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Abstract: The Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-on (GRACE-FO)
satellites are important for studying regional gravitational field changes caused by strong earthquakes.
In this study, we chose Chile, one of Earth’s most active seismic zones to explore the co-seismic and
post-seismic gravitational field changes of the 2010 Mw 8.8 Maule earthquake based on longer-term
GRACE and the newest GRACE-FO data. We calculated the first-order co-seismic gravity gradient
changes (GGCs) and probed the geodynamic characteristics of the earthquake. The earthquake
caused significant positive gravity change on the footwall and negative gravity changes on the
hanging wall of the seismogenic fault. The time series of gravity changes at typical points all clearly
revealed an abrupt change caused by the earthquake. The first-order northern co-seismic GGCs had a
strong suppressive effect on the north-south strip error. GRACE-FO results showed that the latest
post-seismic gravity changes had obvious inherited development characteristics, and that the west
coast of Chile maybe still affected by the post-seismic effect. The cumulative gravity changes simulated
based on viscoelastic dislocation model is approximately consistent with the longer-term GRACE
and the newest GRACE-FO observations. Our results provide important reference for understanding
temporal and spatial gravity variations associated with the co-seismic and post-seismic processes of
the 2010 Maule earthquake.

Keywords: 2010 Mw 8.8 Maule Chile earthquake; GRACE; GRACE Follow-On; gravity changes;
gravity gradient changes; viscoelastic dislocation model

1. Introduction

An Mw 8.8 earthquake occurred on the west coast of Chile on 27 February 2010, which was the
fifth largest earthquake in the world since the instrumental record of seismicity [1]. The earthquake
caused serious casualties, extensive property losses, and permanent deformation of the rupture zone
on the west coast of Chile. However, this earthquake has provided an important opportunity for
studying the active tectonic deformations of typical plate collision belts and attracted widespread
attention from scholars in the field of geosciences.

Data from static and high-rate Global Positioning System (GPS), interferometric synthetic aperture
radar (InSAR), broadband teleseismic data, coastal/river markers, and tsunami sensors have been used
to detect and model the co-seismic signature, rupture process, slip characteristics, and post-seismic
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deformation of the 2010 Mw 8.8 Chilean earthquake [2–13]. Relevant studies have proven that the
Gravity Recovery and Climate Experiment (GRACE) is effective for tracking the variations of large-scale
spatial gravitational fields caused by strong earthquakes [14–16]. For instance, it has been used to
study the 2004 Mw 9.3 Sumatra earthquake [17,18], 2008 Mw 8.0 Wenchuan earthquake [19], 2011 Mw
9.0 Japan earthquake [20,21], and 2015 Mw 8.1 Nepal earthquake [22,23]. In addition, GRACE has been
used to detect the co-seismic gravity deformations caused by the 2010 Mw 8.8 Maule Chile earthquake
using different types of GRACE data with different spatial resolutions [24–26], either based on global
spherical-harmonic analysis with additional filtering to remove high-frequency errors [1,24] or regional
solutions directly using GRACE inter-satellite tracking data at a certain spatial resolution [25].

These aspects of the co-seismic deformations, rupture process, slip features, tectonic activity,
and co-seismic gravity changes are of great importance for improving the understanding of the
geodynamics of the 2010 Mw 8.8 Maule Chile earthquake. Compared with the above-mentioned
methods, GRACE is not only advantageous for observing the temporal and spatial gravity changes,
but also has an outstanding ability to detect tectonic deformations caused by undersea earthquakes,
because gravitational data are sensitive to deformations on land or on the sea floor, in the continental
or oceanic crust, and in the upper mantle, although the signal-to-noise ratio, particularly in oceanic
settings, depends on the size of the rupture [1]. However, in order to understand the mechanism of the
gravity changes caused by the 2010 Mw 8.8 Chilean earthquake in depth, it is necessary to study the
gravity variations comprehensively throughout the co-seismic and post-seismic periods, especially
with the launch of the new GRACE-FO satellite mission.

In this study, we first used longer-term GRACE data (2003–2016) (the latest version of Release 06)
to investigate the long-term gravity changes before, during and after the 2010 Mw 8.8 Maule Chile
earthquake. We calculated the first-order northern co-seismic gravity gradient changes (GGCs) and
discussed their strong suppressive effect on suppressing the north-south strip errors for better detection
of the co-seismic signal. We further used the newest GRACE-FO data (2018–2019) to explore the
latest post-seismic gravity changes. The combination of GRACE and GRACE-FO allowed us to unveil
the temporal and spatial gravity changes associated with the 2010 Mw 8.8 Maule Chile earthquake
over a long time range. Finally, the viscoelastic dislocation model was deployed to fit the GRACE
and GRACE-FO observations to explain the seismogenic mechanism. Our results provide important
reference for understanding long-term temporal and spatial gravity variations associated with the
co-seismic and post-seismic processes of the 2010 Maule earthquake.

2. Tectonic Background

Chile is located in the Andean subduction zone, where the Pacific and the South American
plates collide (Figure 1). Chile is also one of the countries that has suffered the most harm from
earthquakes [27,28]. The Nazca plate, which belongs to the eastern margin of the Pacific plate,
is subducted beneath the South America plate with a convergence speed of ~80 mm/year in the
southern region and ~65 mm/year in the northern region along the subduction zone [29]. Although the
rate of subduction varies little along the entire arc, there are complex changes in the geologic processes
along the subduction zone that dramatically influence tectonic activities along the western edge of
South America [30]. The plate convergence in the subduction zone is mainly manifested by the sliding
of the plate contact surface on the thrust belt and the shortening of the continental lithosphere in
the South America plate. The plate subduction has led to not only the uplift of the Andes, but also
the thickening of the margin crust of the South America plate [31]. In addition, the South American
subduction zone and the South American plate are also squeezed by the expansion of the mid-Atlantic
ridge, are affected by the dynamics of the Caribbean plate in the north, and are pushed by the Antarctic
plate in the southwest. The combined actions of these surrounding plates lead to severe and complex
deformation of the South American plate and strong seismic activity on its western edge [32–34].

