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Abstract: Chlorophyll-a (Chl-a) concentration retrieval is essential for water quality monitoring,
aquaculture, and guiding coastline infrastructure construction. Compared with common ocean color
satellites, land observation satellites have the advantage of a higher resolution and more data sources
for retrieving the concentration of Chl-a from optically shallow waters. However, the sun glint (Rsg),
bottom reflectance (Rb), and non-algal particle (NAP) derived from terrigenous matter affect the
accuracy of Chl-a concentration retrieval using land observation satellite image data. In this paper,
we propose a semi-empirical algorithm based on the remote sensing reflectance (Rrs) of SPOT6 to
retrieve the Chl-a concentration in Sanya Bay (SYB), considering the effect of Rsg, Rb, and NAP. In this
semi-empirical algorithm, the Cox–Munk anisotropic model and radiative transfer model (RTM)
were used to reduce the effects of Rsg and Rb on Rrs, and the Chl-a concentration was retrieved by the
Chl-a absorption coefficient at 490 nm (aphy(490)) to remove the effect of NAP. The semi-empirical
algorithm was in the form of Chl-a = 43.3[aphy(490)]1.454, where aphy (490) was calculated by the total
absorption coefficient and the absorption coefficients of each component by empirical algorithms.
The results of the Chl-a concentration retrieval show the following: (1) SPOT6 data are available for
Chl-a retrieval using this semi-empirical algorithm in oligotrophic or mesotrophic coastal waters, and
the accuracy of the algorithm can be improved by removing the effects of Rsg, Rb, and NAP (R2 from
0.71 to 0.93 and root mean square error (RMSE) from 0.23 to 0.11 ug/L); (2) empirical algorithms
based on the blue-green band are suitable for oligotrophic or mesotrophic coastal waters, and the
algorithm based on the blue-green band difference Chl-a index (DCI) has stronger anti-interference in
terms of the effects of sun glint and bottom reflectance than the algorithm based on the blue-green
ratio (BGr); (3) in the case of ignoring Rsg unrelated to inherent optical properties (IOPs), NAP is the
biggest interference factor when >9.5 mg/L and the effect of bottom reflectance should be considered
when the water depth (H) <5 m in SYB; and (4) the inherent optical properties of the waters in
SYB are dominated by NAP (Chl-a = 0.2–2.6 ug/L and NAP = 2.2–30.1 mg/L), and the nutrients are
concentrated by enclosed terrain and southeast current. This semi-empirical algorithm for Chl-a
concentration retrieval has the potential to monitor Chl-a in oligotrophic and mesotrophic coastal
waters using other land observation satellites (e.g., Landsat8 OLI, ASTER, and GaoFen2).
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1. Introduction

Though coastal zones only cover 2% of the world’s land area, almost two-thirds of urban
settlements with a population higher than 5 million live in these areas [1]. In particular, the optically
shallow regions of coastal waters have the most diverse marine life and are significant for aquaculture
and tourism. Monitoring the concentration of chlorophyll-a (Chl-a) in coastal waters by using ocean
color satellites (e.g., SeaWiFs, MODIS, SeaWiFS, and MERIS) is one of the critical methods for water
quality monitoring [2,3]. However, the retrieval of Chl-a concentration from optically shallow waters
requires satellites with a higher spatial resolution. Therefore, the multi-spectral land observation
satellites (e.g., SPOT6, Landsat8 OLI, ASTER, and GaoFen2) may have the a potential to retrieve Chl-a
concentration from optically shallow waters.

According to the Chl-a absorption characteristics and band sets of satellites, selection of the
best bands and different algorithms is a continuously hot research topic. For Case-1 waters without
terrigenous matter inputs (i.e., sediments and colored dissolved organic matter (CDOM)) or resuspended
sediments, the optical properties of the ocean waters are tightly subordinated to the abundance of
pigmented algal cells [4,5]. According to the optically characteristics of oceanic waters, the bio-optical
algorithms based on the blue-green band-ratio (BGr) are suitable for oligotrophic waters [6–8].
According to the absorption peak of Chl-a near 440 nm, the blue band at 443 nm was adopted in the
early BGr algorithm [9]. To minimize the interference of the strong absorption of CDOM in the blue
band, using in the algorithms based on BGr (e.g., SeaWiFS OC3, OC4, and MODIS OC3M), the blue
band was red-shifted from 440 nm to 490 nm or 510 nm [10–12]. Though the Chl-a retrieval algorithm
for Case-1 waters is relatively mature and there are several algorithms working showing how to
estimate from Case-2 waters, the band selection for Chl-a retrieval is still a difficult task in waters with
complex constituents [13,14].

With the inflow of terrigenous matter from the runoff and the resuspension of bottom sediment,
non-algal particle (NAP) is the main interfering factor for Chl-a retrieval in optically complex waters
(i.e., Case 2 waters). The quasi-analytical algorithm (QAA) [15] based on the visible bands and the
empirical or semi-empirical algorithm based on the near-infrared (NIR) bands (e.g., the three-band
algorithm or the four-band algorithm) are effective in reducing the effects of CDOM and NAP
interference in eutrophic waters [16–18]. However, for most land observation satellites (e.g., SPOT6,
Landsat8 OLI, ASTER, and GaoFen2), the spectral resolution and the lack of NIR band near 705 nm do
not meet the requirements of the QAA algorithm and algorithms based on the NIR band. However,
for mesotrophic or oligotrophic waters, the low reflectance may cause a reduction in the signal-to-noise
ratio (SNR) and, based on the BGr, both MERIS OC3E and OC4E perform better than algorithms based
on NIR bands [14]. However, the spectral resolution and the lack of NIR band near 705 nm of land
observation satellites (e.g., SPOT6, Landsat8 OLI, ASTER, and GaoFen2) do not meet the requirements
of the QAA algorithm. The empirical or semi-empirical algorithms based on the near-infrared (NIR)
bands are effective in reducing the effects of CDOM and NAP interference in eutrophic waters [19–21].
For land observation satellites, the lack of NIR band near 705 nm limits the ability of Chl-a retrieval
in Case-2 waters. However, for mesotrophic or oligotrophic waters, the low reflectance may cause a
reduction in the SNR, and algorithms based on the BGr, both MERIS OC3E and OC4E, perform better
than algorithms based on NIR bands [14]. The two-rand-ratio (2Br) algorithm using Landsat8 OLI
performs well in Case-2 waters [22–24]. Therefore, algorithms based on visible bands have the potential
to retrieve the concentration of Chl-a in coastal waters.

For optically shallow waters, the acquisition of remote sensing reflectance or water-leaving
reflectance (Rrs) is limited by the effects of boundary conditions, that is, sun glint and bottom
reflectance. The contribution of sun glint to Rrs (Rsg) mainly varies with the sun–satellite relative
geometric relationship [25,26]. In the images of common ocean color sensors (e.g., MODIS, SeaWiFS,
and MERIS), the trace of Rsg can be easily found because medium spatial resolution satellites have a
wide field of view [27,28]. The view angle of sensors for coastal zone observation with high spatial
resolution changes little, and sun glint may be ignored when the Rsg is lower than the water-leaving
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reflectance [29]. On the same remote sensing image, the Rsg changes with the wavelength owing to
the variations of the water refractive index, and the difference of Rsg in the range of 350–2500 nm
is approximately 10% [30,31]. The Rsg may cause a lot of errors, especially in clear waters with
low reflectance. The method of removing sun glint by the near-infrared (NIR) band does well in
oceanic waters with a low concentration of NAP, but it is not appropriate for coastal waters with a
high concentration of NAP. The Cox–Munk analytical anisotropic model has previously been used to
calculate the value of sun glint, but its applicability in areas with low Rsg still needs to be validated.

The water-leaving reflectance contributed by the bottom (Rbw) depends on the bottom reflectance
and the water column attenuation coefficient. The type of bottom is the main factor for bottom
reflectance, because the slope of the seafloor changes little in coastal zones. Bottom types mainly
include sand, rock, mud, coral, and seagrass, which all result in an overestimation of the concentration
of Chl-a because the reflectance of the green band is higher than that of the blue band. The radiative
transfer model (RTM) has previously been used to calculate the Rbw [32–35], but the attenuation of the
water column and the bottom reflectance need to be used as the input parameters.

Compared with ocean color satellites with moderate spatial resolution (e.g., MODIS, SeaWiFS,
and MERIS), multi-spectral land observation satellites (e.g., SPOT6, Landsat8 OLI, ASTER, and GaoFen2)
have the advantage of a higher resolution in reducing the effect of bottom. We chose SPOT6 data as
an example. Although SPOT6 was not designed to be an ocean color sensor, SPOT6 image data have
been widely used in land vegetation monitoring [36–38] and have the potential to be applied to Chl-a
concentration retrieval in coastal waters. According to the band sets of SPOT6 (blue: 455–525 nm;
red: 530–590 nm) and aphy (shown in Figure A1), the blue and red bands reflect the absorption
and reflection characteristics of Chl-a, respectively. Therefore, the blue-green band of SPOT6 data
may have the potential to retrieve the concentration of Chl-a in oligotrophic or mesotrophic waters.
However, it has a shortcoming in that broad-band spectral data are more sensitive to suspension than
hyper-spectral data [39–41].

