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Abstract: Tomato crops are susceptible to multiple diseases, several of which may be present during
the same season. Therefore, rapid disease identification could enhance crop management consequently
increasing the yield. In this study, nondestructive methods were developed to detect diseases that
affect tomato crops, such as bacterial spot (BS), target spot (TS), and tomato yellow leaf curl (TYLC)
for two varieties of tomato (susceptible and tolerant to TYLC only) by using hyperspectral sensing in
two conditions: a) laboratory (benchtop scanning), and b) in field using an unmanned aerial vehicle
(UAV-based). The stepwise discriminant analysis (STDA) and the radial basis function were applied
to classify the infected plants and distinguish them from noninfected or healthy (H) plants. Multiple
vegetation indices (VIs) and the M statistic method were utilized to distinguish and classify the
diseased plants. In general, the classification results between healthy and diseased plants were highly
accurate for all diseases; for instance, when comparing H vs. BS, TS, and TYLC in the asymptomatic
stage and laboratory conditions, the classification rates were 94%, 95%, and 100%, respectively.
Similarly, in the symptomatic stage, the classification rates between healthy and infected plants were
98% for BS, and 99–100% for TS and TYLC diseases. The classification results in the field conditions
also showed high values of 98%, 96%, and 100%, for BS, TS, and TYLC, respectively. The VIs that
could best identify these diseases were the renormalized difference vegetation index (RDVI), and the
modified triangular vegetation index 1 (MTVI 1) in both laboratory and field. The results were
promising and suggest the possibility to identify these diseases using remote sensing.

Keywords: hyperspectral; artificial intelligence; spectral analysis; UAV; disease detection;
classification; machine learning

1. Introduction

Disease identification can be a very complicated procedure because it needs experienced personnel
and frequent field monitoring. Any delay or misidentification of a disease might increase the spread
within the field and an economic loss; several diseases need only few days to spread rapidly in the
field. Currently, growers use mainly visual observations to identify a disease in the field, targeting
early disease detection, in order to apply the right treatment(s) and control the spread. In the last
few decades, several technologies have been developed to help the identification of economically
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important plant diseases in the laboratory and under field conditions by using nondestructive and
remote sensing methods [1–3]. For example, multispectral and hyperspectral sensing has been utilized
for pest, plant disease, and stress detection with promising results [4–6]. These sensors measure the
light reflection from an object (e.g., plant canopy). Any change (e.g., caused by a disease) that might
occur and disturb the canopy or the leaf surface would affect the light reflectance and diffuse the
light direction. By detecting these changes, it is possible to identify abnormalities in plants. The most
important benefit of these remote sensing technologies and techniques is that they could detect and
distinguish a disease even in an asymptomatic stage (before symptoms become obvious to direct
visual observations), and hence, this early detection could help to efficiently control and manage a
disease and its spread. Martinelli et al. [7] explained that traditional methods, such as DNA-based and
serological methods, are still important tools to precisely diagnose plant diseases, but those methods
are not designed to detect a disease in an asymptomatic stage. On the other hand, several studies
demonstrated the capabilities of several remote sensing techniques for detecting a disease even in an
early disease development stage. Whetton et al. [8] utilized hyperspectral imaging to detect yellow
rust and Fusarium head blight in cereal crops and determined the best wavelengths (500–700 nm) that
were capable to distinguish the diseases in early development stages.

Unmanned aerial vehicles (UAVs) are becoming increasingly available and provide a low-cost
solution for field surveying and monitoring, as they can cover large areas in a short time and at
relatively low cost. UAVs are now widely used in agriculture for various purposes, including plant
disease detection, yield prediction, tree inventory development, plant variety evaluation [9–11].
Jimenez-Brenes et al. [12] developed a UAV-based multispectral imaging technique to detect two weed
species in grapevines and create a management map based on the weed distribution. Albetis et al. [12]
utilized UAV multispectral sensing to distinguish between two vineyard diseases (Flavescence
dorée and Grapevine Trunk) that produce similar symptoms in most of the red grape varieties.
Abdulridha et al. [13] developed a UAV-based technique to detect citrus canker in the field by utilizing
hyperspectral imaging and machine learning. This technique was able to detect the disease even in the
early development stages. Zhang et al. [14] developed an automated technique to detect yellow rust in
winter wheat (in five disease development stages) using a deep convolutional neural network (DCNN)
to analyze and classify high spatial resolution spectral data acquired by a UAV-based hyperspectral
imaging system.

