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Abstract: The content of chlorophyll, an important substance for photosynthesis in plants, is an
important index used to characterize the photosynthetic rate and nutrient grade of plants. The real-time
rapid acquisition of crop chlorophyll content is of great significance for guiding fine management
and differentiated fertilization in the field. This study used the method of continuous wavelet
transform (CWT) to process the collected visible and near-infrared spectra of a corn canopy. This task
was conducted to extract the valuable information in the spectral data and improve the sensitivity
of chlorophyll content assessment. First, a Savitzky–Golay filter and standard normal variable
processing were applied to the spectral data to eliminate the influence of random noise and limit
drift on spectral reflectance. Second, CWT was performed on the spectral reflection curve with 10
frequency scales to obtain the wavelet energy coefficient of the spectral data. The characteristic bands
related to chlorophyll content in the spectral data and the wavelet energy coefficients were screened
using the maximum correlation coefficient and the local correlation coefficient extrema, respectively.
A partial least-square regression model was established. Results showed that the characteristic bands
selected via local correlation coefficient extrema in a wavelet energy coefficient created a detection
model with optimal accuracy. The determination coefficient (Rc

2) of the calibration set was 0.7856,
and the root-mean-square error (RMSE) of the calibration set (RMSEC) was 3.0408. The determination
coefficient (Rv

2) of the validation set is was 0.7364, and the RMSE of the validation set (RMSEV)
was 3.3032. Continuous wavelet transform is a process of data dimension enhancement which can
effectively extract the sensitive variables from spectral datasets and improve the detection accuracy
of models.

Keywords: canopy spectra; chlorophyll content; continuous wavelet transform (CWT); correlation
coefficient; partial least square regression (PLSR)

1. Introduction

Corn, one of the major food crops in the world, provides an important guarantee of food security
and economic development. Proper nitrogen application is one of the keys to a good harvest of
corn [1,2]. A number of studies have shown that the leaf chlorophyll content (LCC) can be used
to predict the nitrogen requirement of crops [3,4]. Chlorophyll content is an important indicator of
crop photosynthesis ability and nutrition level. Variable fertilization can be achieved using nitrogen
fertilizers according to different chlorophyll contents through accurate monitoring of the chlorophyll
content of corn leaves [5,6]. Appropriate fertilization can ensure that crops receive adequate nitrogen
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and avoid soil and water pollution caused by excessive fertilization [7]. This mechanism is the key to
improving the photosynthetic performance of crops, thereby regulating the growth and development
of corn and increasing the input–output ratio of corn fertilizers [8]. The topic of detecting chlorophyll
content of corn is one of the active areas in field management research today. Thus, this study aimed to
detect the chlorophyll content in field crops to evaluate the growth status and providing guidance
for fertilization.

The traditional chlorophyll detection method is an analytical chemical method, which has
high precision. However, the process is complex, time-consuming, and may damage crops. This
method cannot meet the requirements of rapid and nondestructive testing on site. Spectral analytical
technology has been widely used in qualitative and quantitative analysis of the physicochemical
parameters of farmland crops because of its fast, nondestructive, and nonpolluting characteristics.
Kapp-Junior et al. [9] developed a novel regression model able to produce a prescription of the
required nitrogen (N) for maize by combining spectral reflectance data and agronomic efficiency.
Lu et al. [10] used hyperspectral techniques to analyze the vertical distribution of nitrogen in corn.
Zhang et al. [11] used leaf characteristic spectra to forecast apple sugar content. These studies highlight
the feasibility and efficiency of evaluating crop nutrients via spectroscopy. Therefore, rapid detection
of the chlorophyll content was conducted in the present research by using hyperspectral technology
during the growth stages.

Most current studies on the detection of chlorophyll content via spectral analysis have focused
on the exploration of spectral characteristics to quantitate the intensity and position of molecular
absorption or reflection [12,13]. The two types of methods to quantify the spectral absorption and
reflectance of specific matters include multivariate statistical analysis and region positioning calculation.
First, multivariate statistical methods are used to select and enhance the parameters of spectral
reflectance, derivative spectrum, and vegetation index using maximum correlation coefficient analysis.
Liang et al. [14] compared fifty hyperspectral vegetation indices, such as the photochemical reflectance
index and canopy chlorophyll index, to identify the most appropriate vegetation indices for crop LCC
and canopy chlorophyll content (CCC) inversion. Xu et al. [15] used simulated datasets from the
PROSAIL model to establish a 2D-matrix-based relationship between leaf chlorophyll and red-edge
relative indices (RERI(705nm) and RERI(783nm)). The leaf chlorophyll content can be retrieved using the
two vegetation indices from observations on the basis of the matrix. Neto et al. [16] created a sunflower
leaf chlorophyll model with the spectral reflectance in the band of 500–1039 nm by using partial
least-squares regression (PLSR). Rei et al. [17] used two methods, namely machine-learning algorithms
and the inversion of a radiative transfer model, to detect the LCC of tea. Second, the characteristic
spectral positions show changes with the local correlation extreme values, which generally include
the red edge and green peak. Li et al. [18] used spectral reflectance to construct red-edge spectral
parameters and newly developed red-edge region parameters to detect the chlorophyll content in
rapeseed leaves. Sun et al. [19] indicated that the blue edge, red valley, and eight other spectral
parameters could be used to reflect the chlorophyll content of potato crops. Zheng et al. [20] developed
a model of chlorophyll content in potato leaves on the basis of the red-edge location. The mentioned
characteristic parameters selected by maximum or local extreme correlation have been widely used as
sensitive spectral variables for detecting the chlorophyll content.