For Chl-a retrieval using broad-band spectral data in optically shallow waters of coastal waters,
the main problems are the effects of sun-glint, bottom reflectance, and NAP. To solve these problems,
we proposed a semi-empirical Chl-a retrieval algorithm combining the Cox–Munk anisotropic model [25,26],
the RTM [32–35], and a bio-optical model. This semi-empirical algorithm has the potential to retrieve Chl-a
using other broad-band spectral data without NIR band in mesotrophic and oligotrophic waters.

2. Materials

2.1. Study Area

Sanya Bay (SYB) is in the southeast of Hainan Island, the second-largest island in China (Figure 1),
and lies in a tropical monsoon climate [42]. The coastline of Hainan Island mainly includes sandy,
rocky, biological, and artificial coastlines. The coastline of the study area is a sandy coastline, and nearly
no pollution has been found in this area. Most of the coastal waters of SYB are open water areas with
large waves, and the mean monthly wave height is 0.87–1.87 m [43]. The water depth range is 0–35 m
and there are many kinds of benthos and fishes in this study area.

The waters in the study area mainly include three types: ultraoligotrophic, oligotrophic,
and mesotrophic waters. The water types vary with the ocean currents and the distance to the
shore. The sea waves pick up large amounts of terrigenous particles from shallow waters and send
them to the deep-water regions. The turbidity is very high within 2 m of the water depth, and the
waters are as clear as oceanic waters when the depth is greater than 30 m. The West Island mitigates
the impact of the northeast current, which allows the southwest side of the island to retain a large
amount of nutrients and sediment. On the southwest side of the West Island, the clear water and
the wide shallow water region provide the best conditions for coral growth. Overall, the coastal
waters of SYB are relatively clear and the optical properties are dominated by terrigenous suspended
mineral particles.
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water depth-measured data used the single-point sonar data measured by the Guangzhou Marine 
Geological Survey in November 2014. The Chl-a concentration was obtained through the extraction 
of a filtered sample (0.45 μm What-man GF/F) with 90% acetone solution and the determination of 
the aphy with a Shimadzu UV-2600PC spectrophotometer. The CDOM absorption spectra were 
determined using a Shimadzu UV-2600PC spectrophotometer, fitted with a 1 cm quartz cuvette, in 
the spectral region between 200 and 800 nm at 1 nm intervals. The water samples for the CDOM 
measurement were filtered through a 0.7 μm pre-combusted Whatman GF/F filter, and then 
through a 0.22 μm Millipore membrane cellulose filter. The absorption coefficients of the NAP were 
measured by a UV2600 PC spectrophotometer based on the filter pad methodology, and the 
membrane was 0.7 μm Whatman GF/F [23,44]. The measured absorption coefficients of Chl-a, 
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and backscattering ratio (Bphy and BNAP). The mean value of specific backscattering coefficient (b*) at 
532 nm measured in mineral-dominated waters was 0.519 m2 g−1 [45] and the mean value of b*NAP 
after removing b*phy was 0.4 m2 g−1 [46]. The BNAP at 488 nm ranged from 0.006 to 0.03 in Hudson Bay 
(Canada) with a relatively closed terrain and that measured in the English Channel with open 
terrain was 0.04 [46]. The bb*phy ranges from 0.04 for macrophytoplankton to 0.005 for 
microphytoplankton [47]. For the total attenuation coefficient in coastal waters with Chl-a < 2 ug/L, 

Figure 1. The geographic location of Sanya Bay, China. The white points in the SPOT6 image show the
sampling locations of water. In the picture of the coast, the red point shows the sampling point of sand.

2.2. SPOT6 Data

SPOT6 data have three visible and near-infrared bands (wavelengths: 450–520 nm; 530–590 nm;
625–695 nm; and 760–890 nm), and the spatial resolution is 6 m. In the application of ocean color
remote sensing, the visible bands, and the NIR bands are used for monitoring phytoplankton and
non-algal particulars, respectively. Compared with other common ocean color satellites, the higher
spatial resolution can help to analyze the changes of Chl-a in coastal zones. According to the band sets
of SPOT6 (blue: 455–525 nm; red: 530–590 nm) and aphy (shown in Appendix A.1, Figure A1), the blue
and red bands reflect the absorption and reflection characteristics of Chl-a, respectively. The image of
SPOT6 was acquired on 21 January 2013.

2.3. In Situ Measured Dataset

The in situ measured parameters include wind speed, water depth, and water column parameters
(i.e., Chl-a, NAP, and CDOM) (as shown in Table 1). The in-situ samples were collected on
23 January 2013. The wind speed data were obtained from the meteorological station of the China
Meteorological Administration, and the acquisition time was at 11:00 on 1 January 2013. The water
depth-measured data used the single-point sonar data measured by the Guangzhou Marine Geological
Survey in November 2014. The Chl-a concentration was obtained through the extraction of a filtered
sample (0.45 µm What-man GF/F) with 90% acetone solution and the determination of the aphy with
a Shimadzu UV-2600PC spectrophotometer. The CDOM absorption spectra were determined using
a Shimadzu UV-2600PC spectrophotometer, fitted with a 1 cm quartz cuvette, in the spectral region
between 200 and 800 nm at 1 nm intervals. The water samples for the CDOM measurement were
filtered through a 0.7 µm pre-combusted Whatman GF/F filter, and then through a 0.22 µm Millipore
membrane cellulose filter. The absorption coefficients of the NAP were measured by a UV2600 PC
spectrophotometer based on the filter pad methodology, and the membrane was 0.7 µm Whatman
GF/F [23,44]. The measured absorption coefficients of Chl-a, CDOM, and NAP are shown in Figure 2.
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Table 1. The measured water column parameters for the model input include the absorption coefficients,
the water constituent concentrations, and the water depths. NAP, non-algal particle.

Wavelength
(nm)

aphy

(m−1)
aNAP
(m−1)

aCDOM
(m−1)

aw
(m−1)

bb*NAP
(m2 g−1)

Chl-a
(ug/L)

NAP
(mg/L)

H
(m)

mean
490 0.034 0.1 0.037 0.019 0.0156

0.587 5.565 7.803560 0.011 0.076 0.013 0.071 0.0150
660 0.017 0.033 0.003 0.410 0.0141

max
490 0.171 0.562 0.059 -

1.952 23.570 15.000560 0.039 0.218 0.021 -
660 0.063 0.151 0.005 -

min
490 0.023 0.02 0 -

0.205 2.670 1.0560 0.006 0.012 0 -
660 0.011 0.006 0 -
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Figure 2. The measured absorption coefficients of chlorophyll-a (Chl-a), non-algal particle (NAP), and
colored dissolved organic matter (CDOM).

The specific backscattering coefficient (bb*) as input parameter for RTM can be calculated by the
concentration of Chl-a and NAP, as well as their specific scattering coefficient (b*phy and b*NAP) and
backscattering ratio (Bphy and BNAP). The mean value of specific backscattering coefficient (b*) at
532 nm measured in mineral-dominated waters was 0.519 m2 g−1 [45] and the mean value of b*NAP

after removing b*phy was 0.4 m2 g−1 [46]. The BNAP at 488 nm ranged from 0.006 to 0.03 in Hudson Bay
(Canada) with a relatively closed terrain and that measured in the English Channel with open terrain
was 0.04 [46]. The bb*phy ranges from 0.04 for macrophytoplankton to 0.005 for microphytoplankton [47].
For the total attenuation coefficient in coastal waters with Chl-a < 2 ug/L, bb*phy was a negligible
quantity. The specific backscattering coefficient for NAP (bb* NAP) was calculated by BNAP and
b* NAP from Neil’s datasets measured by HOBI Labs HS–2 backscattering meter (BNAP = 0.04 and
b* NAP = 0.4 m2 g−1 at 488 nm) [46].
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3. Remote Sensing Reflectance Algorithm

In optically deep waters, the remote sensing reflectance or leaving water reflectance (Rrs) is defined
by the ratio of water-leaving radiance (Lw) to downward irradiance (Ed) [48]. However, Rrs in optically
shallow waters is affected by bottom. The available Chl-a concentration retrieval algorithm is based
on the acquirement of the accurate Rrs (i.e., the remote sensing reflectance without the effect of the
bottom). Although ocean color remote sensing has been studied for over half a century, the acquisition
of accurate Rrs in optically shallow waters is still a challenge for Chl-a concentration retrieval [2,9,33].
After accurate atmospheric correction, the reflectance gathered by a sensor just above the water surface
is referred to as apparent remote sensing reflectance (Rap). In oceanic waters, Rap is the sum of the
sun glint (i.e., the specular reflectance (Rsg)) and the reflectance contributed by the water column
(Rcw), and the reflectance in the sun glint areas may be far larger than Rcw. Although there are a
number of novel models for sun glint calculation, the most common approach of the Cox–Munk
model is still widely used [25–28]. In optically shallow waters, bottom reflectance is another boundary
condition for the retrieval of Rrs, and the reflectance contributed by the bottom (Rbw) can be calculated
using the RTM [32–35]. Assuming atmospheric correction is available, in order to retrieve Rrs or Rcw,
knowledge of the propagation of light within a water body is necessary, and the boundary conditions
and inherent optical properties (IOPs) are the main research objects (as shown in Figure 3).
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Figure 3. The reflectance just above the water surface (Rap) gathered by the sensor includes three parts,
namely, the specular reflection (Rsg), the water column scattering (Rrs), and the bottom reflectance (Rbw).