Recognizing the plant stress levels could be the first step for precision management, but it is
also important to early identify what caused the stress. For example, early identification of a specific
disease in a crop could help the grower/manager to make the right decisions by selecting the best
chemical application or employing other appropriate management practices. Several studies utilized
vegetation indices (VIs) to identify and distinguish among diseases and other disorders. Since the
spectral reflectance of vegetation in the visible region of the electromagnetic range is mainly affected
by the chlorophyll pigment concentration [15–17], several projects have studied and analyzed this
relationship (between pigment concentration and optical properties of leaves) by utilizing VIs [18–20].
Furthermore, the relationship between canopy spectral reflectance and plant canopy structure was
studied in order to develop techniques for disease and stress detection [21,22]. The wavelengths
located in the visible (VIS) and near infrared (NIR) range have been proven to be critical for identifying
abnormalities in vegetation [23–25].

Multiple diseases attack tomato crops in Florida at the same time, with most of them able to cause
significant economic loss. For example, the tomato yellow leaf curl (TYLC), which is transmitted by
adult Silverleaf whitefly Bemisia tabaci Biotype B causes serious damage. Current management of
this vector disease complex relies on chemical control of whitefly and use of tomato TYLC-tolerant
cultivars. If infected early, plant growth is stunted, and plants are hardly able to produce fruit.
Other symptoms of this disease include yellow leaf edges, upward leaf cupping, leaf mottling, small
leaves, and fruit drop. However, identification based on symptoms alone is not enough, because
similar symptoms may result from other viruses or growth conditions. Two other devastating diseases
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in Florida are the bacterial spot (BS) and the fungal diseases target spot (TS), which cause fruit
spots, making the fruit unmarketable. The symptoms of BS begin as small, yellow-green lesions on
young leaves or as dark, water-soaked, greasy-appearing lesions on older foliage that become tan to
brownish-red. BS lesion shape is defined by leaf veinlets, so the shape is angular rather than round,
which is more typical of fungal leaf spots or toxic symptoms from a pesticide or other chemical spray.
The symptoms of TS are very similar to the symptoms of BS disease; they begin as small dark lesions
that enlarge to form light brown lesions with a concentric pattern and yellow halo. Therefore, rapid
and early disease detection and classification methods are needed not only to detect the disease in early
stages, but to implement effective management practices to reduce severity and spread. Identifying a
disease in early disease development stages and distinguishing it from other factors that cause similar
symptoms in a tomato crop is a very challenging task. Few studies have utilized spectral reflectance
techniques to detect tomato diseases. For example, Lu et al. [26] detected multiple tomato diseases
(late blight, target, and bacterial spot) in laboratory conditions, at different disease development stages
(asymptomatic, early stage, and late stage) using spectroradiometers. Abdulridha et al. [4] detected TS
and BS using hyperspectral imaging and VIs in laboratory and field conditions in different disease
development stages.

Most of the previous studies developed remote sensing techniques to detect tomato diseases
in laboratory conditions. This study develops novel techniques, utilizing hyperspectral imaging
and machine learning, to detect TYLC-infected tomato plants in susceptible and tolerant varieties,
and distinguish them from healthy plants, and plants infected by two other critical tomato diseases,
TS and BS. A classification method and several VIs were used to distinguish between healthy and
infected plants in asymptomatic and symptomatic stages. This study developed novel techniques that
could be used in laboratory and field (UAV-based) conditions.

2. Materials and Methods

For each experiment, plants were physically separated in the field and plants were inoculated
with either TS or BS. Plants were naturally infected with TYLC and a plant pathologist confirmed the
pathogen associated with the foliar symptoms as either bacterial spot or the fungal pathogen of target
spot. The healthy plants were not inoculated and grown in a separate field away from the infected
plants, and it was confirmed by the experts that they were not infected with any disease. Similarly,
separate fields were selected for each case study (TYLC-, BS-, and TS-infected plants).

2.1. Tomato Yellow Leaf Curl (TYLC) Sample Collection

Tomato leaves exhibiting symptoms of TYLC were collected from an experimental field at the
Southwest Florida Research and Education Center (SWFREC) in Immokalee, USA. Tomato seedlings
of TYLC-tolerant “Charger” or susceptible “FL-47” cultivars were planted in spring 2019. Forty leaves
were collected each from tolerant and susceptible varieties in asymptomatic and symptomatic stage.
Leaves from the tolerant variety were without any visible symptoms (Figure 1a), while leaves collected
from the susceptible variety showed curling, severe stunting, reduced leaf size, and chlorosis (Figure 1b).
The UAV data collection and laboratory leaves collection were done after 50–60 days after transplanting
on 30 April 2019 at 12:00–2:00 p.m. (Figure 2).