However, the canopy reflectance spectrum and sensitive bands of crops are easily affected
by external interferences of dynamically changing soil background, vegetation canopy geometry,
and atmospheric conditions during the growth periods [21–23]. Numerous studies have attempted
to improve the detection models of chlorophyll content by eliminating the irrelevant and noise
information of the spectral data [24,25]. With regard to the ideas and principles of radiation transmission,
the combination of the PROSPECT leaf optical property model and SAIL (Scattering by arbitrarily
inclined leaves) model, also referred to as PROSAIL, has been used to develop methods for retrieval of
vegetation biophysical properties. Mridha et al. [26] used the broadband canopy radiation transfer
model PROSAIL to invert the leaf area index (LAI), LCC, CCC, and leaf equivalent water thickness
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of the biophysical variables in soybeans. Botha et al. [27] evaluated the ability of the PROSAIL
canopy-level reflectance model to detect LCC of spring wheat (Triticum aestivum L.) during the growth
stages between pretillering (Zadoks growth stage (ZGS15)) and booting (ZGS50). Lunagaria et al.
discussed the spectral sensitivity of crop canopy parameters using a theoretical model. The results
indicated that the reflectance in the visible range was important for chlorophyll retrieval. Reflectance
in the near-infrared range has importance for retrieval of leaf inclination angle, dry matter, and LAI.
Accordingly, the influencing factors are difficult to reduce, and the modeling results are challenging to
improve because of the external and internal interferences affecting the field canopy spectrum [28].
The primary concern of this research area is to overcome such challenges to detect the chlorophyll
content by hyperspectral technology during the growth stages.

Although scholars have tried to use preprocessing methods (such as continuum removal, first-order
differentiation, and high-pass filtering) to eliminate the noise and enhance the characteristic signals
caused by certain factors (such as sample background and stray light), challenges and problems
in effectively removing the interference signals, especially random and low-frequency signals,
exist during dynamic growth periods [29–31]. We addressed the primary concern using continuous
wavelet transform (CWT) to overcome such problems. CWT, with its rich wavelet base function,
multiresolution analysis, time-frequency localization, and other advantages, has received increasing
attention in image and signal analysis, decomposition, compression, and denoising [32–37]. This method
can effectively separate low-frequency signals from high-frequency signals and extract the weak
information from the spectral signal. Chen et al. [38] studied the CWT, taking 265 leaves of 47 plants as
the sample spectrum and effectively inverting the water content in the sample, with a high precision of
up to 75%. Li et al. proposed a new technique (WREP) to extract red-edge positions (REPs) on the basis
of the application of CWT to the reflectance spectra. The results demonstrated that WREP obtained
the best detection accuracy for LCC and CCC compared with the traditional techniques. High scales
of wavelet decomposition were favorable for the detection of CCC and low scales for the detection
of LCC [39]. These studies highlight that the CWT can be used to improve the modeling results of
LCC detections. However, great uncertainty still exists regarding the effects of this method to help
improve LCC detection during growth periods in which the spectral characteristics are dynamically
changed and influenced by soil background, vegetation canopy geometry, and atmospheric conditions.
Similar to spectral wavelengths, whether to use the local correlation extremum method or the maximum
correlation coefficient method to select sensitive wavelet features is worth discussing. Thus, this study
aimed to clarify and create a model to monitor the CCC of corn on the basis of CWT during the
growth stages.

This study focused on the relationship between LCC and corn canopy spectral reflectance to
propose an efficient method to evaluate the chlorophyll content of corn. The main aims of this study
were as follows: (1) to comparative analyze the advantages of maximum correlation value and local
correlation extreme value in selecting feature variables; (2) to use CWT to decompose the original
spectral data and extract the weak information in the spectrum to detect the chlorophyll content.

2. Materials and Methods

2.1. Experiments and Materials

The experiments were conducted in Hengshui City, Hebei Province, China. Seventy-two sampling
areas were present in the test field, as shown in Figure 1, with six fertilization levels to ensure the
gradient of chlorophyll content. The nitrogen fertilizer was pure nitrogen, and the phosphorus fertilizer
was P2O5. The spectral data were collected in three growth periods on the basis of the growth time and
conditions, namely, G1 (6 leaf stage), G2 (9 leaf stage), and G3 (12 leaf stage). During growth periods,
one leaf sample was collected in each sampling area, so that two hundred and sixteen leaf samples
were collected.
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1 nm, and spectral resolution of <3.0 nm at 700 nm [40]. Sample leaves were randomly chosen in each 
sample area to measure the spectral reflectance. Sample leaves were then sealed for subsequent 

Figure 1. Locations and treatments of the experiment.

The overall process of analyzing reflection spectrum data and chlorophyll content is shown in
Figure 2; this mainly included the collection of spectrum data, preprocessing of the spectral data,
selection of the characteristic variables, and establishment of a detection model for the chlorophyll
content. The selection of the characteristic variables was conducted on the basis of comparison of the
characteristic wavelengths and wavelet features selected by maximum correlation coefficients and
local extrema of the correlation coefficients.
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2.2. Field Spectrum Data Collection and Chlorophyll Content Measurement

The ASD FieldSpec® HandHeld 2 was used in the field to measure the canopy reflectance of corn.
This tool is a hand-held spectrometer with a wavelength range of 325–1075 nm, wavelength accuracy
of 1 nm, and spectral resolution of <3.0 nm at 700 nm [40]. Sample leaves were randomly chosen in
each sample area to measure the spectral reflectance. Sample leaves were then sealed for subsequent
chlorophyll extraction experiment. Spectrum reflectance data were collected three times above the leaf
during the spectrum measurement. The averaged reflectance was taken as an original spectral datum.