The satellite-measured top-of-atmosphere (TOA) reflectance can be expressed as follows:

ρTOA(λ) = tgas (λ)(t(λ) ·ρt(λ) + ρr(λ) + ρA(λ)) (1)

where tgas(λ), t(λ), ρt(λ), ρr(λ), and ρA(λ) are the gaseous transmittance, the total diffuse atmospheric
transmission, the irradiance reflectance just above the water surface, the molecular Rayleigh scattering
reflectance, and the aerosol reflectance, respectively. The term ρt(λ) can be calculated by the fast
line of sight atmospheric analysis of spectral hypercube (FLAASH) module to eliminate the effect of
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the atmosphere. According to Rrs(λ) = ρt(λ)/π, the general model of Rrs above the water surface is
as follows:

Rrs(IOPs, H) = Rap(SGR, wind, IOPs, H, Rb) − Rsg(SGR, wind) − Rbw(IOPs, H, Rb) (2)

where H, SGR, winds, and Rb represent the water depth, the sun–satellite geometric relationship,
the wind (i.e., speed and aspect), and the bottom reflectance, respectively. The symbols used in this
paper are shown in Table 2.

Table 2. The symbols and abbreviations for the parameters used in this paper.

Symbols and Abbreviations Description Units

aw Absorption coefficient of pure water m−1

aphy Absorption coefficient of algal pigments m−1

aNAP Absorption coefficient of non-algal pigments m−1

aCDOM Absorption coefficient of CDOM m−1

a Absorption coefficient of the total (=aw + aphy + aNAP + aCDOM) m−1

b Scattering coefficients m−1

B Backscattering ratio
bb Backscattering coefficients m−1

Chl-a Chlorophyll-a concentration ug/L
β(ψ,λ) Volume scattering function (VSF)

f /Q Water column bidirectional factor sr−1

D Bottom slope deg
D′ Bottom aspect deg
H Water depth m

tgas(λ) Gaseous transmittance m−1

t(λ) Total diffuse atmospheric transmission m−1

ρt(λ) Irradiance reflectance just above the water surface
ρA(λ) Aerosol reflectance
ρr(λ) Molecular Rayleigh scattering reflectance
Rrs Remote sensing reflectance sr−1

Rap Apparent remote sensing reflectance sr−1

Rsg Surface specular reflectance sr−1

Rcw Remote sensing reflectance from water-column scattering sr−1

Rbw Remote sensing reflectance from bottom reflectance sr−1

θ0 Solar zenith angle above water surface deg
θ View angle above the water surface deg
θ0
′ Subsurface solar zenith angle deg

θ′ Subsurface view zenith angle deg
θn Water surface slope gradient deg
µ0 Cosine of θ0
µ Cosine of θ
µn Cosine of θn
tu Water–air transmittance sr−1

td Air–water transmittance sr−1

L Optical path-elongation factor m−1

k Beam attenuation coefficient (=a + bb) m−1

ϕ Relative azimuth angle de
Θ Sun–satellite relative phase angle deg
σu Mean square slope in an upwind direction deg
σc Mean square slop in the crosswind direction deg
λ Wavelength nm
W Wind speed m/s
4ϕ Wind direction deg
n Water refractive index (≈1.34 in seawater)

SYB Sanya Bay
CDOM Coloured dissolved organic matter m−1
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Table 2. Cont.

Symbols and Abbreviations Description Units

Chl-a Chlorophyll-a
CZCS Coastal zone color scanner
IOPs Inherent optical properties

MODIS Moderate resolution imaging spectroradiometer
2Br Two-band-ratio
BGr Blue-green band-ratio
DCI Difference Chl-a index
NAP Suspended mineral particle mg/L
NIR Near-infrared
NRr NIR-red band-ratio
RGr Red-green band–ratio

RSRF Relative spectral response function
RTM Radiative transfer model

SeaWiFS Sea-viewing wide field of view sensor
SAA Solar azimuth angle deg
SGR Sun–satellite geometric relationship deg
SZA Solar zenith angle deg
VZA View zenith angle deg
VAA View azimuth angle deg

3.1. Sun Glint Effect

The view zenith angle and the view azimuth angle of traditional ocean color satellites (e.g., CZCS,
MODIS, and SeaWiFS) are designed to avoid the sun glint. For land observation sensors (e.g., SPOT6,
Landsat8, Aster, and GaoFen2), the acquired images may be located in sun glint areas, and so Rsg

needs to be removed.
The water column has strong absorption in the NIR band of SPOT6 (i.e., 825 nm); therefore,

the approach of wiping off the sun glint with the NIR band has been used in remote sensing reflectance
retrieval of oceanic waters [30]. However, this simple method is not available for coastal waters
with high concentrations of suspended matter. Thus, we chose the physical Cox–Munk anisotropy
model [25,26] to calculate the sun glint of SPOT6.

The Cox–Munk model is the most classical model for simulating sun glint, and the anisotropic
form of the Cox–Munk model is still the most widely used method based on the research of Zhang [27].
Sun glint may exist in the image of satellites in large view zenith angle (VZA) [28], but the sun glint
pollution on the image of land observation satellites is easily ignored because there are no obvious sun
glint distribution features when the view angle of each pixel in an image changes little [49].

3.2. Water-Leaving Reflectance Contributed by Bottom Reflectance (Rbw)

For optically shallow waters, the effect of Rbw is a non-negligible factor. Rbw is a function that
depends on the bottom reflectance (Rb), the diffuse attenuation coefficient, and the water depth.
According to the RTM [32], Rbw is written as follows:

Rbw =
tu·td

n2 ·Rb·e−(ku+kd)H (3)

where tu, td, n, ku, kd, and H are the water–air transmittance, the air–water transmittance, the refractive
index, the upwelling diffuse attenuation coefficient for the bottom, the downwelling diffuse attenuation
coefficient for the bottom, and the water depth, respectively. Diffuse attenuation coefficients (ku and
kd) depend on the SGR, a, and bb, and can be simulated by HydroLight [35] (described in Appendix A).
The Rb depends on the SGR underwater surface and bottom albedo, and can be calculated by an
empirical bottom bidirectional reflectance distribution fucntion (BRDF) model derived from datasets
of measured bottom remote sensing reflectance [49]:

Rb (θs
0, ϕs, rb) = x1 + x2·θ

s
0+(x3 + x4·θ

s
0) · exp(−(x5 + x6·θ

s
0)·ϕ

s)·rb (4)
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where the parameters θs
0, ϕs, and rb represent the incident angle at the slope, the relative azimuth angle

at the slope, and the bottom albedo, respectively. The empirical parameters, xi, are based on six types
of bottoms, and the parameters of grapestone sand (similar to the bottom type in Sanya) were adopted.
The x1–6 were −0.341, 0.00594, −0.853, 0.0436, 0.00884, and 0.000696, respectively. The parameter of θs

0
is the function of the bottom terrain and the SGR underwater surface:

θs
0 =

1
2

arccos(cosθw
0 cosθw + sinθw

0 sinθwcos(ϕs)) − D (5)

where θw
0 , θw, and D represent the incident angle underwater subsurface, the view angle underwater

surface, and the bottom slope, respectively; the parameter ϕs = ϕ − D′, where D′ is the bottom aspect.

4. Chl-a Concentration Retrieval Algorithm

The effects of sun glint, bottom reflectance, and NAP have a great impact on Chl-a concentration
retrieval in optically shallow zones of coastal waters using broad-band satellites. In this paper,
a semi-empirical algorithm is proposed to reduce the effects of these limitations, and SPOT6 data serve
as the reflectance data. The general flow chart of the Chl-a concentration retrieval process is shown in
Figure 4.
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difference Chl-a index.

4.1. Review of the Chl-a Retrieval Algorithm

According to the IOPs in different types of waters, there are mainly three kinds of empirical or
semi-empirical algorithms for Chl-a retrieval: two-band ratio algorithms (e.g., BGr and red-green band
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ratio, RGr), spectral band difference algorithms (e.g., Fluorescence Line Height (FLH), color index
(CI), and maximum chlorophyll index (MCI)). The selection of bands and methods for Chl-a retrieval
needs to consider the positions of the Chl-a absorption peak and the interferences from CDOM and
NAP. The absorption peaks of Chl-a are mainly located near 440 nm, 660 nm, and 705 nm, and the
absorption peak of Chl-b (near 490 nm) has been used to replace 440 nm to reduce the effect of
CDOM. The excellent correlation between Chl-a and chlorophyll-b (Chl-b) ensures the feasibility of
this replacement. The algorithms based on an absorption peak at 705 nm are proposed to reduce the
effect of NAP.