Due to the continuous eastward subduction of the Nazca plate, the collision zone between the
Nazca and South American plates is a natural site for the brewing and occurrence of large earthquakes
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and volcanic activity. The Chile subduction zone is among the most active convergent margins on
earth, producing a large earthquake (Mw > 8.0) every ~10–20 years. Most of the large earthquakes in
South America are constrained to shallow depths of 0–70 km as a result of both crustal and interplate
deformation. Crustal earthquakes are caused by deformation and mountain building in the overriding
South America plate and can be as deep as approximately 50 km. Interplate earthquakes occur due to
slip along the dipping interface between the Nazca and the South America plates [30]. The 2010 Mw
8.8 Maule Chile earthquake occurred in the south-central region of the subduction of the Nazca plate
underneath the overlying South American plate [35]. This earthquake hit the south-central part of
Chile producing a tsunami which affected not only the continental central Chilean coast, but also the
Juan Fernández Islands located some 670 km offshore. The rupture zone, estimated from aftershock
distribution, covers a distance of approximately 500 km long. Based on the global earthquake catalogue
from the United State Geological Survey (USGS), this earthquake is the fifth strongest earthquake since
1900 as well as the third greatest earthquake with Mw ≥ 8.5 since 2004. The maximum fault slip of
this earthquake was about 6–7 m, and the ruptured region stretched ~500 km along the South Chilean
subduction zone reference. In addition, the Chilean coastal belt has generated several of the largest
earthquakes ever recorded (>Mw 7.5, Table 1).
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Figure 1. Tectonic location of Chile and its surroundings in South America, as well as the major plates
around South America (a). The red rectangular dashed box indicates Chile and its adjacent tectonic belts
(b). The block arrows represent the convergence speed of the Nazca plate relative to South America
plate [29]. The blue arrows are the GNSS horizontal velocities relative to South America plate [36].
The black solid lines represent plate boundaries (b), [27]. The red focal mechanism ball represents
the 2010 Mw 8.8 Maule Chile earthquake, and the black ones represent other strong earthquakes
Mw ≥ 7.0 (GCMT).



Remote Sens. 2020, 12, 2768 4 of 21

Table 1. Some typical largest earthquakes ever recorded (>Mw 7.5) around the Chilean coastal belt.

Date (UTC) latitude/S Longitude/W Magnitude/Mw Rupture Scale/km Location References

8 July 1730 32.5 71.5 9.1–9.3 600–800 Valparaiso [37]

20 February 1835 36.8 73.0 8.5 300 Concepcion [38]

10 May 1877 19.6 70.2 8.5 420 Iquique [39]

3 March 1985 33.1 71.9 7.8 240 Santiago [40]

17 August 1906 32.4 71.4 8.2 200 Valparaiso [41]

11 November 1922 28.3 69.8 8.5 300 Copiapo [42]

6 April 1943 31.4 71.5 7.9 220 Coquimbo [43]

22 May 1960 38.2 73.1 9.6 800 Valdivia [44]

3 April 2014 19.59 70.73 8.1 200 Iquique [45]

16 September 2015 31.64 71.74 8.3 200 Illapel [46]

3. Methods and Data

3.1. Gravitational Field Changes

The spherical harmonic expansion of the gravitational potential of the Earth is the basis for studying
various characteristics of its gravitational field. According to the spherical harmonic expansion theory,
the external gravitational potential of the Earth can be expressed as follows [47–49]:

V(r,θ,λ, t) =
GM

r
+

GM
r

 N∑
l=2

(
a
r
)

l l∑
m=0

(Clm(t)cosmλ+ Slm(t)sinmλ)Plm(cosθ)

 (1)

where V(r,θ,λ, t) is the external gravitational potential related to the changes of spatial position and
time; (r,θ,λ) represents the radial coordinate, colatitude, and longitude in a spherical coordinate
system; t is time; G is the gravitational constant, M is the mass of the Earth; GM is the gravitational
constant; r is the mean equatorial radius of the Earth; a is the equatorial radius of the Earth; Clm(t)
and Slm(t) are fully normalized time-varying spherical harmonic coefficients; and Plm(cosθ) is a
fully-normalized associated Legendre functions with order l and degree m.

When studying the long-time sequence of a time-variable gravitational field, the average
gravitational field over a period is usually selected as the background field. Then, the monthly
time-variable gravitational field model can be expressed relative to the background field. The ellipticity
and topography of the Earth have weak influence on the variation of low-order gravitational field over
time and therefore, the monthly gravitational field changes can be further represented on a spherical
surface of radius R (Equation (2)), which can be approximately considered to be the changes of the
gravitational field on the surface of the Earth [48,50]:

∆g(θ,λ) =
GM
R2

N∑
l=2

(l + 1)
l∑

m=0

(∆Clm cos mλ+ ∆Slm sin mλ)·Plm(cosθ) (2)

where ∆g(θ,λ) is the change in gravity.