The chlorophyll content of the sample leaves was measured in the laboratory via SHIMADZU
UV2450 spectrophotometry. The spectrophotometry measurement wavelength range was 190–900 nm
and the band width was 0.1–5 nm. The spectral resolution was 0.1 nm and the stray light was lower
than 0.015%. The main stems of corn leaves were removed, and the leaves were shredded and
evenly mixed. Approximately 0.4 g crushed leaf samples were soaked in 25 mL acetone and absolute
ethanol mixture for 24 hours, and the mixture ratio was 2:1. During soaking, the mixed solutions were
shaken three times to accelerate the chlorophyll extraction. The absorbances of extract solution at 645
and 663 nm were measured with a UV spectrophotometer. The concentrations of chlorophyll a (Chla)
and chlorophyll b (Chlb) were calculated using the following equations:

Chla = 12.72×A663 − 2.59×A645, (1)

Chlb = 22.88×A645 − 4.67×A663, (2)

ChlT = Chla
(
mg L−1

)
+ Chlb

(
mg L−1

)
, (3)

where A645 and A633 are the absorbances of the extract solution at 645 and 663 nm, respectively, and ChlT
is the total chlorophyll [41].

2.3. Spectrum Data Preprocessing

The corn canopy spectrum collected in the field environment contained noise information due to
the uneven surface of the sample, random noise, different optical paths, and light scattering. First,
a Savitzky–Golay (S-G) filter was used to smoothen the reflection spectrum, and the smoothing
window was set to 13 [42]. The S-G filter is based on the principle of least squares. Multiple fitting
was performed to the original signal in the correction window and the final conversion result was
calculated by the multiplicity of the fitting. Using m (m is odd) continuous wavelength points as
the window, the data points inside the smooth window were fitted by p-order polynomial function,
and the polynomial equation combination was obtained. The smoothing coefficient was obtained using
least-square fitting, and the corrected spectral value of the center point of the window was calculated.
By successively moving the position of the smoothing window and repeating the above polynomial
fitting steps, the spectra after S-G filtering were obtained.

Second, the standard normal variable (SNV) method was used to process the smoothed spectral
curve to reduce the influence of the scattering effect [43]. Standard normal variable correction is often
used to eliminate the effects of different particle sizes, surface scattering, and optical path differences
in NIR diffuse reflectance spectra. The SNV correction of sample spectra were independent of each
other and did not involve the spectral information related to the sample set. First, the sample spectrum
was centralized, which means that the mean value of spectral reflectance of each spectral data was
subtracted from the sample. The standard deviation of the sample reflectance was then used to scale up.
After SNV correction, the spectral mean of each sample became 0 and the variance became 1. The SNV
correction spectrum of sample j is as follows:

A j,SNV =
(
A j −A j

)
/σ j, (4)
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where A j is the mean value of the spectrum of sample j and σ j is the standard deviation of the spectrum
of sample j.

Wavelet analysis is one of the potential technologies used in the extraction of weak hyperspectral
information. Wavelet transform is a function combination that decomposes a complex signal into
simple subsignal components. The spectral signal can be decomposed into subsignals of different
frequencies when applied to the analysis of crop spectral data. We effectively used the overall
structural characteristics of spectral information and extracted the weak information hidden in the
spectral signal. Moreover, we searched for the optimal combination of the subsignal components to
detect the chlorophyll content of the crop canopy.

2.4. Sample-Set Division Algorithm According to Sample-Set Partitioning Based on the Joint X–Y Distance (SPXY)

In this study, the SPXY algorithm proposed by Galvão et al. was used to divide the modeling
and verification sets [44]. This approach is a method for dividing the sample set on the basis of the
statistical perspective, and it comprehensively considers the difference between the spectrum and the
property parameters to select the modeling set. The SPXY algorithm first calculates the Euclidean
distance between the spectrum data of all samples using Equation (5). The algorithm then selects the
two with the largest distance as the first two samples in the modeling set.

dx(p, q) =

√√√ I∑
i

[
xp(i) − xq(i)

]2
; p, q ∈ [1, N], (5)

where xp(i) and xq(i) are the spectral parameters of samples p and q at i wavelength, respectively; I is
the number of wavelengths in the spectrum; and N is the number of samples.

The Euclidean distances between the remaining and selected samples were calculated. The sample
with the next longest Euclidean distance was selected as the third sample in the modeling set.
We repeated the above-mentioned steps until the number of selected samples was equal to the
predetermined number.