The principle of the QAA algorithm is to obtain the Chl-a absorption coefficient by the IOPs
calculated by the reflectance, and the principle of the empirical or semi-algorithms are based on the
spectral features of waters with different Chl-a concentrations. On the basis of the band settings of
SPOT6 data (red band: 450–520 nm; green band: 530–590 nm), the algorithms of BGr, CI, and RGr
were adopted to estimate the concentration of Chl-a in this paper. For reducing the effect of sun glint
and bottom reflectance, we also tried another form of the blue-green band algorithm to retrieve the
Chl-a concentration, and this algorithm is called the difference Chl-a index (DCI). The DCI algorithm
is an empirical algorithm based on the difference of reflectance between blue band and green band.
The algorithms of BGr, CI, and DCI are based on an absorption peak at blue band and RGr is based
on an absorption peak at red band. The common Chl-a retrieval algorithms are shown in Table 3.
For reducing the effect of NAP on empirical algorithms, we propose an improved semi-empirical
algorithm for Chl-a concentration algorithm and describe in the next section.

Table 3. The common algorithms and spectral bands (in nanometers) for Chl-a concentration retrieval.

Algorithm Sensor Band Water Type Reference

BGr OLI 483, 562 Eutrophic inland [23,24]
RGr Sentinel-2 665, 560 Eutrophic inland [13]

OC3M MODIS 443, 488, 555 Case-2 coastal [12]
QAA SeaWiFS 443, 490, 550, 667 Case-2 coastal [10,11]
FLH MODIS 667, 678, 746 Eutrophic coastal [50]
CI MERIS 443, 555, 670 Oligotrophic [51]

MCI MERIS 681, 709, 753 Eutrophic coastal [52,53]

4.2. Improved Chl-a Concentration Algorithm

Chl-a concentration retrieval using remote sensing methods is based on the relationship between
IOPs and the remote sensing reflectance. For optically deep waters, Rrs is the function of IOPs and the
SGR [54,55]. However, for optically shallow waters, Rrs is also a function of water depth. On the basis
of the RTM, the Rrs can be written as follows [32,35]:

Rrs(IOPs, f , Q) =
tu·td

n2 ·
f

Q
·rrs(a, bb)·[1− exp(−(ku + kd)·H)] (6)

where rrs and the parameters rrs, f /Q, a, and bb are the subsurface remote sensing reflectance,
the bidirectional factor for reflectance just above the water surface, the total absorption coefficient,
and the total backscattering coefficient, respectively. The polynomial, [1− exp(−(ku + kd)·H)] in
Equation (5), is the effect of the water depth and needs to be removed. The parameter f /Q is the
function of the SGR, the winds, and the water constituents, and it can be calculated by the experimental
function simulated by the HydroLight dataset [35]. In the absence of the value of f /Q, the subsurface
remote sensing reflectance (rrs) can be calculated by the QAA when the solar zenith angle (SZA) is
larger than 20◦ [15]:

rrs =
Rrs(λ)

0.52 + 1.7Rrs(λ)
(7)
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The relationship between rrs and the ratio of the total backscattering coefficient to the total
absorption coefficient u(λ) can be written as follows:

u(λ) =
−g0 +

√(
g0

)2
+ 4g1·rrs(λ)

2g1
(8)

The ratio of u(λ1) to u(λ2), (uratio) can be used to retrieve the concentration of Chl-a instead of the
ratio of rrs(λ1) to rrs(λ2). According to the relationship between IOPs and u(λ), u(λ) = bb(λ)/(a(λ) + bb(λ)),
the uratio can be written as follows:

uratio =
u(λ1)

u(λ2)
=

bb(λ1)

bb(λ2)
·
a(λ2)

a(λ1)
(9)

The main constituents affecting IOPs are the water molecules, Chl-a, NAP, and CDOM, and the
parameters of a and bb can be written as follows [56,57]:

a = aw + a∗phy·Chl− a + a∗NAP·NAP + aCDOM (10a)

b = bbw + b∗bphy·Chl− a + b∗bNAP·NAP (10b)

The pure seawater backscattering (bbw) is constant and much less than the particle backscattering
(bbp = bbNAP + bbphy) [58,59], and the particle backscattering coefficient (bp) changes little in the
visible and NIR bands [35,57,60–62]. To reduce the model complexity, uratio can be converted to the
following [8]:

uratio ≈
a(λ2)

a(λ1)
(11)

To reduce the effect of aNAP, aw, and acdom, Equations (8) and (10b) can be merged and written
as follows:

aphy(λ2) =
u(λ1)

u(λ2)
·a(λ1) − [aw(λ2) + aNAP(λ2)+aCDOM(λ2)] (12)

For oceanic waters or phytoplankton-dominated waters, aphy is approximately equal to the
particle absorption coefficient (ap). For coastal waters of SYB in winter, aNAP is an important parameter,
whose proportion is over 80% in the ap (as shown in Table 1). We thus propose the semi-empirical
algorithm to retrieve the concentration of Chl-a by absorption of aphy. The parameters of aw, aNAP,
aCDOM, and a are unknown. Therefore, aw was adopted by the measured data from Pope and Fry [63];
aNAP was calculated by the semi-analytical model proposed by Tassan, as shown in Appendix A.3;
and aCDOM is calculated by an empirical algorithm as shown in Appendix A.4. The Chl-a concentration
was estimated by the empirical algorithm (e.g., DCI, BGr, and RGr). The parameter a(λ) is the sum of
aw, aNAP, aCDOM, and aphy (as shown in Equation (10a)), and the semi-empirical algorithm uses the
parameters of a, aNAP, aCDOM, and aw to calculate aphy (as shown in Equations (11) and (12)).

5. Results

5.1. SPOT6 Data Atmospheric Correction

The atmospheric correction of remote sensing data is the first step in Chl-a retrieval and may
remove over 70–90% of the signal measured by the sensor in the visible bands [27,28,64]. The fast line
of sight atmospheric analysis of spectral hypercube (FLAASH) module is a widely used atmospheric
correction module for multi-band remote sensing data and is based on MODTRAN4 (moderate spectral
resolution atmospheric transmittance algorithm and computer model) [64–66]. FLAASH has been
successfully used for the atmospheric correction of SPOT6 image data [67,68], and the input parameters
are shown in Table 4. The meteorological data were retrieved from the National Meteorological
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Information Center: http://data.cma.cn/data/cdcindex/cid/6b2344874db4bbaf.html. As we did not have
in situ reflectance measurements above the water surface in the SYB, we collected the reflectance of
the wet and dry sand for calibration of the atmospheric correction (as shown in Figure 5). We also
applied the FLAASH module to the Landsat8 OLI (imaging time: 15 June 2013) and used the in situ
reflectance data from coastal waters in Qinghuangdao (sampling in 119.80◦ E, 39.95◦ N on 15 June 2013)
to verify the calibration of the atmospheric correction (as shown in Figure 6). The reflectance data were
measured by the FieldSpec 3 Spectroradiometer (America, ASD Company, Alpharetta, GA, USA).

Table 4. Input parameters in fast line of sight atmospheric analysis of spectral hypercube (FLAASH).

Sensor Type SPOT 6 Atmospheric Model Tropical

Sensor altitude 695 km Aerosol model Maritime
Ground elevation 0 m Initial visibility 30 km

Flight data 21 January 2013 View zenith angle 22◦

Flight time 10:58 View azimuth angle 135◦
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5.2. Parameter u(λ) Correction

The aphy was calculated by u(λ), as shown in Equation (12). Therefore, u(λ) was calculated by Rap,
Rrs, and rrs to show the effects of sun-glint and bottom. In Figure 7, the green circles, the red diamonds,
and the blue rectangles represent the u(λ) calculated by Rap, Rrs, and rrs, respectively. The effects of
sun glint (as shown in green circles) and bottom reflectance (as shown in blue rectangles) increase the
value of u(λ). The effect of sun glint is larger than the bottom reflectance, and the error caused by sun
glint may be over 20%. After model correction, the u(λ) calculated by the rrs of the SPOT6 data and
those calculated by the in situ data have good agreement.
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5.3. Comparison of the Different Algorithms

For SPOT6 data, there is no available analytical or semi-analytical algorithm, so we tried
different empirical algorithms to retrieve the concentration of Chl-a. According to the absorption
characteristics of Chl-a and the relative response function (RSRF) of SPOT6, the BGr, RGr, CI, and DCI
algorithms [8,10,12,13,51] were applied to the remote sensing reflectance processed by atmospheric
correction using SPOT6 data. The algorithm correlation coefficients are shown in Figure 8.