2.2. Target Spot and BS Sample Collection

Field preparation and collection of leaves infected with TS and BS were described in a previous
study [4] (Figure 1c,d). These experiments were conducted at the SWFREC. Tomato seedling of TS and
BS diseases “FL-47” cultivars were planted in spring 2019. Guidelines established by the University of
Florida/IFAS were followed for land preparation, fertility, irrigation, weed management, and insect
control. Beds were 0.81 m wide with 1.83 m centers covered with black polyethylene film. Each plot
consisted of ten plants spaced 0.46 m apart within a 4.57 m row with 3.05 m between each plot. The leaf
collection and UAV data collection were on the same day for BS and TS, 6 November 2018.
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(TYLC)-infected leaves: (a) tolerant variety, (b) susceptible variety, and leaves infected by (c) target
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Figure 2. (a) Benchtop Pika L 2.4 camera with leaf samples in the laboratory condition. (b) Unmanned
aerial vehicle (UAV) using hyperspectral sensing to collect spectral reflectance data from susceptible and
tolerant tomato plants infected with tomato yellow leaf curl. The data were collected after 50–60 days
from transplanting on 30 April 2019.
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2.2.1. Inoculation Methods

Tomato Yellow Leaf Curl Disease

Naturally occurring populations of the viruliferous whitefly vector were sufficient to infect plants
which was apparent from the symptoms on the plants.

Target Spot

Plants in plots were inoculated with Corynespora cassiicola on 15 October 2018. Cultures of CC #19
and CC #20 (kindly provided by Gary Vallad) were grown for 14 days on one-quarter potato dextrose
agar + rifampicin and ampicillin (MilliporeSigma, St. Louis, MO, USA). Plates were flooded with
sterile water and fungi was scraped from the surface. The suspension containing mycelium and spores
was filtered through three layers of cheese cloth and adjusted to approximately 104 spores mL−1 in
sterile water. Inoculum was applied with a hand pump sprayer and plants were sprayed to runoff.
Confirmation of TS lesions was through microscopic examination of the lesions for presence of spores.
No other disease was identified on these plants.

Bacterial Spot

Plants were inoculated with Xanthomonas perforans races 3 and 4 on 17 October 2018. Bacteria
were grown in 25 mL of Difco Nutrient Broth (NB) overnight on a shaker incubator and transferred
to 500 mL NB and incubated as before for 24 h. Bacterial suspension was adjusted to 106 CFU mL−1

and applied to tomato plants to runoff using a hand pump sprayer. Lesions of bacterial spot were
confirmed by re-isolation of the bacteria onto NA.

2.3. Laboratory Data Collection

Four leaves were collected from ten plants for each individual disease stage, i.e., a total of
240 leaves for two stages each for all three diseases, and the spectral reflectance was measured for
each leaf individually. Each leaf was scanned by a benchtop hyperspectral imaging system, Pika L 2.4
(Resonon Inc., Bozeman, MT, USA). This sensing system is equipped with a 23 mm lens that has a
wavelength range of 380–1020 nm, 281 spectral channels, 15.3◦ field of view, and a spectral resolution
of 2.1 nm. This system falls into the category of line-scan imagers, also known as push broom imagers.
The scanner stage is powered by a motor for its linear movement. Four halogen light sources were
mounted up at 50 cm above the scanning stage to provide ideal lighting conditions for carrying
out the scans (Figure 2a). A white tile was used for calibration of the spectral data, which was
provided by the manufacturer of the hyperspectral camera. Leaves were collected in the field by
specialists who determined the disease development stages. These leaves were kept in a cooler and
transferred to the laboratory immediately, so there was no delay that might affect the quality of the
leaf samples. Four leaves were placed on the stage and the leaves were scanned similarly. For each
leaf, six regions of interest (RoI) were selected from which the spectral reflectance was measured and
recorded. The various RoI included spots with and without symptoms. A total of forty leaves (for both
asymptomatic and symptomatic stages) were selected for each disease development stage, and hence,
the total spectral reflectance samples for each case study was 40 leaves. The leaves were collected
after 50–60 days from transplanting. All data were saved in a text file and then exported to an Excel
spreadsheet using postprocessing data analysis software (Spectronon Pro, Resonon Inc., Bozeman,
MT, USA).