The nature property factor dy(p,q) was considered as Equation (6) on the basis of the
above-mentioned formula.

dy(p, q) =

√(
yp − yq

)2
; p, q ∈ [1, N] , (6)

where yp and yq are the property parameters of samples p and q, respectively.
Variables dx(p,q) and dy(p,q) were divided by their maximum values in the dataset to ensure that

the sample had the same weight in the spectral and property spaces. The standardized xy distance
formula was as follows:

dxy(p, q) =
dx(p, q)

maxp,q∈[1,N]dx(p, q)
+

dy(p, q)

maxp,q∈[1,N]dy(p, q)
. (7)

2.5. Spectrum Characteristic Variable Selection Method

2.5.1. Characteristic Variable Selection

(1) Maximum Correlation Coefficient Method

The characteristic variables needed to be filtered to simplify the model and improve its accuracy.
The correlation analytical method is widely used to select variables highly correlated with chlorophyll
content on the basis of the maximum correlation coefficient method. However, the selection result
showed multicollinearity between the adjacent wavelength variables [45].
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(2) Local Extremum of Correlation Coefficient Method

The local extremum of the correlation coefficient method was proposed to improve the variable
selection strategy of correlation analysis to solve multicollinearity between the adjacent wavelength
variables: the correlation coefficient of spectral reflectance and chlorophyll content were calculated,
and the correlation coefficient curve was drawn. Thereafter, the local extreme points of the correlation
curve (the zero-crossing positions of the correlation first-derivative curve) were calculated as the
chlorophyll characteristic wavelengths [46]. The maximum correlation wavelengths were also selected
on the basis of the maximum correlation coefficient method for comparative analysis.

2.5.2. Continuous Wavelet Analysis

From the perspective of signal processing, wavelet analysis can be used to perform data analysis in
the frequency and time domains and extract available information from the signal [47]. The reflection
spectrum analysis is highly similar to electronic signal analysis. Accordingly, CWT can be used to
decompose the reflection spectrum curve at different frequency scales to generate a series of wavelet
energy coefficients. The CWT process is shown in Equation (8).

W f (a, b) =
1
√

a
f (λ)ψ(

λ− b
a

)dλ, (8)

where a is the frequency scale factor which is set to 2n (n = 1, 2, . . . , 10) gradients, and translation factor
b is the center wavelength of the mother wavelet function. The mother wavelet function ψ(λ) uses the
second-order Gaussian function. f (x) is a 1D reflection spectrum, and the wavelet coefficient Wf(a,b)
(denoted as WFa,b) is 2D data, including frequency scale (1, 2, . . . , 10) and wavelength (325–1075 nm).

Correlation analysis of the wavelet energy coefficient and chlorophyll content was performed.
The local extreme value of the correlation was calculated as the sensitive wavelet feature. The wavelet
coefficient with the highest correlation was selected for comparative analysis.

The extreme point was calculated using the peak function in MATLAB software. The parameters
of the peaks’ function were set as follows: the correlation extreme value peak distance of the spectral
reflectance was set to 10, and the minimum peak value was set to 0.1; the correlation extreme value
peak distance of the wavelet coefficient was set to 50, and the minimum peak value was set to 0.3.

2.6. Establishing Chlorophyll Content Detection Model Based on PLSR

PLSR gradually became a widely used modeling method in spectral analysis after it was proposed
by Geladi in 1986 [48–50]. PLSR can solve the problems of autocorrelation and multicollinearity
between variables on the basis of the method of principal component extraction. PLSR was used to
perform principal component decomposition simultaneously on the spectral reflectance matrix and
LCC matrix. During decomposition, PLSR correlated the spectral and chlorophyll content matrixes
and established a linear regression model between the two to detect the chlorophyll content of
corn leaves. The leave-one-out cross-validation (LOOCV) method was used for internal interactive
verification, and the optimal number of characteristic variables was determined by root-mean-square
error of cross-validation (RMSECV). The model evaluation indicators were the validation coefficient of
validation set model (Rv

2) and the root-mean-square error of validation set (RMSEV).

3. Results

3.1. Analysis of Canopy Spectral Response of Corn during Growth Periods

The original reflectance spectrum of the corn canopy is shown in Figure 3a. The figure demonstrates
serious noise-point information in the spectral curve. The noise point of the spectral curve was
significantly reduced after the S-G filtering (Figure 3b). The scattering effect of the sample reflection
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spectrum was significantly improved after the SNV correction (Figure 3c). The average spectral curves
of three growth stages are shown in Figure 3d.

In general, 400–500 and 611–710 nm were two low-reflectance regions in the visible light band due
to the strong absorption of blue and red light by leaf pigments. The absorption valleys appeared near
400 and 680 nm. Approximately 520–610 nm was a high-reflection area due to the strong reflection by
the leaf pigments of green light. The reflection peak appeared near 550 nm. In the near-infrared region,
the reflectance sharply increased from 711 nm to 760 nm due to the large cavity of the reflective surface in
the spongy tissue structure of the mesophyll, thereby showing a “rapid climb” trend. The 761–1000 nm
region was a strong reflection area, and the curve was close to horizontal, thereby showing a “high
reflection platform”. A weak absorption valley appeared around 970 nm due to the absorption of water.

Figure 3d demonstrates that the different growth periods varied in the four spectral ranges of
325–400, 401–700, 761–970, and 971–1075 nm. The spectral reflectance increased with the growth period
in the ranges of 325–400 and 761–970 nm. The reflectance decreased with the growth period in the
ranges of 401–700 and 971–1075 nm.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 19 
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Figure 3. Corn canopy reflectance spectral curve. (a) Original canopy reflectance spectra; (b) canopy
reflectance spectral after the S-G filtering; (c) canopy reflectance spectra after the S-G filtering and SNV;
(d) average canopy spectra of three growth stages.