Although the correlation between RGr and Chl-a concentration is better than the other three
algorithms, RGr and Chl-a concentration should be positively correlated rather than negatively
correlated based on the absorption characteristics of Chl-a. NAP and RGr are positively correlated,
and the NAP signal masks the Chl-a concentration signal in waters with a high concentration of NAP
using the RGr algorithm. Thus, we applied the BGr and DCI on Rrs (i.e., Rap without the effect of sun
glint) to retrieve the concentration of Chl-a (Figure 9).

In the same image, the sun glint decreases as the wavelength gets longer owing to the variation of
the water refractive index, but the sun glint changes less than 5% in the visible bands [30]. If the sun
glint is small, the sun glint effects on BGr or DCI can be ignored, and the DCI has stronger resistance to
sun glint (as shown in Figure 8a,d and Figure 9). The value of the SPOT6 image sun glint calculated
by the Cox–Munk model is 0.01 in the blue band; thus, the effect of the sun glint is very small for the
DCI algorithm.

The effect of the bottom on Chl-a concentration retrieval in optically shallow waters depends
on the bottom reflectance and the attenuation coefficient. The attenuation coefficients in the visible
bands are less than those in the NIR bands, and the effect of Rbw on the blue and green bands needs to
be considered. Better correlation coefficients were obtained by the BGr and DCI algorithms without
bottom reflectance, and a relatively good correlation coefficient (R2 = 0.75) was obtained by the DCI
algorithm (as shown in Figure 10). The accuracy of global Chl-a concentration retrieval based on



Remote Sens. 2020, 12, 2765 14 of 34

the MODIS algorithm reached R2 = 0.85, and thus the accuracy of the DCI algorithm still needs to
be improved.

For the BGr and DCI algorithms, the effect of NAP may be the most important factor for Chl-a
concentration retrieval, because the absorption of NAP in the blue and green bands is much larger
than the absorption of Chl-a. We applied the semi-analytical algorithm based on aphy (490) to reduce
the effect of NAP, and the accuracy of algorithm was improved (R2 = 0.91 as shown in Figure 11).
The retrieval results using aphy (660) inverted by the semi-analytical algorithm were not as good as
those using aphy (490), which may be because the wavelength range of the SPOT6 red band (625–695 nm)
contains not only a strong Chl-a spectral absorption, but also a weak Chl-a spectral reflection (as shown
in Appendix A.1).
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According to the comparison of different algorithms (as shown in Figures 8–11), the algorithms
based on BGr, DCI, and aphy (490) are available. We compared the Chl-a retrieval results by different
reflectance using different algorithms to analyze the performance of the semi-empirical algorithm
proposed in this paper (as shown in Figure 12). This semi-empirical algorithm can be used to reduce
the effects of boundary conditions (i.e, sun glint and bottom) and NAP.
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5.4. Statistical Analysis

A number of statistical methods were used in this paper to compare the different algorithms,
the coefficient of determination (R2), the root mean square error (RMSE), the mean absolute percentage
error (MAPE), and the relative error (RE).

R2 = 1−
∑
(ymeasured − ymodeled)

2∑
(ymeasured − ymodeled)

2 (13)

MAPE =
1
m

∑
100

∣∣∣∣∣ ymeasured − ymodeled

ymeasured

∣∣∣∣∣ (14)

RMSE =

√
1
m
(ymeasured − ymodeled)

2 (15)

RE =

∣∣∣∣∣ ymeasured − ymodeled

ymeasured

∣∣∣∣∣× 100% (16)

where m is the sample number, ymeasured is the observed value, ymodeled is the predicted value,
and ymodeled is the expectation of the observed value, where y is the Chl-a concentration calculated by
different algorithms using different reflectance of Rap, Rrs, and rrs. The empirical coefficients of the
algorithms in this paper are shown in Table 5.

Table 5. The statistics of algorithms in this paper. RMSE, root mean square error; MAPE, mean absolute
percentage error.

Algorithm Data Empirical Coefficients R2 RMSE MAPE

BGr

Rap (λ) y = 67.85x2
− 163.9x + 99.31 0.72 0.2255 41.72%

Y = −10x + 12.35 0.68 0.2565 66.23%

Rrs (λ) y = 42.98x2
− 108.9 + 68.18 0.74 0.2243 36.28%

y = −7.66x + 9.859 0.7 0.2444 50.46%

rrs (λ) y = 47.85x2
− 116.9 + 71.78 0.75 0.2223 40.93%

y = −7.57x + 9.5 0.72 0.2422 41.56%

DCI

Rap (λ) y = −8901x2
− 1042x + 2.061 0.76 0.2151 36.09%

y=-245x + 2.507 0.71 0.2277 45.92%

Rrs (λ) y = −8901x2
− 1025x + 2.04 0.76 0.2151 36.04%

Y = −245x + 2.475 0.71 0.2277 45.76%

rrs (λ) y = −4478x2
− 558.2x + 1.843 0.77 0.2141 36.15%

y = −131.3x + 2.057 0.75 0.2253 38.97%

aphy (490) rrs (λ) y = 43.3x1.454 0.91 0.11 21.51%

5.5. Sun Glint Effect

We used polarization coordinates to show the sun glint distribution and the radius and polar
angle present the view zenith angle and relative azimuth angle (solar direction = 180◦), respectively.
Although the SPOT6 image is not located in the center of the sun glint (red circle represents the view
direction of SPOT6, as shown in Figure 13), it is a non-negligible signal (≈0.01 sr−1) because Rrs is very
small. The scope of the sun glint zone expands as the wind speed increases, and the SPOT6 image
will locate in the sun glint zone if the wind speed is strong enough. Figure 13 shows the sun glint
distribution, and Figure 14 shows that the reflectance at 825 nm is close to the Rsg calculated by the
Cox–Munk model when the concentration of NAP is low, which proves that the Cox–Munk model is
still reliable when the image is on the edge of the sun glint area with a low value.
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Figure 13. The sun glint distribution in terms of SGR and wind speed: the solar zenith angle (SZA),
view zenith angle (VZA), view azimuth angle (VAA), wind speed, and wind direction are 49◦, 22◦,
145◦, 5.3 m/s, and 2◦, respectively. The red circle shows the SPOT6 view conditions acquired from the
website: https://www.intelligence-airbusds.com/en/4871-ordering.
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Figure 14. The ratio of reflectance at 825 nm to the value of the sun glint calculated by the Cox–Munk
model versus NAP.

In our study, Rrs ranged from 0.03 to 0.05 sr−1 in the visible bands and the proportion of Rsg in
Rrs ranged from approximately 20% to 30%. Hence, we simulated the sensitivity of the two-band
algorithm (including BGr, RGr, and DCI) to Rsg to analyze the effect of sun glint on Chl-a concentration
retrieval (Figure 15). The remote sensing reflectance (Rap) at 490 nm and 560 nm was simulated by
Equations (1) and (5), and the parameters NAP = 1 mg/L and Chl-a = 0.3–10 were the model input
parameters. In order to control the variables, the effects of bottom reflectance and NAP were not
considered in this analysis.

https://www.intelligence-airbusds.com/en/4871-ordering
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Figure 15. Remote sensing reflectance contributed by sun glint (Rsg) against the following: (a) the ratio
of Rap (490) to Rap (560); (b) the ratio of Rap (560) to Rap (660); and (c) the difference between Rap (490)
and Rap (560).

As the value of the sun glint goes up, the ratio of the two-band reflectance approaches 1 and the
variations of the two-band ratio (2Br) in different Chl-a concentrations are reduced. This phenomenon
reduces the sensitivity of Rsg to the variation of Chl-a concentration and causes the 2Br algorithm to
lose its ability to retrieve Chl-a. Relative to the 2Br, the DCI has better resistance ability to sun glint.
However, we also need in situ data to correct the algorithm because the Rsg increases the value of DCI.

According to the equation of BGr (BGr =
Rrs(490)+Rsg(490)
Rrs(560)+Rsg(560) ), the relationship of BGr will not be

affected by sun glint when BGr = 1. The Chl-a retrieval results using the value of BGr = 1 against the
measured Chl-a data may help to verify whether the retrieval result is affected by sun glint.

5.6. Bottom Effect

To study the effect of the bottom on Chl-a concentration retrieval, we subtracted the results
retrived by rrs (i.e., the remote sensing reflectance after removing the effect of bottom) from those by
Rrs (i.e., the remote sensing reflectance affected by the bottom). Figure 16 shows that the error caused
by the effect of bottom is approximately 0–0.3 ug/L. The bottom in shallow waters causes larger Chl-a
concentratio retrieval results because the water-leaving reflectance contributed by a sandy bottom in
the green band is larger than that of the blue band. The error spatial distritbution shows that error
in the waters with H < 2 m is low, which may be beacause the effect of the bottom not only changes
with water different depths, but also in terms of turbidity. The waters near the coast contain a high
concentration of NAP picked up by the sea waves. To analyze the relationship between errors caused
by bottom reflectance and H, we select three hatch lines (blue lines in Figure 16). Figure 17 shows that
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error between H = 0 and 3.8 m is exponential rise and that H > 3.8 m is exponential decline, and the
error maximum occurs at H = 3.8 m.
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Figure 17. The errors caused by bottom reflectance against water depth (H).

