1|

2
)
•

Looks∑
i=1

(
|C2|

2
) − 1 ≤ C ≤ 1 (8)

C1 is one of the plural images. C2 represents multiplication with the conjugate of another
complex image. After the amplitudes are normalized separately, the range is from 0 to 1. The closer
the phases of the two electromagnetic waves are or the more continuous the change is, the closer the
value of the coherence coefficient is to 1 and the more similar the features are.

3.2. SuperView-1 Image Collection and Processing

The satellite SuperView-1 was launched in Taiyuan, Shanxi Province, China, at 11:23 on
28 December 2016. Images passing through Kizilkeya on 16 February 2019 and Aktep on 16 January
2019 (Table 3) were used to generate reliable records of the location, area, throw and type of avalanches
in the corresponding areas. These avalanche occurrence inventory maps were utilized to verify
the performance of the automatic detection method. Images were preprocessed by cloud removal,
radiometric calibration, fast line of sight atmospheric analysis of spectral hypercubes (FLAASH) and
orthophoto correction before interpretation and vectorization. Bühler proposed a detailed and logical
visual interpretation scheme for avalanches [17]. In this paper, 473 and 124 avalanches on Kizilkeya
and Aktep, respectively, yielded sophisticated delineations by learning from the convincing steps in
his paper. In addition, the mixed pixels on the boundary are removed as much as possible to make
it sharper.
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Table 3. Parameter statistics of collected SuperView-1 images.

Characteristic Kizilkeya Aktep

Revisit period 1 d

Resolution
multispectral 2 m
panchromatic 0.5 m

Orbit height 530 km
Width 12 km

Side swing angle 0.56◦

Maximum image size 60 × 70 km
Cloud content 1.2% 0.5%

The above data are from the WGS84 coordinate system, UTM N44 projection.

3.3. Local Manual Field Investigation

From 18–24 January 2019, an avalanche field survey was conducted along the G218 transport
line, centering on the avalanche station. Details of the avalanche type, location, area and surrounding
cover type were recorded. Moreover, the particle size, moisture content, density and depth of snow
were measured strictly in accordance with the standards of the IACS (International Association
of Cryosphere Science). Limited by harsh natural geographic and meteorological conditions,
only 276 avalanches locations were recorded, which assisted for visual interpretation and mastering
the local avalanche situation.

3.4. Methodology

3.4.1. Principal Component Analysis

PCA is a technique for exploring high-dimensional data structures [39]. Correlated
high-dimensional variables can be synthesized into linearly independent low-dimensional variables
by principal component analysis, thereby revealing the most consequential elements and structures
hidden in intricate data [40].

The basic steps for performing PCA are as follows:

1. Perform Kaiser–Meyer–Olkin (KMO) and Bartlett spherical test on each index matrix [41].
Commonly used KMO metrics are given by Kaiser: above 0.9 = very suitable; 0.8 = suitable;
0.7 = moderate; 0.6 = not very suitable; below 0.5 = extremely unsuitable;

2. Standardization brings all indicators to a common platform with a mean of zero and a standard
deviation of one;

3. Calculate the eigenvalues, corresponding eigenvectors, contribution rate and cumulative
contribution rate of the covariance matrix. The component that satisfies the condition that
the eigen value are greater than 1 and the cumulative contribution rate is more than 80% will be
selected as the principal component [42];

4. Calculate the rotated factor loadings of principal components (PCs) to obtain the linear combination
of the principal components, thereby obtaining a comprehensive model.

3.4.2. Support Vector Machine

The SVM classifier—also called the optimal edge classifier—can mine the information by learning
the rules and patterns of the data [43–45]. In this paper, a separating hyperplane is established by using
the SVM to distinguish avalanches from undisturbed snow cover. To begin, data were cross-validated
(folds = 5). Six kernel functions were used to learn sample data. The one with the highest accuracy
of the six training model was selected according to the AUC (area under the curve of ROC) values.
The larger the AUC value, the better the ability to detect avalanches in undisturbed snow. Subsequently,
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the training area was used to classify the study site (the index matrix requiring normalization of the
area to be classified).

3.4.3. Model Evaluation

Probability of detection (POD), false alarm rate (FAR), frequency of missed (FOM) and true skill
statistic (TSS) indicators were selected to verify the method’s performance. POD was the ratio of the
number of successfully identified avalanche events to the total number of avalanches that actually
occurred. The value range was 0–1; the ideal state is 1.