2.4. UAV-Based Data Collection

Spectral data were collected using a UAV (Matrice 600 Pro Hexacopter, DJI, Shenzhen, China)
and the same Resonon Pika L 2.4 hyperspectral imaging system (Figure 2), as used in the laboratory
conditions. The UAV-based imaging system included: (i) Pika L 2.4 hyperspectral camera (Resonon,
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Bozeman, MT, USA); (ii) visible–near infrared (V–NIR) objective lenses for the Pika L camera, with a
focal length of 17 mm, a field of view (FOV) of 17.6 degrees, and instantaneous field of view (IFOV) of
0.71 mrad; (iii) a global positioning system (GPS) (Tallysman 33-2710NM-00-3000, Tallysman Wireless
Inc., Ottawa, ON, Canada)/inertial measurement unit (IMU) (Ellipse N, SGB Systems S.A.S., France)
and global navigation satellite system (GNSS) (Tallysman 33-2710NM-00-3000, Tallysman Wireless
Inc., Ottawa, ON, Canada)/inertial measurement unit (IMU) (Ellipse N, SGB Systems S.A.S., France)
flight control system for the multirotor aircraft’s record sensor position and orientation; and (iv)
hyperspectral data analysis software (Spectronon Pro, Resonon, Bozeman, MT, USA) with an ability
to correct the GPS/IMU data using a georectification plugin. Data were collected at 30 m above the
ground at a speed of 1.5 m/s. Regions of interest were selected arbitrarily, 3–4 pixels for each RoI,
to avoid background interactions, and the resolution was 1.03 cm per pixel. Six RoI for each plant were
selected; forty tomato plants per disease were chosen in this study (Figure 2b).

After the spectral data were acquired, the maps and images were analyzed by using the Spectronon
Pro software. The spatial resolution of the spectral data collected was 0.1 m. The RoI were selected
manually (arbitrary) for each plant, and spectral scans were performed to ensure that the entire canopy
was covered spectrally. The spectral data from each RoI were then exported as a text file and processed
using the SPSS software (SPSS 13.0, Inc., Chicago; Microsoft Corp., Redmond, WA, USA).

2.5. Classification Methods

Two classification methods were utilized in this study. The first method was the stepwise
discriminate method (STDA), which is commonly used in agricultural research to select valuable
subjects of variables and to estimate the order of the importance of each variable [27]. For example,
the STDA method was applied in remote sensing applications to identify patterns in datasets and
to determine the probability of a dataset (spectral data) belonging to a given group. This method
utilizes backward elimination to remove features/factors that do not have a significant effect on the
prediction, while building a machine learning model. Several parameters can be used to determine
if a feature/factor significantly affects the prediction, including the Wilks lambda, the Mahalanobis
distance, and the F value. If the F value of a variable is statistically significant in the discrimination
group, then it means that the variable contributes to the estimation of group participation [28]. In this
study, the input data contained the spectral reflectance of three tomato diseases (TYLC-tolerant and
susceptible varieties, TS, and BS). The training dataset was 70%, and the testing dataset was 30%.

The second classification method was the radial basis function (RBF). Radial basis function is
an artificial neural network that uses radial basis functions as activation functions. The output of
the network is a linear combination of radial basis functions of the inputs and neuron parameters.
Once the files were prepared in SPSS format, 70% training and 30% test were obtained for each disease
versus healthy leaves. We also tried to classify between the diseases that had the same symptoms
in early or late stages, which classified between TYLC-tolerant and susceptible varieties, and also to
classify between BS and TS diseases in two stages. Forty leaves were the sample size for each disease
and stage. Bacterial spot and target spot were analyzed individually without tolerant and susceptible
varieties. The same process was used for the field condition, except there was no asymptomatic stage;
this was because we were unable to identify which canopy had a higher rate of disease infection.
The classification of field condition was between healthy vs. TYLC-tolerant and susceptible, healthy
vs. BS, and H vs. TS disease. The training set was used to train discrimination for classifying tomato
diseases and the test dataset was used to evaluate the classification accuracy for the different models.