According to the RTM, the remote sensing reflectance contributed by Rbw depends on the bottom
albedo, the water constituent, and the wavelength. A bottom of sandy coastline is mainly fine-grained
sand (Figure 18a), while that of the rocky coastline is mainly coarse quartz arkose (Figure 18b),
and the bottom of corals include health corals and bleaching corals donated by Chen’s research [69]
(Figure 18c,d). We collected the spectra of different types of bottoms to analyze the contribution of Rbw

to Rrs.
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has a strong absorption at 675 nm, and the coral reflectance is relatively flat until 675 nm and then 
rises sharply after 675 nm (Figure 18c,d). The bottom reflectance generally increases as the 
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Figure 18. The spectra of different types of bottoms: (a) the fine-grained sand sample collected from a
sandy coastline and its spectrum, where the sample point is at 109◦22′10.36” and 18◦17′21.40”; (b) the
coarse quartz arkose sample collected from a rocky coastline and its spectrum, where the sample point
is at 109◦22′10.36” and 18◦17′21.40”; (c) the spectra of healthy and bleaching honeycomb corals; (d) the
spectra of healthy and bleaching staghorn corals.

The spectra of fine-grained sand and coarse quartz arkose are similar, and the spectra of stones
are slightly higher (Figure 18a,b). Compared with sand and coarse quartz arkose, the coral spectrum
has a strong absorption at 675 nm, and the coral reflectance is relatively flat until 675 nm and then
rises sharply after 675 nm (Figure 18c,d). The bottom reflectance generally increases as the wavelength
increases in the visible and near-infrared bands, and we analyzed Rbw in different types of bottoms and
at different water depths and wavelengths. The input parameters included the attenuation coefficient,
H, λ, and SGR. The IOP data were averaged from the in situ samples, and the VZA, SZA, and view
azimuth angle (VAA) were obtained by SPOT6 data. The effect of the bottom on the remote sensing
reflectance is shown in Figure 19.

Although the blue light has the best penetration ability, the maximum of Rbw occurs in the red
band. The Rbw in the NIR band is the lowest, the water depths that affect the remote sensing reflectance
are less than 2 m, and the near-infrared band has the potential to retrieve the parameters of the water
column in optically shallow waters. The green lines show the water depths when the ratio of Rbw to
remote sensing reflectance is equal to 5%, and the variations of the water depths on the green lines
are independent of bottom types. In coastal waters, the Rbw depends on the bottom albedo when
the water depth is less than 2 m. In fact, the error caused by bottom reflectance with H < 2 m is low
owing to the high concentration of NAP. Therefore, the Rbw mainly depends on the attenuation of
the water column, and we chose four types of waters to analyze the effect of Rbw on 2Br. In coastal
waters with a low degree of pollution, the water constituent is mainly affected by terrigenous matter,
and we classified coastal waters into four types based on the following [23,70,71]: (1) ultraoligotrophic
waters with Chl-a < 0.3 ug/L and NAP < 3 mg/L; (2) oligotrophic waters with Chl-a = 0.3–1 ug/L and
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NAP = 3–5 mg/L; (3) mesotrophic waters with Chl-a = 1–5 ug/L and NAP = 5–10 mg/L; and (4) eutrophic
waters with Chl-a = 5–10 ug/L and NAP = 10–20 mg/L. We simulated the two-band reflectance ratio
and difference by water depths and water constituents to analyze the sensitivity of the parameters
(Figure 20).
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Figure 18. The spectra of different types of bottoms: (a) the fine-grained sand sample collected from a 
sandy coastline and its spectrum, where the sample point is at 109°22’10.36’’ and 18°17’21.40’’; (b) the 
coarse quartz arkose sample collected from a rocky coastline and its spectrum, where the sample 
point is at 109°22’10.36’’ and 18°17’21.40’’; (c) the spectra of healthy and bleaching honeycomb corals; 
(d) the spectra of healthy and bleaching staghorn corals. 

The spectra of fine-grained sand and coarse quartz arkose are similar, and the spectra of stones 
are slightly higher (Figure 18a,b). Compared with sand and coarse quartz arkose, the coral spectrum 
has a strong absorption at 675 nm, and the coral reflectance is relatively flat until 675 nm and then 
rises sharply after 675 nm (Figure 18c,d). The bottom reflectance generally increases as the 
wavelength increases in the visible and near-infrared bands, and we analyzed Rbw in different types 
of bottoms and at different water depths and wavelengths. The input parameters included the 
attenuation coefficient, H, λ, and SGR. The IOP data were averaged from the in situ samples, and the 
VZA, SZA, and view azimuth angle (VAA) were obtained by SPOT6 data. The effect of the bottom 
on the remote sensing reflectance is shown in Figure 19. 
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Figure 19. The effects of bottom reflectance (Rbw) on the Rrs (i.e., Rbw/R) of (a) sand, (b) coarse 
quartz arkose, (c) healthy honeycomb coral, (d) breaching honeycomb coral, (e) health stagborn 
coral, and (f) breaching stagborn coral. The black lines represent the ratio of Rbw/Rrs being equal to 
0.05. The blue, orange, yellow, and purple lines represent SPOT6 band 1, band 2, band 3, and band 4. 

Although the blue light has the best penetration ability, the maximum of Rbw occurs in the red 
band. The Rbw in the NIR band is the lowest, the water depths that affect the remote sensing 
reflectance are less than 2 m, and the near-infrared band has the potential to retrieve the parameters 
of the water column in optically shallow waters. The green lines show the water depths when the 
ratio of Rbw to remote sensing reflectance is equal to 5%, and the variations of the water depths on the 
green lines are independent of bottom types. In coastal waters, the Rbw depends on the bottom 
albedo when the water depth is less than 2 m. In fact, the error caused by bottom reflectance with H 
<2 m is low owing to the high concentration of NAP. Therefore, the Rbw mainly depends on the 
attenuation of the water column, and we chose four types of waters to analyze the effect of Rbw on 
2Br. In coastal waters with a low degree of pollution, the water constituent is mainly affected by 
terrigenous matter, and we classified coastal waters into four types based on the following [23,70,71]: 
(1) ultraoligotrophic waters with Chl-a <0.3 ug/L and NAP <3 mg/L; (2) oligotrophic waters with 
Chl-a = 0.3–1 ug/L and NAP = 3–5 mg/L; (3) mesotrophic waters with Chl-a = 1–5 ug/L and NAP = 5–10 
mg/L; and (4) eutrophic waters with Chl-a = 5–10 ug/L and NAP = 10–20 mg/L. We simulated the 
two-band reflectance ratio and difference by water depths and water constituents to analyze the 
sensitivity of the parameters (Figure 20). 

Figure 19. The effects of bottom reflectance (Rbw) on the Rrs (i.e., Rbw/R) of (a) sand, (b) coarse quartz
arkose, (c) healthy honeycomb coral, (d) breaching honeycomb coral, (e) health stagborn coral, and (f)
breaching stagborn coral. The black lines represent the ratio of Rbw/Rrs being equal to 0.05. The blue,
orange, yellow, and purple lines represent SPOT6 band 1, band 2, band 3, and band 4.
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Figure 20. Plots of the (a) BGr, (b) RGr, and (c) DCI simulated by different types of waters versus 
water depths. Type 1, type 2, and type 3 represent ultraoligotrophic waters, oligotrophic waters, 
mesotrophic waters, and eutrophic waters, respectively. 
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DCI is less affected by the bottom than BGr and RGr, and the optical depth for DCI is less than 2 m in 
clear waters (type 1 waters) and 1 m in turbid waters (type 4 waters). According to the empirical 
algorithms, the Rbw increases the Chl-a concentration by approximately 0–4.2 ug/L and 0–1.2 ug/L 
using BGr and DCI, respectively. 

5.7. The Effect of NAP on Spatial Distribution 

To study the effect of NAP on the distribution of the Chl-a concentration, we separated the 
results between those retrieved by the rrs and those by aphy (490) calculated using the semi-empirical 
algorithm (as shown in Figure 21). Similar to the effect of the bottom, NAP also causes larger 
retrieval results because the absorption coefficient of NAP in the blue band is larger than that in the 
green band. Figure 21 shows that the errors caused by NAP range from approximately 0.05 to 0.45 
ug/L. To analyze the effect of NAP on the Chl-a retrieval result, we calculated the concentration of 
NAP by the empirical algorithm using NIR band (as show in Appendix A3). Figure 22 shows the 
distribution of NAP concentration in SYB, and the range is approximately 2.2–30.1 mg/L. Shallow 
waters contain more NAP, and the waters with H <5 m are most turbid (NAP > 25 mg/L). Open 
waters contain low NAP, and the waters with H >35 m are clear (NAP < 5 mg/L). We also selected 
the results from three hatch lines in Figure 19 to analyze the relationship between the error caused 
by NAP and the concentration of NAP. Figure 23 shows that the effect of NAP is positively 
correlated with the concentration of NAP. 