3.2. Statistical Analysis and Sample-Set Division

The trend of the average chlorophyll content with the growth period is shown in Figure 4,
which demonstrated an increase from G1 to G3. From G1 to G3, the variation ranges of the chlorophyll
content between samples gradually concentrated. The SPXY algorithm was used to divide the
sample set according to the ratio of 2:1. The division result is shown in Table 1. One hundred and
forty-four samples were included in the modeling set to establish a chlorophyll content detection model,
and 72 samples in the verification set to test the performance of the detection model. The range of
chlorophyll content of the samples in the modeling set was larger than that in the verification set. Thus,
the sample set obtained by the SPXY algorithm was reasonable and was used for subsequent modeling.
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Figure 4. Statistical box line graph of chlorophyll content of the corn growth stages.

Table 1. Statistical results of the calibration set and validation set (%).

Sample Set Sample Size Maximum Minimum Average Standard Deviation

Total sample 216 55.58 20.11 44.19 6.51
Modeling set 144 55.58 20.11 44.11 6.59
Verification

set 72 55.22 25.31 44.35 6.38

3.3. Correlation Analysis of the Chlorophyll Content and Spect/ral Reflectance

3.3.1. Characteristic Wavelength Selection Based on the Maximum Correlation Coefficient Method

The correlation curve of the chlorophyll content and spectral reflectance is shown in Figure 5.
The chlorophyll content was positively correlated with spectral reflectance in the blue (450–500 nm)
and red (620–780 nm) regions, and negatively correlated in the green region. This result is consistent
with the absorption characteristics of chlorophyll in visible light. The absolute value of the correlation
coefficient between the chlorophyll content and the spectral reflectance was higher than 0.5 in the
five bands, namely, 376–504, 518–596, 671–681, 698–746, and 880–913 nm. The correlation coefficient
gradually decreased.
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Figure 5. Correlation curve between the spectral reflectance and the chlorophyll content.
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The top 15 wavelengths with the maximum correlations were selected as the chlorophyll-sensitive
wavelengths (denoted as CA bands). The results were concentrated in the green light region of
529–543 nm. The CA bands were only divided into narrow bands. Accordingly, information redundancy
may occur due to autocorrelation of information caused by adjacent narrow-band wavelengths.

3.3.2. Characteristic Wavelength Selection Based on the Local Extrema of the Correlation Coefficient

Twelve extreme points (denoted as CA peak bands) of correlation existed between the spectral
reflectance and the chlorophyll content in five highly correlated bands. Approximately 392 and 409
nm were present in the violet region, 453 and 465 nm in the blue region, 533 nm in the green region,
677 nm in the red region, 715 and 782 nm in the red edge, and 845, 896, 976, and 1051 nm in the
near-infrared region. The selected wavelengths are shown in Figure 4 with red circles.

3.4. Correlation Analysis of Chlorophyll Content and Wavelet Energy Coefficient

CWT was performed with 10 frequency scales on the spectral reflection curve. We calculated the
correlation coefficients of the wavelet energy coefficient and chlorophyll content at each frequency scale.
Thereafter, we took the absolute value of the correlation coefficient results and drew the distribution
map of the correlation coefficients at different scales. The result is shown in Figure 6.

The wavelet energy coefficient bands with high correlation with chlorophyll content (|r| > 0.5)
are shown in Table 2. Most of high-correlation wavelengths were concentrated in the visible light
area of 325–700 nm. Selected numbers of wavelet energy bands were reduced with the scale increase.
In the low-frequency scales from 1 to 4, the high-correlation bands had narrow wavelength ranges,
more numbers, and clear division of intervals. In the mid- and high-frequency scales from 5 to 8,
selected bands had wider wavelength ranges, less numbers, and ambiguous division of intervals.
At the low-frequency scale, the high correlation bands of scale 1 and 2 were consistent, and the high
correlation bands of scale 3 and 4 were consistent. With the increase of frequency scale, the correlation
between the wavelet energy coefficient and chlorophyll decreased gradually from scale 5, and the
boundary between the high-correlation band and the low-correlation band became ambiguous. It can
also be seen from Figure 6 that as the frequency scale increased, the correlation between the wavelet
energy coefficient and the chlorophyll content gradually decreased. No high-correlation wavelet
energy coefficient exists on the high-frequency scale of 9–10. Therefore, the optimal features of wavelet
energy should be selected on a scale of 1 to 5.
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Table 2. Wavelet energy coefficient bands with high correlation with chlorophyll content (|r| > 0.5).

Scale Wavelengths

1 480–516 nm, 525–565 nm, 575–590 nm, 599–604 nm,635–645 nm, 671–700 nm, 710–740 nm,
745–775 nm.

2 480–516 nm, 525–565 nm, 575–590 nm, 599–604 nm,635–645 nm, 671–700 nm, 710–740 nm,
745–775 nm.

3 480–516 nm, 525–565 nm, 575–590 nm, 635–645 nm,671–700 nm, 710–740 nm, 745–775 nm.
4 480–516 nm, 525–565 nm, 575–590 nm, 635–645 nm,671–700 nm, 710–740 nm, 745–775 nm.
5 455–500 nm, 520–585 nm, 605–675 nm, 700–750 nm,758–811 nm.
6 455–500 nm, 520–585 nm, 605–675 nm, 700–750 nm,788–858 nm, 886–901 nm.
7 376–470 nm, 532–582 nm, 665–740 nm, 854–918 nm.
8 326–466 nm, 555–695 nm, 883–944 nm.