3.2. First-Order GGCs

If we set a local rectangular coordinate system established at any points on the surface of the Earth,
where the X axis points to the north, the Y axis points to the east, and the Z axis points downward
toward the center of the earth. Then, by deducing the first partial derivative of Equation (2) with
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respect to θ, λ, and r, respectively, the components of the first-order GGCs along the three coordinate
axes can be obtained [47,51,52]:

∆gX(θ,λ) =
GM
R3

N∑
l=2

(l + 1)
l∑

m=0

(∆Clm cos mλ+ ∆Slm sin mλ)·
d
[
Plm(cosθ)

]
dθ

(3)

∆gY(θ,λ) =
GM
R3

N∑
l=2

(l + 1)
l∑

m=0

m(−∆Clm sin mλ+ ∆Slm cos mλ)·
Plm(cosθ)

sinθ
(4)

∆gZ(θ,λ) =
GM
R3

N∑
l=2

(l + 2)(l + 1)
l∑

m=0

(∆Clm cos mλ+ ∆Slm sin mλ)·Plm(cosθ) (5)

3.3. GRACE Data

We selected the monthly gravitational field models with the highest order of 60, where the
spherical harmonic coefficients were obtained from the Release 06 (RL06) Level 2 version issued by
the University of Texas Center for Space Research (CSR). We used 174 monthly gravitational field
models from January 2003 to March 2016 and June 2018 to August 2019 to study the temporal and
spatial gravity changes among the pre-seismic, co-seismic, and post-seismic stages of the 2010 Mw
8.8 Maule Chile earthquake. The degree 02 (C20) term of the spherical harmonic coefficients was
replaced by their corresponding ones estimated using satellite laser ranging data [53]. Due to the
influence of the near polar orbit design of the satellite [54], GRACE cannot observe the geocentric
motion very well. Monthly geocenter estimates calculated by Sun [55] were used to account for
the degree-1 coefficients of the gravity field. These coefficients, which have been normalized using
the GRACE standards, represent the degree-1 gravity coefficients that should be added to the GSM
coefficients to correct for geocenter motion. During the process of calculating the gravitational field
changes, the P3M6 method [17,56] was used to remove the correlation between the odd- and even-order
spherical harmonic coefficients in the spherical harmonic domain, and the 300 km Gaussian smoothing
method was further adopted to reduce the high-order spherical harmonic coefficient noise to weaken
the influence of the north–south stripes. The 300 km Gaussian smoothing method was also adopted to
optimize the gravity gradients changes.

The gravitational field observed by GRACE may be affected by hydrological factors, which will
influence the analysis of geodynamics-related information [48]. We further employed the grid data
(2.5◦ × 2.5◦) from the Global Land Data Assimilation System by using the same processing strategy
as for the GRACE gravity data to extract hydrological data, which were further subtracted from the
observations to deduce the hydrological impact [22,23].

4. Results and Analysis

4.1. Long-Term Gravity Changes

Seventy-two continuous monthly gravitational field models from January 2004 to December 2009
were selected as the background field (Figure 2a), and the average annual total gravitational field
changes (including the co-seismic gravity changes) from 2008 to 2015 were calculated to obtain the
spatial variations of the long-term (from 2008 to 2015) gravitational field in the Chilean area (Figure 2).

Figure 2 shows that in 2010, the year of the Mw 8.8 Chile earthquake, two obvious gravity
signals with opposite characteristics appear on the hanging wall and footwall of the seismogenic fault
(Figure 2d). The footwall presents ~1.6 µGal positive gravity changes, while the hanging wall shows
ca. −3.9 µGal negative gravity changes. Between 2011 and 2015, the positive and negative gravity
changes around the two sides of the seismogenic fault all exhibit significant differences (Figure 2e–i).
The positive gravity changes and their scopes in the footwall increase year-by-year (Figure 2e–i).
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The scopes of the negative gravity changes in the hanging wall overall show a gradually decreasing
trend year-by-year (although the scope relatively lager in 2012) (Figure 2e–i). However, the gravity
changes are relatively flat between 2008 and 2009 (Figure 2b,c).Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 21 
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4.2. Co-Seismic Gravity Changes

To investigate the spatial variations of the co-seismic gravitational field caused by the 2010 Mw
8.8 Maule Chile earthquake, we used average gravitational field models for a period of ca. one year,
spanning both the pre-seismic (form February 2009 to January 2010) and post-seismic (form March
2010 to February 2011) stages (Figure 3a).
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by spherical dislocation [57] (b).

The co-seismic gravity changes of the earthquake present significant positive and negative
differential changes on the two sides of the seismogenic fault. The positive gravity change reaches
~1.2 µGal on the footwall (subducting plate), while the negative gravity change reaches about −4.0 µGal
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on the hanging wall (thrusting plate). The peak-to-trough amplitude of the co-seismic gravity changes
reaches ~5.2 µGal. We also used the spherical dislocation model [57] with five-segment parameters [58]
to calculate the theoretical co-seismic gravity changes. It should be noted that for earthquakes under
oceans, gravity changes on the ocean part may be influenced by seawater disturbances produced by
the displacement of the seabed. Therefore, it was necessary to perform seawater quality correction of
the gravity changes on the ocean part [57]. Additionally, the calculation results from the dislocation
model were processed through a 300 km Gaussian filter in the spatial domain for comparison with the
gravity changes observed by GRACE (Figure 3b).