Figure 20. Plots of the (a) BGr, (b) RGr, and (c) DCI simulated by different types of waters versus water
depths. Type 1, type 2, and type 3 represent ultraoligotrophic waters, oligotrophic waters, mesotrophic
waters, and eutrophic waters, respectively.

The Rbw varies with the water column attenuation coefficient and bottom albedo, and it is difficult
to retrieve the Chl-a concentration without information of the Rbw. Figure 20 shows that the DCI is
less affected by the bottom than BGr and RGr, and the optical depth for DCI is less than 2 m in clear
waters (type 1 waters) and 1 m in turbid waters (type 4 waters). According to the empirical algorithms,
the Rbw increases the Chl-a concentration by approximately 0–4.2 ug/L and 0–1.2 ug/L using BGr and
DCI, respectively.

5.7. The Effect of NAP on Spatial Distribution

To study the effect of NAP on the distribution of the Chl-a concentration, we separated the
results between those retrieved by the rrs and those by aphy (490) calculated using the semi-empirical
algorithm (as shown in Figure 21). Similar to the effect of the bottom, NAP also causes larger retrieval
results because the absorption coefficient of NAP in the blue band is larger than that in the green band.
Figure 21 shows that the errors caused by NAP range from approximately 0.05 to 0.45 ug/L. To analyze
the effect of NAP on the Chl-a retrieval result, we calculated the concentration of NAP by the empirical
algorithm using NIR band (as show in Appendix A.3). Figure 22 shows the distribution of NAP
concentration in SYB, and the range is approximately 2.2–30.1 mg/L. Shallow waters contain more
NAP, and the waters with H < 5 m are most turbid (NAP > 25 mg/L). Open waters contain low NAP,
and the waters with H > 35 m are clear (NAP < 5 mg/L). We also selected the results from three hatch
lines in Figure 19 to analyze the relationship between the error caused by NAP and the concentration
of NAP. Figure 23 shows that the effect of NAP is positively correlated with the concentration of NAP.
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ability of two-band algorithms of Chl-a. Figure 21a shows that the BGr algorithms have a stronger 
anti-interference ability for NAP than that of DCI and RGr in waters with NAP <5 mg/L, and the 
recognition ability of these three algorithms of Chl-a is not good in waters with NAP >5 mg/L. RGr 
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mg/L and 12 mg/L, respectively. Thus, we used the semi-empirical algorithm in this paper to reduce 
the effect of NAP. 

Figure 23. The concentration of NAP against the concentration of Chl-a retrieval error caused by NAP.

The two-band algorithm based on the visible bands is widely used in Chl-a concentration retrieval,
but it is largely affected by NAP. Figure 24 shows the effect of NAP on the recognition ability of two-band
algorithms of Chl-a. Figure 21a shows that the BGr algorithms have a stronger anti-interference ability
for NAP than that of DCI and RGr in waters with NAP < 5 mg/L, and the recognition ability of these
three algorithms of Chl-a is not good in waters with NAP > 5 mg/L. RGr and DCI lose their recognition
ability of Chl-a when the concentration of NAP is larger than 9.7 mg/L and 12 mg/L, respectively. Thus,
we used the semi-empirical algorithm in this paper to reduce the effect of NAP.Remote Sens. 2019, 11, x FOR PEER REVIEW 25 of 35 
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algorithm (Figure 25). A high concentration of Chl-a (> 1.7 ug/L) is located in the areas of water 
depth (H) <5 m, and a medium concentration (0.8–1.7 ug/L) distributes in the areas of 5 m < H < 10 
m, while the concentration is low (<0.8 ug/L) in the areas of H >15 m. In the southwest of SYB, the 
Chl-a concentration is lower than 0.5 ug/L in the areas of H >20 m, and the water type is similar to 
oceanic water. The concentration of Chl-a is concentrated between 0.5 and 1.1 ug/L (as shown in 
Figure 26), and the areas with the highest concentration of Chl-a (>2.5 ug/L) are concentrated in 
harbor fishing ports, docks, and shores, while the Chl-a concentration is lowest at water depths 
deeper than 30 m. The highest concentration of Chl-a occurs in the east of the Luhuitou Peninsula 
owing to the winter current flows from the northwest to the southeast and the barrier of the 
peninsula. The Chl-a concentration in the east of the study area is larger than that in the west, 
which is caused by the terrain and the current. The West Island and the Luhuitou Peninsula block 
the impact of the current and protect the coral area in the west of the island and peninsula. On the 
whole, the water in SYB is clear, and tourism activities such as diving are more suitable for 
economic activities in SYB than aquaculture in winter. 

Figure 24. Plots of the two-band reflectance ratio or the difference at different concentrations of
Chl-a versus the concentration of NAP. (a) BGr versus the concentrations of NAP; (b) RGr versus the
concentrations of NAP; (c) DCI versus the concentrations of NAP.
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5.8. Chl-a Retrieval of SYB

The Chl-a concentration of SYB was calculated using aphy (490) with the semi-empirical algorithm
(Figure 25). A high concentration of Chl-a (>1.7 ug/L) is located in the areas of water depth (H) <5 m,
and a medium concentration (0.8–1.7 ug/L) distributes in the areas of 5 m < H < 10 m, while the
concentration is low (<0.8 ug/L) in the areas of H > 15 m. In the southwest of SYB, the Chl-a
concentration is lower than 0.5 ug/L in the areas of H > 20 m, and the water type is similar to
oceanic water. The concentration of Chl-a is concentrated between 0.5 and 1.1 ug/L (as shown in
Figure 26), and the areas with the highest concentration of Chl-a (>2.5 ug/L) are concentrated in harbor
fishing ports, docks, and shores, while the Chl-a concentration is lowest at water depths deeper than
30 m. The highest concentration of Chl-a occurs in the east of the Luhuitou Peninsula owing to the
winter current flows from the northwest to the southeast and the barrier of the peninsula. The Chl-a
concentration in the east of the study area is larger than that in the west, which is caused by the terrain
and the current. The West Island and the Luhuitou Peninsula block the impact of the current and
protect the coral area in the west of the island and peninsula. On the whole, the water in SYB is clear,
and tourism activities such as diving are more suitable for economic activities in SYB than aquaculture
in winter.Remote Sens. 2019, 11, x FOR PEER REVIEW 26 of 35 
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6. Discussion

We compared the results using the algorithm in this paper with the MODIS Ocean Color3 (OC3M)
algorithm, which has been widely used for oceanic and coastal waters [72]. Figure 27 shows that
the algorithm used in this paper is better than that of OC3M, and the RE in oligotrophic waters
(Chl-a < 1 ug/L) is greater than that in mesotrophic waters. Therefore, we needed to analyze the effect
of interference factors (i.e., sun glint, bottom, and NAP) on the Chl-a retrieval algorithm. According to
the water samples collected in the study area, the water types are oligotrophic and mesotrophic. Hence,
we compared four common empirical algorithms to choose the best algorithm as the start of the
algorithm in this paper.Remote Sens. 2019, 11, x FOR PEER REVIEW 27 of 35 
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Figure 27. Comparison of the Chl-a retrieval results from the OC3M with the semi-empirical algorithm
in this paper.

Figure 7 shows that the effect of Rsg on u(λ) is larger than that of bottom reflectance, and thus it is
necessary to restrain the sun glint. We used the Cox–Munk model to calculate the Rsg and Figure 13
shows that the angle of the satellite observation may be affected by sun glint when the wind is strong
enough. Figure 14 also shows that the Rrs of clear water in the NIR bands can replace the Rsg calculated
by the Cox–Munk model, and Figure 8 shows that DCI has the ability to restrain the sun glint effect.
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Figure 9 shows that, after removing the effect of Rsg, both DCI and BGr have a relatively good coefficient
with the Chl-a concentration.

For optically shallow waters, Rbw is non-negligible. We collected six types of bottoms and
analyzed the effect of Rbw on Rrs. Figure 16 shows that Rbw in the red band is higher than that in the
blue band, and so Rbw causes the abnormal rise in Chl-a concentration using BGr or DCI. Figure 9
also shows that DCI is better than BGr when Rrs is affected by the bottom. Rbw decreases as H gets
deeper, and is lower than 5% of Rrs when H > 4.5 m. In fact, the maximum Rbw does not occur where
the water depth is the lowest. Large amounts of re-suspended sediment near the coastline increase
the turbidity. Figures 16 and 17 show that retrieval is most affected by bottoms at H = 3.8 m and the
biggest error is approximate 0.3 ug/L.