3.4.1. Sensitive Wavelet Feature Selection Based on the Maximum Correlation Coefficient

Fifty wavelet energy coefficients with high correlations were selected as the chlorophyll-sensitive
wavelet features (denoted as CA-WFs). These result are shown in Table 3. The absolute values of the
correlation coefficients of CA-WFs and chlorophyll content were all higher than 0.8.

Table 3. Location and frequency scale parameters of the chlorophyll-sensitive wavelet features (CA-WFs)
with |r| higher than 0.8.

Wavelet Feature Scale Wavelengths

CA-WF1 1 504–505 (2)
CA-WF2 2 527
CA-WF3 2 687
CA-WF4 3 527–529 (3)
CA-WF5 3 685–688 (4)
CA-WF6 3 716–718 (3)
CA-WF7 4 528–534 (7)
CA-WF8 4 679–685 (7)
CA-WF9 4 715–720 (6)

CA-WF10 5 472–483 (12)
CA-WF11 5 717–720 (4)

3.4.2. Sensitive Wavelet Feature Selection Based on the Local Extrema of the Correlation Coefficient

Fifty-five chlorophyll-sensitive wavelet energy coefficients were selected as sensitive wavelet
features (denoted as CA peak WFs) on the basis of the extreme values of the correlation coefficient.
The absolute values of the correlation coefficients of CA peak WFs and chlorophyll content were all
higher than 0.5. The distribution of CA peak WFs at different frequency scales is shown in Figure 7.
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The wavelength position analysis indicated that all sensitive wavelet variables of the CA Peak WF1,
CA Peak WF2, and CA Peak WF3 were distributed in the visible light region, reflecting the leaf
pigment information. CA Peak WF4 contained eight sensitive variables, seven of which were located
in the visible light region, and another variable was located at 839 nm. CA Peak WF5 contained eight
sensitive variables, six of which were located in the visible light region, and the other two variables
were located at 915 and 973 nm. The 915 nm wavelength can reflect CH2 methylene groups, and 973 nm
can present the leaf moisture information. CA Peak WF6 contained eight sensitive variables, five of
which were located in the visible light region, and the other three variable positions were 821, 896,
and 985 nm. CA Peak WF7 and CA Peak WF8 contained four and eight variables, respectively; each of
them had one sensitive variable located in the near-infrared region at 894 and 909 nm. The remaining
sensitive variables were located in the visible region.

3.5. Establishment of Chlorophyll Content Detection Model with PLSR

The PLSR algorithm was used to establish a chlorophyll content detection model on the basis of
the spectral characteristic variables of the CA bands, CA peak bands, CA-WFs, and CA peak WFs.
Both models used LOOCV for internal cross-validation to eliminate the influence of spectral information
redundancy and multicollinearity on the model accuracy. The modeling results are shown in Table 4
and the verification results are shown in Figure 8. The comparison of the four detection models
showed that the PLSR chlorophyll content detection model based on CA peak WFs had the optimal
performance. The decision coefficient (Rc

2) of the modeling set was 0.7856, the RMSEC of the modeling
set was 3.0408, the decision coefficient (Rv

2) of the verification set was 0.7364, and the RMSEV of the
verification set was 3.3032.
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Figure 8. Results of the PLSR detection model for the chlorophyll content. (a) Results of the maximum
correlation coefficient method; (b) Results of the local extremum of correlation coefficient method;
(c) Results of the maximum correlation coefficient method with wavelet energy coefficient; (d) Results
of the local extremum of correlation coefficient method with wavelet energy coefficient.
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Table 4. Result statistics of PLSR detection model for the chlorophyll content.

Characteristic
Variable

Number of
Variables

Number of Principal
Components

Modeling Set Verification Set

Rc
2 RMSEC Rv

2 RMSEV

CA bands 15 4 0.6959 3.6214 0.6319 3.8432
CA peak bands 12 3 0.7622 3.2015 0.7082 3.4306

CA-WFs 50 17 0.7820 3.0661 0.6940 3.5286
CA peak WFs 55 13 0.7856 3.0408 0.7364 3.3032

3.6. Chlorophyll Distribution

The spectral reflectance of the corn canopy in three growing stages was introduced into the
chlorophyll content detection model. The distribution of chlorophyll in the field during the three
growing periods was obtained (Figure 9).
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4. Discussion

4.1. Sensitive Spectral Wavelengths

This study demonstrated that spectral measurements can be used for corn CCC detection.
In the range of visible light, the chlorophyll content in the blue and red light regions was positively
correlated with spectral reflectance, and reflection peaks were present; in the green light region,
the chlorophyll content was negatively correlated with spectral reflectance, and an absorption valley
was present [16,51,52]. When the maximum correlation coefficient method was used to filter the
sensitive wavelengths, the 15 selected wavelengths were all in the absorption valley of green light, and
a serious multicollinearity existed between them. The sensitive wavelengths screened by the local
extremum of correlation coefficient method were relatively dispersed and distributed in the visible
and near-infrared regions. In the visible light region, the chlorophyll was is characterized by the
reflection peak in the red and blue light regions and the absorption valley in the green light region.
The extremum characteristic wavelengths in the near-infrared region reflected the composition of other
substances [53–55]. The reflectance of the 896 nm band indicates CH3 methyl groups, that in the 976 nm
band reflects the moisture content, and that in the 1051 nm band reflects CH2 methylene groups [56–58].
These substances are relative to the canopy structure of the corn crop. Therefore, the characteristic
wavelengths in the NIR region will improve the robustness of the chlorophyll detection model.
The CA peak bands were more evenly distributed and had less redundant information compared with
CA bands.
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4.2. Continuous Wavelet Analysis