2.6. Vegetation Indices

As the light reaches a surface, part of it is reflected, part of it is transmitted, and the rest is absorbed.
The amount of light that is reflected, transmitted, and absorbed depends upon the characteristics of the
surface, and it changes with the wavelength of the light. For example, most of the light reaching the
soil is either reflected or absorbed while the amount of light being transmitted is very low. The change
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with wavelengths is also relatively low. However, this is not the case with vegetation. In near-infrared
wavelengths, the most light is transmitted and reflected while the amount of light being absorbed is
very low; in the visible range, however, it is the opposite.

The main goal of the majority of remote sensing studies is to detect and identify the condition of
vegetation in a specific area(s). The amount and composition of solar irradiance that reaches the surface
determine the amount of light reflected from it, thus the reflectance properties of the surface. As solar
irradiance varies with the period of day and weather, a simple measurement of light reflected from a
surface may not be an accurate way to characterize the surface in a repeatable manner. This difficulty
can be overcome by using relevant measurements, for example, combinations of reflectance data
from two or more spectral bands, to form what is known as a vegetation indices (VIs). The use
of spectral band data can be in different forms such as ratioing, differencing, ratioing differences,
and sums, and by forming linear combinations. Vegetation indices are designed in a way such that they
present effective vegetation characteristics by reducing solar irradiance and soil background effects.
Most VIs are designed so they can be used in a consistent manner and be applicable and accurate
over time and in different locations. Their values can be affected by many factors, such as viewing
angles, solar irradiance, intervening atmosphere (among others), which is especially true in cases
of data obtained from aerial platforms. Vegetation index values can vary even if they are collected
over the same area, but with different instruments due to varying specifications of the instruments
(and calibration procedures). In this study, several VIs were selected (Table 1), based on similar studies,
to evaluate their effectiveness on distinguishing among different diseases and disease development
stages. Since diseases develop different symptoms and physiological changes in a plant, VIs can be
utilized to detect and quantify these morphological and physiological changes for each disease and
disease development stage.

Table 1. Vegetation indices evaluated for disease detection.

Vegetation Indices Equations References

Ratio Analysis of reflectance
Spectral Chlorophyll-a (RARSa) RARSa = R675 nm

R700 nm [29]

Ratio Analysis of reflectance
Spectral Chlorophyll b (RARSb)

RARSb = R675 nm
(R700 nm×R650 nm) [29]

Ratio analysis of reflectance
spectra (RARSc) RARSc = R760 nm

R500 nm [29]

Pigment specific simple ratio
(PSSRa) PSSRa = NIR800 nm

R680 nm [30]

Normalized difference vegetation
index 780 (NDVI 780) NDVI 780 = R780 nm−R670 nm

R780 nm+R670 nm [31]

Structure Insensitive Pigment
Index (SIPI) SIPI = (NIR840 nm−R450 nm)

(NIR840 nm−R670 nm)
[32]

Normalized phaeophytinization
index (NPQI) NPQI = (R415 nm−R435 nm)

(R415 nm+R435 nm)
[33]

Red-Edge Vegetation Stress Index
1 (RVS1) RVSI1 =

[
(R651 nm+Red Edge 750 nm)

2

]
−Red Edge 733 nm [34]

Triangle Vegetation Index (TVI) TVI =
0.5[120 ∗ (R761 nm−R581 nm) − 200(R651 nm−R581 nm)]

[35]

Renormalized Difference
Vegetation Index (RDVI)

RDVI = (R761 nm−R651 nm)
√
(R761 nm+R651 nm)

[36]

Normalized difference vegetation
index 850 (NDVI850) NDVI850 =

(NIR850 nm−R651 nm)
(NIR850 nm+R651 nm)

[31]

Simple Ratio Index (SR 761) SR 761 = R761 nm
R651 nm [37]

Simple Ratio Index (SR 850) SR 850 nm = NIR850 nm
R650 nm This study

Simple Ratio Index (SR 900) SR 900 nm = NIR900 nm
R680 nm This study

Water Stress and Canopy
Temperature (NWI 2) NWI 2 = NIR970 nm−NIR850 nm

NIR970 nm+NIR850 nm [38]

Green NDVI (GNDVI) GNDVI = (NIR850 nm−R580 nm)
(NIR850 nm+R580 nm)

[39]
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Table 1. Cont.