The gravity changes calculated using the dislocation model also show significant positive and
negative gravity differential changes on the two sides of the seismogenic fault, with ~1.9 µGal positive
gravity changes on the footwall and ca. −4.2 µGal negative gravity changes on the hanging wall
(Figure 3b). The maximum change in amplitude in the theoretical calculations performed using the
dislocation model is smaller than that observed by GRACE (Figure 3a,b). The reasons for the difference
may be the simplicity of theoretical fault model and noise background. In addition, the GRACE
observations contained the mixed co-seismic and post-seismic signals [50]. However, it is also evident
that the overall trends of the gravity changes according to the theoretical calculations and GRACE
observations are consistent (Figure 3a,b).

4.3. Time Series of Gravity Changes

The time series of the gravity at key points can more clearly and quantitatively reflect the local
gravity variations. Therefore, we selected three key points: points A (37.2◦S, 76.6◦W) and B (35.5◦S,
69.4◦W), which have the maximum and minimum gravity changes in Figure 3a (white triangles), and the
epicenter (36.1◦S, 72.9◦W) to investigate the temporal variation characteristics of the gravitational field
in further detail.

To display the trends of the time series more clearly, we deduced the annual and semi-annual
cyclical effects, using cubic spline interpolation to complement the missing data, and adopted five-point
smoothing combined with the least-squares fitting to obtain the final time series of the long-term gravity
changes at the key points (Figure 4a–c). The gravity changes at all three key points exhibit obvious
jumps on February 27, 2010, the date of the Mw 8.8 Chilean earthquake (Figure 4a–c). The magnitude
of the co-seismic gravity change at point A (on the footwall of the seismogenic fault) reaches ~1.1 µGal,
and that at point B (on the hanging wall) reaches ~4.7 µGal (Figure 4a,b). The least squares line fitting
of the gravity changes curve at point A are around 0 µGal before the earthquake and exhibit an obvious
increase in the positive gravity change after the earthquake. Although the fluctuation of the gravity
changes at point B is greater than that at point A before the earthquake, The least squares line fitting of
the gravity changes curve also are around 0 µGal; however, they exhibit significant negative gravity
variations with an increasing trend after the earthquake. The overall gravity variations on the hanging
wall of the seismogenic fault are stronger than those on the footwall, which has features similar to
those of the 2004 Sumatra Mw 9.3 earthquake [50].

The amplitude of the gravity changes of the epicenter varies from −2 µGal to 4 µGal (2003–2016).
The gravity changes of the epicenter show overall increasing trends before and after the earthquake,
in particular, a rapid increasing trend after the earthquake (Figure 4c). However, we found the
increasing rate before the 2010 Mw 8.8 earthquake is not obvious (Figure 4c).

Figure 4 shows that the gravity changes at key points before the earthquake are also relatively large.
We therefore investigated earthquakes (Mw > 6.0) in the pre-seismic period around the key points,
including the largest Mw 7.0 O’Higgins earthquake on February 27, 2010 (34.3◦ S, 71.8◦ W). However, it
is difficult to conclude that the larger gravity changes in pre-seismic period were directly related to these
smaller magnitude earthquakes. The gravity changes observed by GRACE are mainly caused by tectonic
deformation, underground material flow and groundwater storage changes. There are no large rivers or
glaciers in the earthquake area and the significant gravity anomalies are distributed along the tectonic
deformation zone, which indicate that the gravity changes may contain the density changes caused
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by the migration of underground materials and the deformation caused by the tectonic movement.
In addition, due to the characteristics of the structural location of Chile, the influencing factors of
gravity changes and surface deformation are very complicated. Moreover, since GRACE detected
the gravity change signal associated with the Sumatra earthquake, scientists have been exploring
whether GRACE can detect the gravity change signal produced by an earthquake smaller than the
Sumatra earthquake [16,59,60]. Gross and Chao used the normal model solution of free oscillation of
the earth to prove that GRACE can detect large earthquakes [59]. Theoretically, the co-seismic gravity
variation of a shear source larger than M 9.0 or a tension source larger than M 7.5 should be detected
by GRACE [16,60]. Since earthquakes normally contain both sheer and tensional/compressional
components, theoretically, an earthquake with M > 8 may be detected by GRACE [16,60].
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4.4. First-Order Co-Seismic GGCS

According to the principle described in Section 3.2, we used Gaussian filtering with a window
of 300 km to calculate the co-seismic northward (Figure 5a2), eastward (Figure 5b2), and vertical
GGCs (Figure 5c2). Figure 5a2,b2 show obvious spatial changes of the horizontal GGCs with
positive–negative–positive characteristics especially in the northward, whereby the different dividing
lines strike between the positive and negative zones. The epicenter is located in the middle of
the negative change zone. The range of the northward co-seismic GGCs is from −1.4 × 10−4 E to
1.3 × 10−4 E (Figure 5a2), while the eastward co-seismic GGCs is larger than the northward one, ranging
from −1.8 × 10−4 E to 1.8 × 10−4 E (Figure 5b2). The vertical GGCs show details of the co-seismic
gravity changes and exhibit obvious spatial changes with approximately negative–positive–negative
characteristics, whereby the magnitude is slightly larger than that of the horizontal GGCs.
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Due to the limitations of GRACE satellite observations themselves (hybrid effects of satellite
orbit errors and correlated errors of Stokes coefficients), oceanic and atmospheric model errors,
the time-varying gravity field models obtained by GRACE have obvious north–south oriented
high-frequency strip errors [17,56]. To reduce these artifacts, a Gaussian filter, decorrelated filter,
Fan filter and other filters can be adopted. Here we only used 300-km Gaussian filtering to show the
suppressive effect of the first-order northern co-seismic GGCs on the north–south strip error without
decorrelation filtering. However, a single filter has its limitations, thus, there are residual stripes in
Figure 5, especially in Figure 5b1,c1