POD =
H

H + M
(9)

FAR indicates the ratio of events that are not actually an avalanche but classified as such.

FAR =
FA

H + FA
(10)

FOM indicates the ratio of avalanche events not classified as such.

FOM =
M

H + M
(11)

The range of FAR and FOM indicators is 0–1. As the value approaches 0, the more nearly perfect
the state is. TSS is the difference between successful identification and misjudgment, it is used to
comprehensively evaluate the total effect of automatic identification. The classification effect is better
when TSS = 1; there is no classification technique when TSS = −1.

TSS =
(H ×CN − FA×M)

(H + M)(FA + CN)
(12)

In Equations (9)–(12), Hits (H) represents the pixels that were accurately identified. False alarm
(FA) denotes pixels that were not actually avalanches but were misjudged as such. Misses (M) refers to
pixels not correctly identified as avalanches. Correct negative (CN)) designated non-avalanche pixels
that were accurately identified.

4. Results

4.1. Characteristics from Sentinel-1 Images of Avalanches

Compared with undisturbed snow, the occurrence of avalanches will simultaneously lead to
an obvious increase in entropy, a sharp decrease in alpha, a moderate increase in backscatter and
a slump in coherence. In Figure 3. the scattering and interference characteristics of avalanches are
illustrated. The following statement makes a specific analysis and comparison of the ascending and
descending in accordance with the order of entropy, alpha, backscatter and coherence.

The value of entropy (H) exhibits the distinguishing feature of increasing while the value of
alpha (α) decreases in both ascending (Figure 3a) and descending (Figure 3b) images. Among them,
the change of H is particularly obvious. In the ascending, the occurrence of an avalanche aggregates
50% H value from 0.42–0.69 to 0.84–0.91, which significantly increases (Figure 3c). The median position
of avalanche H is much higher than that of undisturbed snow. The sharper and more concentrated
change in the descending, from 0.25–0.41 to 0.88–0.94, is higher than that in the ascending during the
same period (Figure 3d). Furthermore, in terms of the change of α, it has decreased, but the change
in the descending (from 81.00◦–86.00◦ to 54.00◦–62.00◦) is still greater than that in the ascending
(from 70.00◦–74.00◦ to 57.50◦–63.00◦)
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.
The backscatter (σ) value of avalanche exhibits a marked increase in all cases, particularly dramatic

in descending. In the VV polarization band of ascending, the value of σ after an avalanche increases
from −26.0–−19.5 to −17.0–−12.5 dB, and the change in the descending is more overt, from −21.0–−17.0
to −5.5–−2.0 dB. In the VH polarization band, the variation is slightly less than that of the VV band,
from −27.5–−22.5 to −24.0–−18.5 dB and from −26.0–−19.0 to −19.0–−14.0 dB, respectively.

The change in coherence (γ) is typical in all bands. In the polarization band of VV, the γ after
avalanche drops in both ascending (from 0.48–0.65 to 0.14–0.25) and descending (from 0.41–0.54 to
0.17–0.32), and the median is fairly close to the lower quartile. The variation characteristics of γ in the
polarization band of VH are similar to those of VV, but slightly weaker, from 0.49–0.57 to 0.20–0.33 and
from 0.40–0.68 to 0.36–0.49, respectively.

4.2. Generating Characteristic Variables

The results of the KMO and Bartlett spherical tests (Table 4) illustrate that the index matrix in
all images is a positive definite matrix and suitable for principal component analysis. On Kizilkeya,
the values of KMO are all greater than 0.800 (ascending = 0.824, descending = 0.871), with favorable
suitability. The KMO value of Aktep (ascending = 0.707, descending = 0.747) is slightly lower than that
of Kizilkeya, with moderate suitability.

Table 4. Statistics of Kaiser–Meyer–Olkin (KMO) and Bartlett test results.

KMO Sampling Suitability
Bartlett Sphericity Test

Approximate Chi-Squared Degrees of Freedom Significance

Kizilkeya Ascending 0.824 461.164 21 0.000
Descending 0.871 973.434 10 0.000

Aktep Ascending 0.707 131.354 36 0.000
Descending 0.747 129.047 28 0.000

Following the criteria in Section 3.4.1 PCs, two PCs were extracted from the ascending of Kizilkeya
and three from the descending. Taking variables of 88.86% and 91.62%, respectively, of the total
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variability, especially the first principal component in the ascending image can even be interpreted as
57.26%. On Aktep’s ascending orbit, two linear combinations are used to explain 82.01% of the total
information, and in descending, three linear combinations explain 87.67% variables; their first principal
component basically account for about half the content (56.65% and 42.81%, respectively, Table 5).