Vegetation Indices Equations References

Photochemical Reflectance Index
(PRI) PRI = (R531 nm−R570 nm)

(R531 nm+R570 nm)
[40]

Modified Chlorophyll Absorption
in Reflectance Index (mCARI 1)

mCARI 1 =
1.2[(2.5 ∗R761 nm−R651 nm) − 1.3(R761 nm−R581 nm)]

[41]

Modified Triangular Vegetation
Index1 (MTVI 1)

MTVI 1 =
1.2[1.2(1.2(R760 nm−R580 nm) − 2.5(R650 nm−R580 nm)]

[41]

Modified Triangular Vegetation
Index2 (MTVI 2)

MTVI2 =
1.5[1.2(R760 nm−R580 nm)−2.5(R650 nm−R580 nm)]√
[(2∗R760 nm+1)̂2−

(
6∗R760 nm−5∗

√
(R650 nm)−0.5

] [41]

Data Analysis for Selecting VIs

The M statistic value (Equation (1)) was used to evaluate the effectiveness of each VI to distinguish
tomato plants infected by TS, TB, and TYLC in different disease development stages. Generally, the M
statistic value of a VI is higher when the standard deviation is low, which helps to better identify the
best VI for disease detection [42]. When it is more than one, the M statistic value is considered to be a
significant discriminant between different VIs; when the M statistic value increases, it means more and
better overlap separation.

statisticvalue =

(
MeanHealthy −MeanIn f ected

)(
σHealthy + σIn f ected

) (1)

3. Results and Discussion

3.1. Spectral Reflectance Analysis

In this section, a detailed analysis of the spectral reflectance of TYLC-infected tomato plants, in a
tolerant and susceptible varieties, is presented and compared with the spectral reflectance of healthy
plants and plants infected by TS and BS. A detailed spectral analysis of tomato plants infected by TS
and BS is presented by [4].

3.1.1. Spectral Reflectance of TYLC, BS, and TS Diseases: Laboratory-Based Analysis

Since we were examining plants exposed to natural inoculation via the whitefly vector, we could
not determine precisely when individual plants were inoculated. However, as the season progressed,
the severity of symptoms also progressed throughout the season. Therefore, we will refer to “early
stages” or “asymptomatic” as the plant was asymptomatic (no visual symptoms) and “advanced
stages” or “symptomatic” as visual symptoms present later in the season. Leaves examined early
in the season did not show visual symptoms. However, there were significant differences when
comparing the spectral reflectance signatures of infected plants in different disease development stages
(Figure 3a). The spectral values of both tomato varieties (tolerant and susceptible to TYLC) in the
asymptomatic stage were lower than the spectral values of the healthy plants in the green range.
The spectral signature of BS and TS also showed different spectral reflectance in the red and green
ranges; the reflectance of spectral was increased or decreased based on disease severity. The red range
showed higher reflectance for BS and TS than for the healthy plants. In NIR, the BS showed a lower
reflectance value for asymptomatic stage [4].
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3.1.2. Spectral Reflectance of TYLC, BS, and TS Diseases: Field (UAV)-Based Analysis

In the field, it was difficult to determine the disease development stages, because in most cases
plants included leaves with early symptoms (early disease development stages), and late symptoms
(late stages) as well. Figure 3b presents the spectral signatures of the healthy (H) and TYLC-infected
(tolerant and susceptible varieties) tomato plants, generated by the UAV-based hyperspectral sensing
system. No significant differences were noticed between H and TYLC-tolerant plants in the NIR
range; however, significant differences occurred in the red range (Figure 3b). In the susceptible variety,
the spectral reflectance signature shifted down in NIR (similar to the laboratory conditions). In the
field, the spectral signature of BS and TS recorded the lowest values in the visible range, compared to
TYLC-infected and healthy plants, while the reflectance values increased in NIR range (Figure 4b).
The spectral signature of the TYLC-infected susceptible variety was significantly different, especially
in the NIR range, from the BS and TS signatures.
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3.2. Classification Results

In laboratory conditions, the classification results between H and TYLC-infected plants (tolerant
and susceptible varieties) were 100% for both disease development stages (asymptomatic stage and
symptomatic stage) (Table 2). The classification results between H and BS or TS were also high, reaching
up to 95% in STDA, while recording a lower rate in RBF, 82–83%. The RBF method was less accurate
than the STDA classification method in the major classification categories. In the field conditions,
similar classification results were recorded (Table 2) between H and all diseases. Wilks lambda recorded
a very low value, indicating strong separation value between H and other categories. The scale
ranges from 0 to 1, where 0 means total discrimination, and 1 means no discrimination. The lower
Wilks lambda value (0.014) represents maximum discrimination among other categories. A higher
value of chi-square means a significant difference between the variables. The cross validation and
overall percent were identical for most of the category classes. The classification rate between TYLC
tolerant vs. TYLC susceptible in the asymptomatic stage was 100% for both STDA and RBF methods.
The classification of TYLC-tolerant vs. TYLC-susceptible varieties in the symptomatic stage was 100%
in STDA, while the RBF method showed a lower classification value of 66.7%. The STDA classification
in the laboratory and field produced higher classification values than the RBF method for most of the
categories (Table 2).