4.5. Latest Post-Seismic Gravity Changes Revealed by GRACE-FO

On May 22, 2018, the GRACE-FO satellites were launched and the new GRACE-FO data were
subsequently provided. We selected the monthly gravitational field models with a highest order of 60,
where the spherical harmonic coefficients were obtained from the Release 06 (RL06) Level 2 version
issued by CSR. We used 15 monthly gravitational field models of GRACE-FO from June 2018 to August
2019 to study the spatial gravity changes of the post-seismic stages of the 2010 Mw 8.8 Maule Chile
earthquake (Figure 6), and adopted the same background data with GRACE.
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During 2018 (Figure 6a) and 2019 (Figure 6b), the gravity changes of the Chile region exhibit
obvious inherited development characteristics, both temporally (Figure 4) and spatially (Figure 2),
which have two obvious gravity signals with opposite characteristics appear on the hanging wall
and footwall of the seismogenic fault. It should be noted that between 2010 and 2019, the positive
gravity changes of the footwall exhibit a significant enhanced trend and the scope is also expanding,
while the extent of the negative gravity changes in the hanging wall show a gradually decreasing
trend. The time range of selected GRACE-FO data is between June 2018 and August 2019, there were
no large earthquakes of Mw ≥ 7.0 but there have been four earthquakes of Mw ≥ 6.5 (GCMT, the red
focal mechanism ball in Figure 6b). However, there is no significant difference among Figure 6a,b
and Figure 2b–f. This feature indicates that the Chile area currently still be mainly affected by the
post-seismic effect of the 2010 Mw 8.8 Maule Chile earthquake.

5. Discussion

5.1. Comparison with Previous Co-Seismic Gravity Changes Observed by GRACE

The co-seismic gravity changes of the 2010 Mw 8.8 Maule Chile earthquake have been studied in
several studies based on GRACE data [1,24–26,61]. The features and trends of the co-seismic gravity
changes obtained in our study are similar to the previous results, but also have certain differences
in terms of the detailed spatial distribution and the magnitude of the gravity changes (Table 2).
We obtained co-seismic gravity changes of −4.0–1.2 µGal based on GRACE data of one year bracketing
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the earthquake, while Wang et al. [1] and Li [60] obtained co-seismic gravity changes of −10–2 µGa
and −4.5–0.6 µGal during the same time span, respectively. Heki and Matsuo [24] and Zhou et al. [26]
obtained a co-seismic gravity change of −5 µGa and −5–2 µGal based on three months of GRACE data
before and after the earthquake, respectively. Han et al. [25] obtained a co-seismic gravity change of
−5 µGal to the east of the epicenter based on GRACE data of two weeks. A detailed comparison of the
results is provided in Table 2.

Table 2. Comparison of co-seismic gravity changes of the 2010 Mw 8.8 Chilean earthquake obtained by
different researchers.

Scientist Physical
Quantity

Observation Data
Dislocation Model Time Scale Filtering Spatial

Distribution
Magnitude

(Gravity/µGal)