Table 5. Eigenvalues of the correlation matrix and its cumulative contribution rate.

Components

Kizilkeya Aktep

Ascending Descending Ascending Descending

Eigen
Values

Cumulative
Variance

Eigen
Values

Cumulative
Variance

Eigen
Values

Cumulative
Variance

Eigen
Values

Cumulative
Variance

1 3.436 57.26% 2.720 45.33% 3.383 56.38% 2.531 42.18%
2 1.580 88.86% 1.690 73.51% 1.538 82.01% 1.640 69.52%
3 0.575 93.18% 1.087 91.62% 0.959 97.99% 1.089 87.67%
4 0.235 97.10% 0.310 96.77% 0.091 99.51% 0.610 97.83%
5 0.141 99.45% 0.185 99.85% 0.030 100.00% 0.126 99.93%
6 0.033 100.00% 0.008 100.00% 0.000 100.00% 0.004 100.00%

The rotated factor loadings of the PCs are shown in Table 6. The difference in the contribution of
each index to the principal component is obvious (major loadings for each item are in bold). In the
ascending of Kizilkeya, the explanation of each index by PC1 is decidedly sufficient, which reflects
the information of all indicators. Relatively speaking, the PC2 explanation is slightly inferior to that
of PC1, in that the negative correlation with ∆σVV is only 0.174. The explanatory ability of principal
components in descending order is PC1 > PC3 > PC2 of the descending orbit image. The indices with
the strongest correlation are ∆H, ∆σVH and γ VH, respectively. ∆σVH, ∆H (in PC2) and ∆H (in PC3) are
relatively less relevant to the principal components, respectively. In the ascending of Aktep, aside from
the explanatory power of the ∆α index of PC1 not being satisfactory, the others are entirely sufficient,
especially strong positive correlation with ∆σVH. The explanatory capacity of PC2 to each index is
similar, which is no more than 0.67 and especially the correlation with ∆σVH which is minor. In the
descending, the explanatory capacity of PC1 is similar to that of PC2, and the correlation between PC3
and other indices is less than 0.97, except for ∆σVV.

Table 6. Rotated factor loadings of Principal components (PCs).

Indicators
Kizilkeya Aktep

Ascending Descending Ascending Descending

PC1 PC2 PC1 PC2 PC3 PC1 PC2 PC1 PC2 PC3

∆H 0.660 0.366 0.824 −0.002 −0.120 0.825 0.469 0.962 0.158 −0.065
∆α 0.828 −0.420 0.776 0.566 0.150 −0.068 0.482 −0.811 0.223 −0.025

∆σVV 0.948 -0.174 −0.871 0.344 0.127 0.785 0.616 0.088 0.266 0.960
∆σVH 0.807 0.361 0.196 0.905 0.332 0.975 0.035 0.858 0.461 −0.097
γVV −0.425 0.797 −0.780 0.266 0.143 0.690 −0.666 −0.451 0.826 −0.086
γVH −0.763 −0.418 0.180 −0.602 0.777 0.808 −0.511 −0.019 0.949 −0.131

Principal component model of Kizilkeya:

SA_Ascending = 0.30 ∆H + 0.30 ∆α+ 0.72 ∆σVV + 1.33 ∆σVH + 0.08γVV − 1.70γVH (13)

SA_Descending = 0.23 ∆H + 0.45 ∆α− 0.28 ∆σVV + 0.80 ∆σVH − 3.03γVV + 0.13γVH (14)

Principal component model of Aktep:

SA_Ascending = 0.39 ∆H + 0.08 ∆α+ 0.75 ∆σVV + 2.27 ∆σVH + 2.70γVV + 2.30γVH (15)

SA_Descending = 0.31 ∆H − 0.25 ∆α+ 0.31 ∆σVV + 0.68 ∆σVH + 0.72γVV + 0.34γVH (16)
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Through principal component analysis, the following conclusions are obtained: in Kizilkeya’s
ascending and descending images, the dominant index of contribution rate is ∆σVH. In Aktep’s
ascending image, the main indices with high contribution rate are γVV, γVH and ∆σVH,
the corresponding indices in the descending are γVV and ∆σVH.