Table 2. Classification results utilizing the stepwise discriminant analysis (STDA) and the radial basis
function (RBF) for TYLC-, BS-, and TS-infected tomato plants in symptomatic (Sym) and asymptomatic
(Asy) stages.

Parameter STDA RBF (%)

Overall
Percent (%)

Cross
Validation (%)

Wilks
Lambda Chi-Square

Laboratory based
H vs. TYLC Tolerant-Asy 100 100 0.014 388.0 89
H vs. TYLC Tolerant-Sym 100 100 0.028 374.1 100

H vs. TYLC Susceptible-Asy 100 100 0.023 320.2 83
H vs. TYLC Susceptible -Sym 100 100 0.044 321.4 100

Tolerant-Asy vs.
Susceptible-Asy 100 100 0.086 91.8 100

Tolerant-Sym vs.
Susceptible-Sym 100 100 0.096 111.1 66.7

H vs. TS-Asy 95 95 0.045 523.6 82
H vs. TS-Sym 95 95 0.005 422.4 90
H vs. BS-Asy 94 94 0.005 924.1 95
H vs. BS-Sym 95 94 0.005 523.6 89

TS-Asy vs. BS-Asy 88 87 0.306 145.0 83
Ts-Sym vs. BS-Sym 82 82 0.456 120.3 46
Field (UAV) based

H vs. TYLC Tolerant 100 100 0.006 539.9 100
H vs. TYLC Susceptible 100 100 0.018 378.1 97

TYLC Tolerant vs. Susceptible 100 100 0.104 146.2 76
H vs. TS 98 96 0.026 597.8 98
H vs. BS 96 96 0.013 541.5 93
Ts vs. BS 82 80 0.457 141.9 64

3.3. Significant VIs for Disease Detection: Laboratory-Based Analysis

Most of the VIs’ M statistic values for the BS-, TS-, and TYLC-susceptible variety were positive
(Figure 5), while most M statistic values of the TYLC-tolerant variety were negative. Only a few VIs of
the TYLC-susceptible variety have negative M statistic values (RVS, NWI 2, and RARSa). Based on this
observation, it is possible to distinguish between TYLC susceptible and all other diseases. The modified
triangular vegetation index 1 (MTVI 1) and the renormalized difference vegetation index (RDVI) can
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be used to accurately distinguish among all diseases since their M statistic values are significantly
different (Figure 5).
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Figure 5. The M statistic value of vegetation indices for TYLC, BS, and TS diseases in the laboratory:
(a) first group of VIs and (b) second group of VIs. The vertical bar represents the error bar.

3.4. Significant VIs for Disease Detection: Field (UAV)-Based Analysis

The same VIs (MTVI 1 and RDVI) can be used to accurately distinguish among all diseases
utilizing the UAV-based sensing system and the M statistic value (Figure 6). There are several VIs that
can be used to distinguish BS and TS diseases from TYLC (tolerant and susceptible varieties) (Figure 6),
but only a few to distinguish among all diseases.
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(UAV-based): (a) first group of VIs, and (b) second group of VIs. The vertical lines present error bars.

4. Discussion

We assume that in the TYLC-infected plants, the spectral changes in the green range were caused
by the deterioration of chlorophyll concentration and were almost impossible to notice with the naked
eye. The spectral reflectance in the red edge showed differences between healthy and asymptomatic
stages for both tolerant and susceptible varieties. In the symptomatic stage, the spectral reflectance in
the red range was higher than the spectral reflectance value of a healthy plant. The spectral reflectance
values in the red edge shifted down when compared to healthy plants and the asymptomatic stage.
The spectral signature of the asymptomatic stage showed different patterns than the healthy and
symptomatic stage in the visible and NIR ranges. It is obvious that the spectral reflectance values
were higher in the red range and lower in the red edge. Furthermore, there were several differences
in the spectral values for the different disease development stages (disease severity). The leaves of
the tolerant variety did not show heavy symptoms in the late disease development stages, except few
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necrotic lesions; while the leaves of the susceptible variety showed heavy necrotic lesions, including
curl and yellow margin in all leaves.