Each wavelet feature contains the information of scale and wavelength position, which corresponds
to the state of the generating wavelet function in the process of CWT, namely the scaling factor and
the position of shift. The physical meaning of the wavelet feature can be explained by plotting the
generating wavelet function corresponding to the wavelet feature that is sensitive to the biochemical
parameters. In this study, the Gaussian second derivative was chosen as the generating function
of CWT. Each wavelet feature reflects the similarity between the generating wavelet function and the
reflectivity spectrum at a specific wavelength position and scale. The absorption characteristics of
biochemical parameters at different positions and intensities in the reflectivity spectrum were detected.
This situation can be seen as the result of smoothing the spectrum at a particular wavelength and finding
the second derivative. The spectral bending degree caused by the different absorption intensities of the
biochemical parameters in various bands can be characterized. These two understandings of CWT can
be combined to explain the physical meaning of wavelet transform.

The absorption of chlorophyll in the green light band was weaker than that in red and blue
light regions. In the reflectivity spectrum, a reflection peak was formed in the green light band. The
wavelet features sensitive to chlorophyll were located near the reflection peak of the green light band.
Different chlorophyll contents can affect the shape and size of the reflection peak. These changes are
easily captured by wavelet features in low scales. A small wavelet feature of medium and high scale
near the green light band covered the whole visible band, thus providing the amplitude information
of reflectance. The wavelet features at red edge and near-infrared band were stable at the leaf level,
thereby indicating that this region is important for chlorophyll monitoring.

Wang et al. used a Mexican hat as the generating wavelet function to obtain the correlation
between the wavelet coefficient and the SPAD value of wheat leaves, which can reflect the amount of
chlorophyll content. The results showed that the wavelet features sensitive to chlorophyll were located
in the red-edge band of 720–740 nm, which was consistent with the research results in References [59–62].
The multiple scattering of light inside the leaves leads to high reflectivity in the near-infrared region,
resulting in the rapid increase of spectral reflectance of green vegetation at 680–750 nm, the “red
edge” of the area. In the vegetation reflectance spectrum curve, the red edge is one of the most
obvious spectral features, and it is an important indicator band used to describe the chlorophyll state
of vegetation. The red-edge position (REP) is the wavelength position at which the reflectance of
vegetation increases fastest in this interval, and it is also the inflection point of the first derivative of
spectral reflectance in this interval. The position of the red edge is an important spectral parameter
for detecting the chlorophyll content of vegetation. Liao et al. extracted the wavelet characteristics
sensitive to the chlorophyll content of maize leaves in different layers on the basis of the canopy
spectrum. The wavelet features sensitive to the chlorophyll content in the upper leaves were distributed
in green light and red-edge bands. Meanwhile, the wavelet features sensitive to chlorophyll content in
the middle and lower leaves were all located in the red-edge bands, and those in the green light bands
disappeared [63]. This phenomenon could have been due to the strong absorption of chlorophyll in
the visible range that made it difficult for the green light to penetrate to the middle and lower layers;
the visible band of the canopy spectrum mainly contained information regarding chlorophyll in the
upper leaves [64]. The comparison of existing literature indicated that the wavelet features at the green
light band at the blade level perform better among different datasets. The wavelet features at the red
edge perform better among the different datasets at the canopy level.

4.3. Sensitive Wavelet Features

The frequency-scale analysis indicated that CA-WFs were mainly distributed on the low frequency
scale (1–4), and the other two types were distributed on the mid-frequency scale (5). The wavelength
position analysis indicated that CA-WF1 and CA-WF10 were distributed in the blue light region,
and CA-WF 3, CA-WF 5, CA-WF 6, CA-WF 8, CA-WF9, and CA-WF11 were distributed in the red
light area. These regions are the strong absorption bands of leaf chlorophyll. CA-WF2, CA-WF4,
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and CA-WF7 were distributed in the green light regions. These regions are strong reflection bands of
leaf chlorophyll. All wavelet features were distributed in the visible light region, which represented the
pigment information of the leaves. CA-WFs selected using the maximum correlation coefficient method
also had redundant information. For example, the 12 characteristic wavelet coefficients of CA-WF10
were distributed in 472–483 nm, and had serious variable autocorrelation. These autocorrelation
problems also existed in CA-WF7, CA-WF8, and CA-WF9.

The frequency-scale analysis indicated that CA peaks WF1–WF4 were distributed in the
low-frequency scale (1–4). Meanwhile, CA peaks WF5–WF7 were distributed in the medium-frequency
scale (5–7), and CA peak WF8 was located in the high frequency scale (8). Most wavelet features
were in the middle- and low-frequency scales, which was consistent with the result of Yao et al [47].
The wavelet features in middle and low frequencies could effectively detect the water content of
wheat leaves.