4.3. Snow Avalanche Mapping

4.3.1. Case Study 1: Kizilkeya

The ability to identify small avalanches and avalanches in complex terrain is stronger in descending
images (Figure 4). Specifically, 281 and 311 avalanches were identified in the ascending (Figure 4a) and
descending (Figure 4b) of Kizilkeya, respectively. The minimum avalanche area that can be detected is
0.09 km2, and the maximum is 83.40 km2. In ascending, the overall range of avalanche throwing is from
25.40 m to 421.30 m, 59% of the range is between 132.60 m and 397.80 m. In descending, the throwing
range is 77.50 m to 454.30 m, with the main concentration (60%) between 180.30 m and 218.20 m.
Avalanches on Kizilkeya are unevenly distributed spatially in areas at altitudes of 2750 m to 3450 m
with a slope of 25◦ to 50◦. Most of them occur in the south and west of the Picea Schrenkiana forest
in the north. According to US standards classifications for avalanche scale, avalanches in Kizilkeya
are mainly small and medium—almost 96% are small. The proportion of small avalanches in the
descending is greater than in the ascending orbit.
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4.3.2. Case Study 2: Aktep

In ascending (Figure 4c) and descending (Figure 4d), 104 and 111 avalanches are identified,
respectively, on Aktep. The minimum and maximum resolutions by areas are 0.16 km2 to 32.25 km2.
The extreme values of avalanche throw in the ascending are from 35.40 m to 424.20 m. Of the avalanche
throw, 37% is between 155.43 m and 262.90 m. The corresponding values in the descending are 47.2 m
and 441.9 m, mainly (40%) distributed between 80.40 m and 300.74 m. Avalanches are distributed
horizontally in space, mainly along the G218 transport line and in the southwest near the Kungers
river, especially in terrain with 25◦ to 50◦ slope at an altitude of 1600 m to 2000 m and 99% are
small avalanches.

Overall, avalanches can be automatically detected in both ascending and descending of Sentinel-1A
SLC images. However, due to the opposite orbital position of the satellite when scanning the surface,
coupled with the role of the topography of the study area, the descending image is more conducive
to capturing the characteristics of the avalanche and can always identify more and finer avalanches,
especially in the rugged terrain. In addition, avalanches are not evenly distributed. There are almost
none in the plains and in the Picea Schrenkiana forest areas. Avalanches occur frequently on slopes,
in trenches and in areas with steep terrain along the fjords. They are active along the G217 and G218
lines that directly abut human property.

In terms of morphology, most avalanche accumulation areas are in the form of single or multiple
“tongues”; some are irregular. Thus, there are generally no obvious morphologic features.

4.4. Verification

4.4.1. AUC

The samples were sequentially trained based on the six kernel functions in the SVM. In all four
cases, classification accuracy based on Gaussian SVM kernel function is the highest, and the AUC is
more than 0.93, with only a slight difference (Figure 5). The inflection point at which the Kizilkeya
data (Figure 5a), can satisfy the minimum FPR (False Positive Rate) while the TPR (Ture Positive
Rate) remains relatively large appears closer to the (0, 1) point in the descending (0.19, 0.93) than in
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the ascending (0.22, 0.79). The higher AUC value in the descending indicates more clearly that the
performance of the model is better and has the most nearly perfect performance. The points with the
largest absolute values of the sum of the horizontal and longitudinal coordinates of the curves in the
Aktep (Figure 5 ascending and descending appear at (0.1, 0.51) and (0.05, 0.8), respectively, and the
automatic recognition performance in the descending (AUC = 0.938) is obviously better than that in
the ascending (AUC = 0.807). In summary, the automatic detection method has a potent discrimination
ability for avalanche samples and is more potent in the descending image.
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4.4.2. Statistical Indicator

The effects of automatic identification of avalanches were evaluated by POD, FAR, FOM and TSS
indicators (Table 7). The group of automatic recognition cases with the highest classification accuracy and
the best comprehensive performance of the model is the descending of Aktep (POD = 0.924, FAR = 0.340,
FOM = 0.076, TSS = 0.921). The statistical indicator values of 0.897 (POD), 0.109 (FAR), 0.103 (FOM) and
0.890 (TSS) were calculated for Aktep rank second in ascending, followed by Kizilkeya’s descending,
with values of 0.820 (POD), 0.116 (FAR), 0.180 (FOM) and 0.818 (TSS), respectively. The Kizilkeya
ascending values of 0.754 (POD), 0.139 (FAR), 0.246 (FOM) and 0.751 (TSS) rank last.