In general, the spectral reflectance signatures showed different patterns in the TYLC-infected
and healthy plants. The spectral reflectance of the diseased plants had increased values in the red
range and NIR, indicating a decrease in the chlorophyll concentration, compared to the healthy plants.
Reflectance in the red edge (700–800 nm) was changed most greatly with disease development because
the pigment concentration was changed, which increased the yellowish color in the leaves. In general,
it was possible to identify and distinguish healthy from TYLC-infected plants, as well as the disease
development stages, by analyzing and comparing their spectral reflectance signatures; reflectance
indices combining reflectance near to 531 nm could give a guide of photosynthetic function [40,43].
The major impact of TYLC susceptibility to leaf reflectance was in the visible range from 550 to 700 nm
and in the NIR range from 700 nm to 850 nm, respectively. These wavelength regions are affected
by the chlorophyll and brown pigment concentration as well as by the water content and canopy
structural changes [44]. Due to plant cell death, membrane damage, and necrotic increase, the virus
penetrated the leaf stomata [45]. The variance of the reflectance in the NIR region was mostly affected
by situation of leaf tissue or any abnormal process that might affect the inner scatter process. The light
division is also influenced by water content and air–water interference [46–49].

It was obvious to notice the plant damage in the late season of TYLC on the susceptible variety.
Plants, which were initially stunted, showed severe stunting in the end of the season (Figure 1b).
The spectral reflectance showed differences between laboratory and field condition which might refer
to the measurement conditions. In the laboratory, the leaf samples were laid down on one flat side
and facing up with the halogen light source, with optimal temperature and humidity. Therefore,
the reflectance of the light obtained from the leaf samples represent the object in an ideal condition.
The spectral reflectance in the field has different reflectance than the laboratory because of different
sunlight angle(s) and light density, the field of view angle, and the weather conditions (e.g., clouds).
Furthermore, the canopy structure of the plants included different type of leaves of which some were
infected and others were not, or had lower infection. In general, there was no proper way to select only
symptomatic or asymptomatic leaves from images taken at 30 m height (UAV-based method). For the
images acquired by UAV, it was difficult to determine the disease development stages, because in most
cases plants included leaves with minor disease development stages and late symptoms.

All diseased plants produced different spectral signatures in the laboratory measurement.
The chlorophyll concentration was increased or decreased based on the disease type; this difference
can be seen in the visible range and red edge–NIR (690–1000 nm). In the field condition, the spectral
signature of the TYLC-infected susceptible variety was significantly different, especially in the NIR,
from the BS and TS signatures. These differences in the spectral signatures might be used to distinguish
among these diseases. As can be seen from Figure 1a, the TYLC-infected leaves of the tolerant variety
in the early disease development stages did not produce any obvious symptoms, and hence, it was
very difficult to identify the infection visually. On the other hand, it was possible to detect the TYLC
by analyzing and comparing the spectral signatures of all samples. Heim et al. [50] also identified
spectral differences in red edge and NIR to detect myrtle rust (Austropuccinia psidii) on lemon myrtle
trees, and Romer et al. [51] used the same spectral ranges to detect presymptomatic wheat leaf rust.
Each disease showed different symptoms in late disease development stages, while in the early stages
or the asymptomatic stage, it was very difficult, even for experts, to diagnose the disease based on
symptoms. Many researchers have applied hyperspectral imaging to detect diseases in a very early
stage or the presymptomatic stage with promising results [52–55].

5. Conclusions

This study developed novel techniques that can be used in the laboratory and field for the
identification and classification of three critical tomato diseases, BS, TS, and TYLC (in the tolerant
and susceptible varieties), by utilizing hyperspectral imaging and machine learning. In early disease
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development stages, similar symptoms were produced by these diseases, and it was very difficult to
distinguish among diseases visually. However, utilizing the STDA and RBF classification methods,
it was possible to identify and classify the diseased and healthy tomato plants with high accuracies.
Furthermore, the M statistic values from several VIs were analyzed, and it was found that the values of
two VIs (MTVI 1 and RDVI) were significantly different for all diseases. Hence, these indices can be
used to accurately detect and classify these diseases. The M statistic values of the VIs varied between
laboratory and field; still, in both conditions, the M statistic values of the MTVI 1 and RDVI showed
significant differences among the three diseases.
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