The analysis from the distribution of characteristic wavelet features indicated that all the variables
in CA-WFs were distributed in the visible light area and could only reflect the pigment information in
the leaves. CA peak WFs were more evenly distributed compared with CA-WFs. The sensitive variable
WF4—839 nm in the near-infrared region—reflected the molecular structure of RNHR. WF5—915 nm
reflected the CH2 methylene group, and WF5—973 nm showed the moisture information. WF6—985 nm
reflected the starch material, WF7—894 nm showed the CH3 methyl group, and WF8—909 nm provided
protein information. CA peak WFs comprehensively reflected the material structural information of
corn leaves, thereby improving the stability of the chlorophyll detection model.

4.4. Chlorophyll Content Detection Model

From the perspective of the method of selecting feature variables, the Rv
2 values of the detection

models established by using as feature variables the CA bands and CA-WFs were 0.6319 and 0.6940,
respectively. The Rv

2 values of the detection models established by using as feature variables
the CA peak bands and CA peak WFs were 0.7082 and 0.7364, respectively. The distributions of
CA bands and CA-WFs were relatively concentrated. A high degree of autocorrelation existed
between variables. Meanwhile, CA peak bands and CA peak WFs were evenly distributed and
comprehensively reflected information.

Comparing the CA peak bands and the CA peak WFs, under the same variable selection method,
the Rv

2 of the detection model established using the CA peak WFs (0.7364) was larger than that using
CA peak bands (0.7082). The CWT, a process of dimensionality-increasing operation, could dig out the
spectral variable information of chlorophyll. The CA peak WFs provided more variable information
related to chlorophyll content. Finally, the PLSR model established using CA peak WFs was preferred
to detect the chlorophyll content of corn crops.

Comparing the detection models established using spectral reflectance (Rc
2 = 0.77) [14] and

spectral index (Rc
2 = 0.70) [15], the wavelet features (Rc

2 = 0.7856) showed better detection capability,
which further illustrated that the CWT can deeply mine the information in spectral data.

The model comparison demonstrated that the data after continuous wavelet decomposition
can be used to effectively extract valuable information in the spectral reflectance through the
dimensionality-increasing operation. In terms of the physical and chemical parameter inversion,
the middle- and low-frequency wavelet features highlighted the characteristics of crop pigment
and water absorption. In combination with the local extremum of correlation coefficient method,
the interference of multicollinearity was eliminated, and the degree of information redundancy
was reduced. The detection model established by combining these two methods showed advantages
in accuracy and error elimination.

4.5. Chlorophyll Distribution in the Field

The distribution of chlorophyll in Figure 9 demonstrates that the chlorophyll concentration in the
canopy of plants gradually increased with the advancement of growth period. The field observation
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during the field experiment also conformed to this conclusion. The green leaves slowly become dark
with the gradual growth of the corn, as shown in Figure 1. The chlorophyll content gradient in the
test field remained unchanged over the three growth periods. The figure shows that the chlorophyll
contents in the four regions of No. 28–31, 39–48, 52–55, and 63–72 were lower than those in other regions.
Some studies have shown a significant positive correlation between the chlorophyll and the nitrogen
contents of plants, and chlorophyll can reflect the nitrogen demand of plants to a certain extent [65–68].
Therefore, the chlorophyll detection model based on spectral reflectance can play a guiding role in
smart field management and differentiated fertilization.

4.6. Future Work

In this study, the advantages of local correlation coefficient extrema in screening feature variables
were compared, the ability of CWT to extract weak spectral information was discussed, and a chlorophyll
content detection model for corn canopy based on wavelet energy coefficient was constructed. Advanced
methods for crop characteristics’ detection like computer vision techniques should be involved [69].
In this experiment, hyperspectral images of sample leaves were collected. It is necessary to establish a
more accurate and reliable chlorophyll detection model through hyperspectral images. Furthermore,
a larger dataset should be used to verify the adaptability of the algorithm.

5. Conclusions

In this study, corn canopy spectrum data were collected for three growing stages. First, an S-G
filter and SNV correction were applied to the reflectance spectra. Subsequently, the dynamic migration
of the canopy spectral characteristics and the chlorophyll content dynamic changes in the three growing
periods of G1 to G3 were analyzed. Extraction of the chlorophyll characteristic variables was carried out.
Finally, the PLSR detection model of the maize chlorophyll content was established. The conclusions
were as follows.

The noise point of the spectral curve was significantly reduced. The scattering effect of the
reflection spectrum was significantly reduced after the preprocessing steps of S-G filtering and
SNV correction. The reflectance spectrum increased in the 325–400 and 761–970 nm regions as the
growth stage advanced and the growth period shifted. The reflectance decreased in the 401–700 and
971–1075 nm regions as the growth stage advanced.

The characteristic variables selected on the basis of the local extrema of correlation coefficients
were more evenly distributed compared with the maximum correlation coefficient method.
This method weakened the autocorrelation and information redundancy of variables and reflected
comprehensive information. The wavelet coefficient obtained by performing CWT on the reflectance
spectra was used to efficiently analyze the information of chlorophyll and leaf structure substances in
a deep and comprehensive way. The spectral feature extraction method based on CWT highlighted the
spectral reflectance features of a specific scale, while suppressing the noncorrelated spectral features
and noise of other spectral bands with high flexibility. The proposed method effectively improved the
matching accuracy of spectral features.

The highest Rv
2 was for the detection model established using the CA peak WFs. The results

showed that the CA peak WFs had excellent detection capability for chlorophyll content. CWT combined
with the local extremum of the correlation coefficient method is a potentially accurate and efficient
strategy for detecting the chlorophyll content of corn crops.
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