Table 7. Statistics for model evaluation.

Statistics
Evaluation Index

Kizilkeya Aktep

POD FAR FOM TSS POD FAR FOM TSS

Ascending 0.754 0.139 0.246 0.751 0.897 0.109 0.103 0.890
Descending 0.820 0.116 0.180 0.818 0.924 0.340 0.076 0.921

The results demonstrate that more avalanches can be correctly identified in the descending image;
which is also more advantageous for identifying small avalanches. To sum up, the results of descending
image recognition are more reliable. Missed avalanches are mainly small avalanches in mountainous
areas with large terrain fluctuations and narrow trenches, as well as some dry avalanches.

5. Discussion

5.1. Impact of Source Image Availability

The potential of optical remote sensing images for avalanche mapping is being tapped. QuickBird’s
multispectral band [18], Landsat 8’s panchromatic band [23] and SPOT’s near-infrared band [17] have
been verified to identify avalanches. In this study, the optical images of many sensors were considered,
although, most images were not useful. Few satellites transit over the study area, and the accuracy of
their images is insufficient. Because the avalanche types distributed in these two mountain areas are
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generally small, only when the spatial resolution of the image reaches the centimeter level can it be
accurately interpreted. Some images have high spatial and temporal resolution, while large areas of
the surface are obscured by clouds and shadows. Some satellites do not even scan across the study
area. SuperView-1 images are available, but only one scene image is available in each area. Therefore,
it is difficult to find optical remote sensing images to identify avalanches on a large scale.

The Sentinel-1 C-band SAR is not affected by cloud and rain, can work at night, has a high
spatio-temporal resolution and can collect global data. These performance advantages over optical
imaging make it more suitable for detecting avalanches. Malnes and Eckerstorfer et al. used the
significant differences in the backscatter of avalanches and undisturbed snow to perform automatic
avalanche identification. However, the FPR can be increased by some features with backscatter variation
characteristics as those of to avalanches [22]. For example, Wesselink misidentified two glaciers as
avalanches when identifying avalanches in the Svalbard area [46]. Eckerstorfer also misidentified
agricultural land and glaciers with backscatter variation characteristics similar to avalanches [47].
Therefore, monitoring avalanches based on backscatter changes alone is inadequate and inapplicable.

Based on previous research, the significance of establishing multivariate comprehensive avalanche
detection is recognized. The scattering and interference response to avalanche can be fully extracted
and analyzed using Sentinel-1 SLC images. As shown in Figure 6, avalanches caused changes in the
scattering mechanism to occur mainly in the low-entropy surface scattering (Z1) region, the surface
scattering (Z4) region and the high-entropy scattering (Z8) region. Overall, the scattering angle
decreases as the scattering randomness increases. Snow is typically a dense medium. Therefore,
multiple near-field scattering must be considered to accurately determine its scattering characteristic
parameters. Many studies have illustrated that bulk scattering and underlying surface scattering of
snow dominate the total echo. The underlying surface scattering that existed before and after the
avalanche was removed when the ∆H and ∆α indices were established. Thus, the surface of the
avalanche becomes rough and bulk scattering is dominant. Avalanches also have special interference
characteristics. Specifically, the snow during the avalanche quickly rolled down from the starting area
and finally stopped in the accumulation area after passing through the beating area. The change in
snow depth is very large in these three regions, which is enough to affect the phase information on
the Sentinel-1 image, resulting in reduced coherence. Therefore, the undisturbed snow before the
avalanche at the same location is weakly correlated with the avalanche.
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First, by thoroughly utilizing the information of avalanche characteristics in Sentinel-1 SLC images,
the basis for identifying avalanches is no longer single, and the characteristics of avalanches can be
interpreted more precisely and comprehensively. This has the advantage of obtaining complete and
accurate avalanche data. Second, plus the excellent quality of the image itself has the potential to
capture smaller and more well-defined avalanches on a larger scale.