[26] Co-seismic
gravity change

GRACE data issued by CSR
Release 04 (RL04) Level 2

Three months
before and after
the earthquake

P3M6+300 km
Gaussian filter Positive–negative −5–+2

Spherical dislocation model 300 km
Gaussian filter Positive–negative −8.9–+3.9

[24] Co-seismic
gravity change

GRACE data issued by CSR
Release 04

RL04 Level 2

Three months
before and after
the earthquake

P3M15+300 km
Gaussian filter Negative Largest drop of ~−5

Spherical dislocation model 300 km
Gaussian filter Negative Largest drop of ~−5

[1] Co-seismic
gravity change

GRACE data issued by CSR
Release 04

RL04 Level 2

One year before
and after the
earthquake

Slepian function Positive–negative −10–+2

[61] Co-seismic
gravity change

GRACE data issued by CSR
RL04 Level 2

One year before
and after the
earthquake

P3M6+300 km
Gaussian filter Positive–negative −4.5–+0.7

Rectangular dislocation model 300 km
Gaussian filter Positive–negative −6.3–+2.4

[25] Co-seismic
gravity change

GRACE data issued by JPL
Level-1B

Two weeks
before and after
the earthquake

500 km
Gaussian filtering Positive–negative −5 to the east of

the epicenter

This study Co-seismic
gravity change

GRACE data issued by CSR
Release 06 RL06 Level 2

One years
before and after
the earthquake

P3M6+300 km
Gaussian filter Positive–negative −4.0–+1.2

Spherical dislocation model 300 km
Gaussian filter Positive–negative −4.2–+1.9

The reasons of the differences in terms of the detailed distribution and the magnitude of the
gravity changes among these studies may include the following. First, different time spans of GRACE
data were used and, accordingly, the observed gravity changes reveal the earthquake deformation
during different times. Second, different filtering methods with different resolutions were introduced
to the processing of the GRACE data, which can affect the final gravity field results. For example,
Wang et al. [1] mainly used the Slepian function, while Li [61] used the P3M6 plus 300 km Gaussian
filter based on the same time scale (one year before and after the earthquake). Heki and Matsuo [24]
used P3M6 plus 300 km Gaussian filter while Zhou et al. [26] used P3M15 plus 300 km Gaussian
filter; both were based on the same time scale (three months before and after the earthquake). Third,
the different datasets issued from different organizations (along with different inversion method for
data processing) were used to analyze the gravity changes. For example, Han et al. [25] adopted the
GRACE data issued by JPL Level-1B while others used data from CSR. Lastly, different releases of
GRACE data even from the same organization were used to analyze gravity changes, and the data
quality and accuracy from the newer version are generally improved compared with the previous
version. For example, the version of GRACE data used in our study is RL06 Level 2 from CSR, while
Li [61] used the CSR’s RL04 Level 2 products based on the same time scale. The difference in the
modeled co-seismic gravity changes among these studies are due to the different fault parameters and
different types of dislocation models, such as the rectangular dislocation model [61] and the spherical
dislocation model [24,26]. In summary, the discrepancy in gravity changes obtained by GRACE among
the different studies is due to the difference in data time spans, filtering methods, data providers,
released versions, and fault parameters and types of dislocation models.
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In this study, the co-seismic gravity changes of the 2010 Mw 8.8 Maule Chile earthquake were
obtained based on the newest version Release 06 (RL06) Level 2 of GRACE data issued by CSR.
Compared to the version Release 05 (RL05) Level 2, there are improvements in the background gravity
field, the third body perturbation, the solid Earth polar tide model, and the atmospheric and non-tidal
modes in the Release 06 (RL06) Level 2 version.

5.2. Advantages of the First-Order Northern Co-Seismic GGCs in Detecting Co-Seismic Signals

In order to effectively eliminate noise, when using the GRACE data to study the co-seismic gravity
changes, decorrelation filtering is often performed; however, this also weakens or distorts the real
signal while eliminating the error. In this study, we attempted to directly use 300 km Gaussian filtering
without decorrelation filtering, and obtained the first-order GGCs of three components (Figure 6). It can
be seen from the comparison of the global distribution that the north-south strip phenomenon in the
distribution of GGCs in the northern direction is smoother than that in the eastern and vertical directions
(Figure 5a1,b1,c1). For the vertical global distribution, the reason for the obvious north-south strip may
be that the term (l + 2)(l + 1) in the spherical harmonic display (Equation (5)) not only amplifies the
signal, but also amplifies the error. However, although the gravity gradient will amplify short-wave
noise while highlighting the small-scale signal, the interference from the north-south strip error is
significantly less than the gradient components in the other two directions due to the suppression
effect of the northward gradient on the error. The advantage of the northern gravity gradient may be
derived from the near-polar flight orbit of the GRACE satellites, such that the observation sensitivity
in the north-south direction is higher than in other directions; thus, the signal-to-noise ratio of the
measurement results in the north-south direction is higher.

Figure 7 shows a comparison between the northern co-seismic GGCs (Figure 7a) and theoretical
northern co-seismic GGCs simulated by the dislocation model (Figure 7b, corresponding to Figure 4).
Both are in good agreement with each other in terms of the spatial distribution and variation amplitude
(Figure 7a,b). Moreover, the coincidence degree is better than that of the gravity changes (Figure 3
versus Figure 4), which further demonstrated the superiority of the northern co-seismic GGCs in
extracting the co-seismic signal.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 21 
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5.3. Post-Seismic Gravity Changes Simulated by Viscoelastic Dislocation Model

In order to further study the internal mechanism of post-seismic gravity changes of the 2010 Mw
8.8 Maule Chile earthquake, we numerically simulated the gravity change of the earthquake based
on the dislocation theory. The dislocation theory used in this study is based on the viscoelastic earth
model, which has been successfully used in the simulation of co-seismic and post-seismic gravity
changes [62]. The program used in the calculation is the viscoelastic dislocation calculation program
PSGRN/PSCMP developed by Rongjiang Wang of the German Geosciences Center (GFZ) [62]. The fault
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model used in the viscoelastic dislocation model is the same as the model mentioned in Section 4.2.
The parameters of the earth model used in this study are shown in Table 3.

Table 3. The parameters of earth model used in viscoelastic dislocation model (based on the CRUST 1.0 model).

Depth (km) Density (103kg·m−3) P Wave Velocity (km·s−1) S Wave Velocity (km·s−1) Viscosity (1019Pa·s)

0–0.66 1.82 1.75 0.34 ∞

0.66–11.93 2.72 6.00 3.50 ∞

11.93–23.21 2.86 6.60 3..80 ∞

23.21–34.83 3.03 7.20 4.10 ∞

34.83–6371 3.30 8.00 4.45 1.0

In order to compare the simulated gravity variation of the modelling with the observation of
GRACE, it is necessary to restore the calculated value of the modelling to the fixed point in space after
spatial correction. The space correction can be expressed as [63]:

∆g(θ,λ) = δg(θ,λ) + β·uz(θ,λ) (6)

where ∆g(θ,λ) is the gravity change at a fixed point in space, δg(θ,λ) is the gravity variation of the
Earth’s surface calculated by dislocation model, and downward represents positive; uz(θ,λ) is the
vertical deformation of the surface calculated by the dislocation model, and upward represents positive;
β is the vertical gravity gradient at the surface: β = 2gR/R, where R is the average radius of the Earth,
and g is the average gravity value of the Earth’s surface.

Furthermore, in the study of seafloor earthquake (like the 2010 Mw 8.8 Maule Chile earthquake),
it must consider the compensation effect of sea water on co-seismic deformation, to correct the effect
of sea water quality (Figure 8). The basic idea is to treat the filling effect of sea water by Bouguer
correction, and the expression of sea water correction can be expressed as:

∆gcorθ,λ = ∆gθ,λ− 2πGρ·uz(θ,λ) (7)

where ∆gcorθ,λ is the gravity change after sea water correction, ∆gθ,λ is the gravity change without
sea water correction, G is the gravitational constant, ρ is the seawater density, and uz is the coseismal
vertical deformation.