There are more data sources from satellites for land observation than there are for coastal zone
observation, and land observation satellites have the potential to be applied in coastal zones. For Chl-a
retrieval in oligotrophic or mesotrophic waters, algorithms based on the blue-green band may be more
suitable than algorithms based on the NIR bands [14]. Therefore, multi-spectral land observation
satellites with the blue-green band can also be used for Chl-a concentration retrieval. NAP is a big
barrier for Chl-a concentration retrieval using observation satellites. Thus, we used a semi-empirical
algorithm to reduce the effect of NAP and to calculate aphy to retrieve the concentration of Chl-a.
Figures 11 and 12 show that the Chl-a concentration retrieval results calculated by the semi-empirical
algorithm are better than those calculated by the empirical algorithms. Figure 21 also shows that the
errors caused by NAP range from 0.05 to 0.45 ug/L and Figure 23 shows that the errors caused by NAP
have a good correlation with the concentration of NAP.

In order to study which parameter has a greater influence on Chl-a inversion, we simulated the
errors caused by sun glint, bottom reflectance, and NAP. We set the sand spectrum, Chl-a = 1 ug/L,
H = 3–7 m, and Rsg = 0.01 sr−1 as the input parameters. Figure 28 shows that the error caused by
bottom reflectance is lower than 0.1 ug/L when H > 5 m, and the error caused by sun glint in our
study is approximately 0.11 ug/L. NAP is the biggest interference factor when the concentration of
NAP > 9.5 mg/L. Figure 25 also shows that the concentration of NAP in the bay mouth is higher than
15 mg/L, and is lower than 5 mg/L in H > 30. Hence, the Rbw of H < 5 m should be considered and the
NAP is the biggest interference factor in the semi-enclosed bay.Remote Sens. 2019, 11, x FOR PEER REVIEW 28 of 35 
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In winter, the Luhuitou Peninsula on the east side of SYB blocks out suspended matter brought by
the southeast current, and the semi-enclosed terrain keeps in more suspended matter and provides
more nutrients for phytoplankton near the shore. However, the water of SYB is not highly nutritive
in winter (Figure 25). According to the Chl-a retrieval algorithm (i.e., Chl-a = A·aphy

B), the empirical
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coefficients of A and B change with the a∗phy, which changes with the types of phytoplankton. The Lee’s
dataset taken over the shallow waters along the west Florida shelf, Key West, Fla., and the Bahamas
showed that a∗phy(490) ranged from 0.03 to 0.17 m2 mg−1 [32], and the Neil’s dataset measured from

Irish Sea and the Bristol Channel shows that a∗phy(490) ranges from 0.02 to 0.22 m2 mg−1 [46]. Therefore,
the change in the types of phytoplankton may be another source of error in this algorithm.

7. Conclusions

We proposed a semi-empirical Chl-a retrieval algorithm for SPOT6 data as a demonstration for
multi-spectral data, and we applied it to the waters in SYB. A comparison of the performance of this
semi-empirical algorithm with that of the OC3M algorithm, and a concurrent measurement of the
concentration of Chl-a from 16 surface water points in SYB, demonstrated the appropriateness of
the semi-empirical algorithm to estimate the Chl-a concentration in coastal waters using SPOT6 data
(R2 = 0.93 with an RMSE = 0.11 ug/L and MAPE = 21%).

Through a comparison of the Chl-a concentration retrieval results using different algorithms
and the sensitivity of Rsg, Rbw, and NAP to two-band algorithms (e.g., BGr, RGr, CI, and DCI),
algorithms that use the blue-green band are available for oligotrophic and mesotrophic coastal waters.
DCI is a better empirical algorithm than BGr because it has a stronger anti-interference ability in
terms of sun glint and bottom reflectance. To improve the accuracy of the empirical algorithm,
we calculated the total absorption coefficient and the absorption coefficient of each component by
empirical algorithms, and then created the Chl-a concentration retrieval semi-empirical algorithm in
the form of Chl-a = A[aphy(490)]B, where A = 43.3 and B = 1.454. The empirical coefficients of A and B
can be calculated by the in situ data of the Chl-a concentration or a∗phy(490), which changes with the
types of phytoplankton.

In the case of ignoring Rsg unrelated to IOPs, NAP is the biggest interference factor when the
concentration of NAP > 9.5 mg/L and the effect of bottom reflectance should be considered when
H < 5 m in SYB. The errors caused by NAP and the concentration of NAP are positively and linearly
correlated, and the biggest error caused by the bottom occurs at H = 2.5 m.

In SYB, the Chl-a concentration retrieved by SPOT6 data ranges from 0.2 to 2.6 ug/L, and the
concentration of NAP ranges from 2.2 to 30.1 mg/L. In general, the IOPs of coastal waters in Sanya
are dominated by NAP. The distribution of the Chl-a concentration retrieval results shows that the
terrain and the current affect the distribution of the Chl-a concentration. The West Island and the
Luhuitou Peninsula block the impact of the southeast winter current and protect the phytoplankton in
the coral areas. In general, the Chl-a concentration in shallow waters is higher than that in deep waters,
and terrigenous matter may be the main source of nutrients for phytoplankton.

Compared with the remote sensing data from ocean color satellites, the data from land observation
satellites have the advantage of higher spatial resolution and more data sources. Though most
land observation sensors have the disadvantage of low spectral resolution and lack of NIR bands
around 705 nm, the data of land observation satellites have potential for application to oligotrophic
or mesotrophic coastal waters. The semi-empirical algorithm based on SPOT6 reflectance data can
be used for Chl-a concentration retrieval in optically shallow areas of coastal waters after removing
the effects of sun glint, bottom reflectance, and NAP, and it also has the potential to monitor Chl-a in
optically shallow waters with a high NAP concentration using other broad-band remote sensing data
without the red-edge band (e.g., Landsat8 OLI, ASTER, and GaoFen2).
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Appendix A.

Appendix A.1. The Relative Spectral Response Function (RSRF) of SPOT6 Data

The SPOT6 data have four visible bands (blue band: 450–520 nm; green band: 530–590 nm;
red band: 625–695 nm) and one near-infrared (NIR) band (760–890 nm), and the spatial resolution is
6 m. In the application of ocean color remote sensing, the visible bands and the NIR band are used for
monitoring phytoplankton and NAP, respectively. The Chl-a absorption peaks are located in the blue
and red bands (Figure A1).
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Appendix A.2. Diffuse Attenuation Coefficient

Upwelling and downwelling diffuse attenuation coefficients (ku and kd) are the function of the
sun–satellite polar direction and inherent optical properties (IOPs) [32]:

kd = 1.0546·(a + bb)/ cos θ′0·kd (A1)

kd = 1.03(1 +
bb

a + bb
)2.2658

·(1 +
0.0577
cosθ0

)·
a + bb

cosθ′
(A2)

where k, θ0
′, and θ′ are the vertical attenuation coefficient, the incident angle underwater surface,

and the outside angle underwater surface, respectively. The total absorption coefficient (a) and the total
backscattering coefficient (bb) can be calculated by Equation (18), and the incident (θ0

′) and outside
(θ′) angles under the water surface are derived as follows:

θ′ = sin−1
[1
n

sin(θ+ θn)
]
− θn (A3a)

θ′0 = sin−1
[1
n

sin(θ0 + θn)
]
− θn (A3b)
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Appendix A.3. Estimating the NAP Concentration

In coastal waters, NAP affects the absorption and scattering coefficients and is used to estimate
the water column attenuation coefficient (ku and kd). An iterative fitting NAP retrieval model was
proposed by Tassan [73]:

NAP = 10{0.649+25.623[Rrs(555)+Rrs(670)]−0.646( Rrs(490)
Rrs(555) )} (A4)

The Tassan model was originally designed for SeaWIFS, and we replaced the SeaWIFS bands
(i.e., Rrs(490), Rrs(555), and Rrs(670)) with SPOT6 bands (i.e., Rrs(490), Rrs(560), and Rrs(660)). However,
the visible bands are obviously affected by bottom reflectance. The bottom effect in the NIR band
is very little owing to the strong absorption of water, which provides the ideal conditions for NAP
concentration retrieval in shallow waters. Though the NIR band of SPOT6 data is not available for
Chl-a retrieval, there is a good correlation between NAP and remote sensing reflectance (Figure A2).
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Figure A2. (a) Scatter plot of the estimated versus measured concentration of non-algal particles (NAPs)
using near-infrared (NIR) remote sensing reflectance of SPOT6 (SPOT (825)). (b) Scattergram of the
concentration of Chl-a between the sample value and the estimation by the Tassan model and the
model in this paper.

Appendix A.4. Absorption Coefficient of the Colored Dissolved Organic Matter (CDOM) Estimation

CDOM can be estimated using a ratio of reflectance at wavelengths >600 nm to reflectance in the
400–550 nm range [74–76]. The aCDOM at 250 nm has a good correlation with the ratio of rrs(650) to
rrs(490) (Figure A3).
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The aCDOM at 490 nm and 560 nm can be calculated as follows [77]:

aCDOM(λ) = aCDOM(λ0)exp[S(λ0 − λ)] (A5)

where S is the spectral slope of the aCDOM and λ0 = 250 nm. S = 0.0127, derived from the in situ aCDOM

(250) and aCDOM (440) [78].
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