5.2. Performance of the Automatic Avalanche Detection Method

Visual interpretation [17] and object-oriented classification methods [18,48] have been used by
many researchers to identify avalanches in optical remote sensing images. Successful cases have been
achieved in multispectral, panchromatic and near-infrared bands. In high-resolution SPOT images,
the recognition accuracy can reach 71%, the false-negative rate is 16%, the false-positive rate of 11%.
However, the accuracy is only 64% in shadow areas. Many clouds and shadows in the images have
a significant impact on the results [17]. Meanwhile, there is still a strong anthropogenic subjectivity
in the process of determining the starting point of the starting area, the end of accumulation area
and the avalanche’s boundary. In addition, using visual interpretation to identify avalanches is
time-consuming and laborious. For example, Bühler’s mapping of 18,737 avalanches over the entire
12,500 km2 took approximately 600 h. Furthermore, using them is not effective in identifying avalanches
in complex terrain. In this study, avalanche detection based on active microwave images that are not
affected by clouds and all-day imaging can fundamentally avoid the influence of clouds and shadows.
No additional data and threshold settings are involved in the whole operation. More important,
the application of the SVM method to automatically detect avalanches avoids the intervention of
human factors, making implementation of the method more objective, faster and robust.

Researchers have also used a change detection method to detect avalanches in images from the
Sentinel-1 C-band active microwave. Vickers carefully defined the avalanche determination conditions
based on the change detection method. He believes that a feature that satisfies the backscatter variation
value of greater than six decibels and an area larger than 25 pixels may be an avalanche [49]. Although
the interference of wet snow on the results was reduced by this method, some vegetation located
in low-lying areas was misjudged. Moreover, the omission of small avalanches is very common.
Eckerstorfer established a real-time system that automatically detects avalanches based on the
study of Vickers. The maximum values of POD, FAR and TSS were 87.4%, 81.7% and 0.571 [47].
In this paper, the index values corresponding to his results were 92.4%, 34.0% and 0.921. Obviously,
using the SVM machine-learning method to classify the avalanche has a higher POD and a lower
FAR. Comparing results of TSS indicators further illustrates that the SVM machine-learning method
is better in automatically identifying avalanches. Moreover, using artificially determined thresholds
is unavoidable in the filtering and segmentation step of the process of identifying avalanches with
the change detection method, but there is considerable human subjectivity involved. In contrast,
the diversified avalanche characteristics established in this paper are capable of not only magnifying
the avalanche features from regional data, but also thoroughly avoid the interference of human factors.

It is worth noting that level-1 SLC images are used in this paper and level-1 GRD (Ground Range
Detected) images were used by Vickers, Eckerstorfer and Malnes. The large amount of data are the
main reason for excluding SLC images. On the other hand, this means that the information provided
by the SLC image will be more diverse; for example, the phase information is not included in the
GRD image. The rich information in SLC images was important supporting data for establishing
indicators in this paper; GRD images have no advantage in terms of data richness. Although the
data volume of SLC images is four times that of GRD images, downloading SLC images using
IDM (Internet download manager) software that supports break point resumption can easily avoid
this shortcoming. The SVM machine-learning method used in this paper not only adopts the basis
of the change detection method, but also supplements other avalanche scattering and interference
characteristics as a basis for identifying avalanches comprehensively. Therefore, it is more complete in
principle and more rigorous in logic, and the classification problem is simplified. Thus, classification
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accuracy of this method is higher and more objective, affording wider applicability. Further, the ability
to identify small avalanches and those in complex terrain and unfavorable atmospheric conditions
is superior.

Many studies have interpreted avalanches based on their tongue shape. The results of this study
indicate that the tongue shape is more pronounced on hillsides with broad slopes and simple underlying
surfaces, but there are other shapes caused by the terrain. For example, avalanches that occur in fjords
generally appear as narrow strips in the starting area. A fan shape will appear in the jumping area and
the accumulation area when there is enough release space. In complex areas with steep terrain and
large undulations, some avalanche shapes are “S” and some are “Z”. In short, the forms are diverse.
The research in this paper updates the description of avalanche geometry and perfects the basis for
visual interpretation of avalanches.

5.3. Sources of Error

The SVM does not require a large number of samples and does not have the problems of learning
and dimensional disasters. Its advantages make the accuracy of classification results higher. Although
the number of mixed pixels in the sample is controlled as artificially as possible, the establishment
of indicators using polarization decomposition and the automatic avalanche identification by SVM
are essentially pixel-based image classification technologies; inevitably, the phenomenon of “different
objects with the same spectrum” exists. For example, bodies of water and avalanches have repetitive
backscatter and coherence coefficient values. This investigation found that flowing unfrozen water was
the main cause of the increase σ in water body. Water is an extremely unstable scatterer. The change in
the water phase is the main reason for weak coherence [47]. The ∆σ and γ indicators of water bodies
and avalanches are similar, but clearly separable in the ∆H and ∆α indicators. In addition, it is easier
to avoid misjudgments in water bodies. Water bodies, coniferous forests, roads and avalanches
have similar numeric intervals in some indicators and cause some interference with the automatic
identification of avalanche but coordinating with all indicators can lesson misjudgment.