Finally, we expanded the corrected result to the 60th order according to the spherical harmonic
function [64], and then performed a 330 km Gaussian filter. A continuous function f (θ,φ) defined on
the surface of a sphere (where (r,θ,φ) is the usual spherical coordinate system), can be expanded into
the spherical harmonics [65]:

f (θ,φ) =
∞∑

l=0

l∑
m=−l

fl,mYl,m(θ,φ) (8)

where Yl,m(θ,φ) and fl,m are the surface spherical harmonics of degree l and order m (0 ≤|m|≤ l) and
their coefficient, respectively.

The total gravity changes since the occurrence of the Chilean earthquake based on viscoelastic
dislocation model are shown in Figure 9.

Compared with the observations of GRACE and GRACE-FO (Figure 2a–f, and Figure 6a,b),
the cumulative gravity changes simulated by viscoelastic dislocation model have a good agreement that
two obvious gravity signals with opposite characteristics appeared on the hanging wall and footwall of
the seismogenic fault (Figure 9a–g). The footwall mainly presents positive gravity changes, while the
hanging wall shows negative gravity changes. Within one year after the earthquake (Figure 9a),
the maximum of positive gravity change on the footwall is ~1.15 µGal, and the minimum of negative
gravity change on the hanging is ca. −5.81 µGal, both of which are approximately with the same as
the GRACE observations (Figure 2b, −5.10 µGal−1.90 µGal). At the same time, the negative gravity
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was stronger than the positive gravity, which is basically consistent with the GRACE observations
(Figure 2b). Within two years after the earthquake (Figure 9b), the change of positive gravity increased
and the negative gravity was still stronger than the positive gravity, which is also basically consistent
with the GRACE observations (Figure 2c). Overall, Figure 9a–g show that the changes and scope of
positive gravity on the footwall of the seismogenic fault increased year by year, while the scope of
the negative gravity changes in the hanging wall gradually decreased year by year, which have the
similar change trend with the GRACE and GRACE-FO observations (Figure 2b–f, and Figure 6a,b).
This indicates that the occurrence of the 2010 Mw 8.8 Maule Chile earthquake and its post-seismic effect
still affect the Chilean area, especially to the footwall of the seismogenic fault. This feature suggests
that the Nazca plate continues to dive toward the western margin of the South American plate [13].
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From the comparison between the theoretical calculation of viscoelastic dislocation model and the
GRACE/GRACE-FO observations, the viscoelastic dislocation model fits well to the gravity changes
after the earthquake. The post-seismic deformation process is mainly composed of three mechanisms
such as post-seismic afterslip, viscoelastic relaxation effect, and poroelastic rebound [12]. The first two
parts are the main mechanisms of gravity change after earthquakes: the gravity change caused by
afterslip is related to the short-term gravity change after the earthquake, while the viscoelastic relaxation
effect still has a great influence on the crustal deformation field decades after the earthquake [62].
There is no obvious short-term gravity change after the earthquake in the Chilean area observed by the
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GRACE and GRACE-FO (Figures 2, 6 and 9), and the previous study has also revealed that the afterslip
effect was likely very short based on the normal-mode amplitudes excited by the Chilean earthquake
of 27 February, 2010 [66]. Bedford et al. [13] analyzed the variation characteristics of continuous GPS
and concluded that the plate interface recovered its interseismic locking state rapidly. Therefore,
it is considered that the gravity changes after the 2010 Mw 8.8 Maule Chile earthquake during the
subsequent years are mainly caused by the viscoelastic processing of the Earth [62].Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 21 
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Figure 9. Total gravity changes associated with the Chilean earthquake simulated by viscoelastic
dislocation model in 2011 (a), 2012 (b), 2013 (c), 2014 (d), 2015 (e), 2018 (f), and 2019 (g). The black
rectangular box approximately represents the surface projection of the seismogenic fault.

It should be noted that, in this study, we focus on co-seismic and post-seismic temporal and
spatial gravity changes of 2010 Mw 8.8 Maule Chile earthquake observed only by GRACE and GRACE
Follow-On, but not the rupture model and coseismic slip of the seismogenic fault. On the other hand,
with the continuous development of gravity satellite detection technology, especially the new generation
of GRACE-FO satellites (we only used ca. two years of GRACE-FO data), the monthly gravitational field
model solution theories and methods will be continuously improved. The continuous development
of data processing and filtering technologies will play more important roles in the monitoring of
seismic gravitational field changes in the Chilean area. In addition, our post-seismic model is still a
relatively simple model. The realistic post-seismic geodynamic process of the strong earthquake is
a complex structural mechanism, a realistic model should also include the viscoelastic relaxation of
other processes (i.e., aftershocks, afterslip, and fault locking), and the heterogeneity of viscosity of the
continental and oceanic mantle or in the deep lithosphere [67].

Therefore, in the future work, we will further combine sufficiently longer timescale continuous
GPS and GRACE-FO observations, geophysical monitoring data with additional large-scale In SAR
or seismological data, and more refined post-seismic deformation model to further explore and even
separate the post-seismic complex mechanisms of the 2010 Mw 8.8 Maule Chile earthquake and other
strong earthquakes in the Chilean area.