The phenomenon of “same object with a different spectrum” can be caused by natural changes
of seasonal snow, the complex dynamic changes in the snow layer and its interaction with the soil
below and the air above. For example, wind-blown snow has a rough surface similar to that of an
avalanche, produces similar changes in backscatter, which restricts the distinguishing performance of
indicators. Other special ground cover conditions can be additional sources of error. For example, the
C-band receives echoes from the canopy in most cases; features hidden among dense forests can also
be detected at certain small angles. The radar echo received in that case is more complicated and may
cause misjudgment. Some avalanches are obscured by intertwined branches and leaves, and radar
cannot receive echoes from the avalanche, resulting in errors of omission.

5.4. Limitations and Future Development

Accuracy can be limited by the resolution of the Sentinel-1 image, the penetrating power of the
C-band, shadows in the image and the phenomenon of overlapping and shortening on slopes. Smaller
avalanches can be identified using Sentinel-1 images due to its higher spatial resolution, but very small
avalanches will still be missed. Penetrating dry snow in the Sentinel-1 C-band would further increase
omissions, resulting in a reduction of accuracy. Sentinel-1 is a side-look radar, in a hilly area where the
terrain is undulating and steep, shadows are generated on the side facing away from the radar, and the
signal cannot be received.

Automatic avalanche monitoring research is in the development and exploration stage. Because
Sentinel-1 data are available worldwide, this method is applicable in the most mountainous areas
of the world that are affected by avalanches. It is hoped that this study will provide reference and
inspiration for subsequent research. Replacing source data with more perfect performance data could
be considered in future improvements. The use of high-resolution images to enhance the detection of
small avalanches is of great significance for the management and control of potential avalanche disasters.
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Different polarizations can reflect varying characteristics between ground objects and electromagnetic
waves. However, at present, only dual-polarization (VV–VH) images are used primarily. These are
more conducive to a comprehensive and in-depth analysis of the characteristics of the ground objects
using fully polarized images containing all the scattering information of ground objects. Furthermore,
the band of radar used to detect avalanches renders vital knowledge. Considering the influence of the
atmospheric transmission window, frequency and polarization on information extraction, the L, C and
X bands are more suitable. They can all be used to detect snow accumulation. Regardless of horizontal
or vertical polarization, the C-band penetrates to a certain depth of the dry snow layer, which often
leads to missed dry snow avalanches. Therefore, the advantages of X- and L-band SAR images in
automatic identification of avalanches are worth exploring. Subsequently, important information,
such as avalanche morphology, texture and albedo, can be clearly characterized by high-quality optical
images. Using fused multi-source remote sensing images can greatly improve the accuracy of avalanche
detection. In terms of method improvement, increasing indicators such as snow depth and avalanche
flow direction is suggested to make the model more complete. This was not done in this case to
avoid introducing errors, because the method of inverting these two indicators is not fully developed.
As for expanding on the research content, following up and exploring the changes of avalanches in the
context of climate change, long-term series, and the impact of avalanches on landform and ecological
patterns are proposed.

6. Conclusions

This study proposes a robust universal method to automatically detect regional avalanches
using scattering and interference information from active microwave C-band images, which can
generate more objective and accurate avalanche maps—especially while descending. The results
of this study carried out in two mountainous areas of western TianShan show that avalanches are
unevenly distributed in space, but mainly concentrated at 1600–3500 m above sea level and on 25◦ to
35◦ slopes and that most of them are small-scale. Avalanches along G217 and G218, that are adjacent to
human activities are extremely active and should be given urgent attention to mitigate possible losses
in advance.

The excellent performance of this method is manifested in its objectivity, universal applicability
and automation, allowing avalanche mapping unhindered by extreme geographical conditions, coarse
image quality and artificial subjective experience. The realization of rapid and automatic detection of
regional avalanches has profound social significance, which can assist in dealing with the threat of
destructive natural disasters from avalanche and improve public awareness of the danger.
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