5.4. Preliminary Analysis of the Leakage Error in Land/Sea of the Study Area

Since the investigated area is located in land/sea area, the leakage effect in GRACE observations
should be sufficiently considered. The study area is far from the glaciers located in South America and
also far away from large rivers in Eastern Chile, except that the northeastern area may be influenced
by the La Plata River Basin [62]. In this study, we mainly used the spherical harmonic coefficient
method to invert the time-varying gravity field based on GRACE Release 06 (RL06) data. Therefore, we
attempted to use the grid data from GLDAS to estimate the leakage error of the study area as mentioned
in Section 3.3. The gridded numerical values of the GLDAS hydrological model were converted to
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spherical harmonic coefficients with the same order as for the monthly GRACE gravity field model,
and the same processing strategy as for the GRACE gravity data was employed. The equivalent water
column height changes and the transformed gravity changes can be obtained in the same period
as in Figure 2 (six relatively typical periods were selected). We can find that a relatively obvious
hydrographic gravity signal (1–2 µGal) exist on the northeastern or surroundings of the study area
which may be caused by the hydrological impact of the La Plata River Basin. We can also identify
some other hydrographic gravity signals in the land (Figure 10). All of these hydrographic gravity
signals are subtracted from the GRACE/GRACE-FO observations.

1 
 

 

Figure 10. The hydrographic gravity signal changes estimated from GLDAS model.

It is worth noting that the hydrographic gravity signal changes between the land and ocean are
all small (Figure 10). The mass transfer caused by the change of equivalent water column height will
lead to the change of gravity, and there is a corresponding relationship between the equivalent water
column height and gravity. Therefore, the surface mass variations over the study area can then be
estimated using the GLDAS model. However, because of the lack of data in the GLDAS model over the
ocean of the study area, the surface mass variations may reflect leakage errors of the study area [56].

However, due to the accuracy of GLDAS data itself, the complexity of the actual observation
environment, and the limited spatial resolution of GRACE (truncation of spherical harmonic order,
smoothing of spatial filtering, etc.), the abovementioned method is still limited and incomplete, causing
the leakage effect on the observed gravity changes in land/sea area.

5.5. Tectonic Mechanism

From the perspective of focal mechanism solution, earthquakes in the Chilean area are mainly
dominated by thrust and closely related to the subduction zone of the western margin of the South
American plate [68]. The Nazca plate continues to dive at a speed of ~8 cm/a toward the western
margin of the South American plate, making the subduction zone between the two plates a natural site
for seismogenic activity [69].
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The 2010 Mw 8.8 Maule Chile earthquake occurred in the subduction zone between the Nazca
and South American plates. According to the tectonic characteristics of the collision zone between the
oceanic and continental plates [61], the deformations of the collision zone and the gravity variations
along the seismogenic fault should have different features in different stages. The first stage is a
period of linear strain accumulation between earthquakes, when the contact surface between the plate
boundaries is basically in a locked state. During the process of subduction of the Nazca plate to the South
American plate, the continental lithosphere is continuously shortened horizontally, since, in the vertical
direction, it thickens, and the plate boundary zone present a stress–strain accumulation state, and the
plate boundary zone present a stress–strain accumulation state. The constant compression of the plate
boundary and thickening of the crust cause the gravity to increase in the collision area at the junction
of plates. The second stage is a period of non-linear strain accumulation before the earthquake [69].
After long-term stress–strain accumulation, the stress–strain levels of the plate boundary gradually
approach the limit state, and the gravity of the collision zone continue to increase. The third stage is a
period of rapid release of the stress–strain caused by the co-seismic rupture. When the accumulated
stress–strain exceeds the critical level, an earthquake can occur and the stress–strain energy in the plate
boundary is rapidly released. The deformation of the continental lithosphere on the hanging wall of the
seismogenic fault changes from compression and uplift before the earthquake to relaxation and sinking
on the occurrence of the earthquake [70]. Therefore, the hanging wall of the seismogenic fault exhibits a
wide range of declines in gravity. The gravity of the footwall increased, which was caused by the influx
of lower crust and mantle materials during the subduction of the oceanic lithosphere. This feature
is consistent with the gravity variation observed by GRACE: significant positive gravity change on
the footwall and negative gravity changes on the hanging wall of the seismogenic fault. The fourth
stage is a period of post-seismic stress–strain adjustment. Due to the viscoelastic relaxation adjustment
of the crust and upper mantle, the gravity changes between the two sides of the seismogenic fault
continuously maintain similar characteristics (positive and negative gravity differences).

6. Conclusions

Finally, we expanded the corrected result to the 60th order according to the spherical harmonic
In this study, longer-term GRACE data (2003–2016) with the new Release 06 version and the newest
GRACE-FO data were used to explore the co-seismic and post-seismic gravity changes of the 2010 Mw
8.8 Maule Chile earthquake. Some interesting results were obtained, including:

1. The variations of the spatial distribution of the long-term gravitational field and the time series of
key points all clearly indicate that the earthquake caused obvious co-seismic gravity changes.

2. The first-order northern co-seismic GGCs has a strong suppression effect on the north-south strip
error in GRACE observations.

3. From the joint observations of GRACE and GRACE-FO, and simulation results calculated by
the viscoelastic dislocation model, we find that the post-seismic gravity changes of the Chile
region have obvious inherited development characteristics and that the Chile area is currently
still affected by the post-seismic effect.

4. Since the investigated area is located in a land/sea region, the leakage error in GRACE observations
should be sufficiently considered. The estimation by using GLDAS data could be used to treat
the leakage effect in the land/sea area. However, in the actual situation, due to the limited spatial
resolution of GRACE, the quality of gravity change signals detected by GRACE will be affected.
In any case, it is clear that satellite gravity measurements provide a unique way to monitor
deformation associated with major earthquakes, supplementing GPS measurements which are
limited in this case of an offshore event [17].
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