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Abstract: Vehicle detection based on unmanned aerial vehicle (UAV) images is a challenging task.
One reason is that the objects are small size, low-resolution, and large scale variations, resulting in
weak feature representation. Another reason is the imbalance between positive and negative examples.
In this paper, we propose a novel architecture for UAV vehicle detection to solve above problems.
In detail, we use anchor-free mechanism to eliminate predefined anchors, which can reduce
complicated computation and relieve the imbalance between positive and negative samples.
Meanwhile, to enhance the features for vehicles, we design a multi-scale semantic enhancement
block (MSEB) and an effective 49-layer backbone which is based on the DetNet59. The proposed
network offers appropriate receptive fields that match the small-sized vehicles, and involves
precise localization information provided by the contexts with high resolution. The MSEB
strengthens discriminative feature representation at various scales, without reducing the spatial
resolution of prediction layers. Experiments show that the proposed method achieves the
state-of-the-art performance. Particularly, the main part of vehicles, much smaller ones, the accuracy
is about 2% higher than other existing methods.

Keywords: feature-enhanced; anchor-free network; multi-scale; unmanned aerial vehicle; object
detection

1. Introduction

Vehicle detection in unmanned aerial vehicle (UAV) images has received significant attention due
to its extensive applications in both military and civilian fields, such as disaster management [1],
transportation surveillance [2–4], and smart parking [5]. However, UAV vehicle detection is a
challenging task because of small-sized objects, low-resolution objects, large object scale variations
(e.g., large truck is about 460× 300 pixels, while small bicycle is only about 20× 20 pixels on
1920× 1080 image. It can be seen that the scale between the large truck and the small bicycle is
quite different, causing the problem of large scale variations still exists on UAV aerial images.), and the
imbalance between positive and negative examples. Therefore, how to accurately and quickly detect
vehicles in UAV images has theoretical significance and practical application value.

Traditional vehicle detection in UAV images is mainly based on hand-crafted features followed
by a classifier or cascade of classifiers within a sliding window [6–10]. The hand-crafted
features are low-level with weak semantics, which cannot represent vehicles effectively. Recently,
thanks to the powerful representation capability of deep convolutional neural networks (CNN),
object detection [11–15] has been made significant breakthroughs in the classical types of images
(ground-level images), which also inspires vehicle detection in UAV images.
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Many CNN-based vehicle detectors can be grouped into two main streams: the two-stage
vehicle detectors and single-stage vehicle detectors. The two-stage vehicle detectors [16–19]
are based on deep learning detection framework, such as Fast R-CNN [20], Faster R-CNN [12],
which have considered enhancing the feature representation ability by introducing useful contextual
information around vehicles. These methods can guarantee high accuracy but are not suitable for
real-time applications. The single-stage vehicle detectors [21–24], such as YOLOv3-based [25] and
RefineDet-based [26], can realize real-time detection and use top-down architecture [27,28] to enhance
the feature representation for vehicles. These methods leverage anchor boxes with predesigned
scales and aspect ratios to predict vehicles of different sizes. However, even with careful design,
because the scales and aspect ratios of anchors are fixed for these anchor-based vehicle detectors, it is
difficult to deal with object candidates with large scale variations, particularly for small-sized vehicles.
Moreover, during training, all anchor boxes must be computed the intersection-over-union (IoU) [29]
scores with all ground-truth boxes, resulting in an imbalance between positive and negative samples,
a large amount of computation and memory footprint.

In this paper, we adopt the anchor-free mechanism [30] to eliminate predefined anchor boxes,
avoiding excessive complex related calculations and handling large scale variations. The proposed
feature-enhanced anchor-free (FEAF) network for UAV vehicle detection, uses a fully convolutional
neural network (FCN) to directly output the pixel-wise classification scores and the object
bounding boxes. The FEAF network is the same as FCN [31], which views each location of the vehicle
bounding boxes as positive samples. Compared to anchor-based vehicle detectors that only consider
the anchor boxes with a highly enough IoU with ground-truth boxes as positive samples, the FEAF
detector has more positive samples to train, especially for small-sized vehicles. Therefore, the proposed
FEAF network can relieve the imbalance between positive and negative samples to achieve
better performance.

Furthermore, UAV vehicles are small size and low-resolution, resulting in weak
feature representation. Therefore, we design an effective backbone and a multi-scale block to enhance
the features for vehicles. On one hand, most object detectors [32–36] use ResNet [37,38] or ResNext [39]
as the backbone network and use large down-sampling factors (e.g., 32, 64, and 128) in feature maps
to build a deeper pyramid network. DetNet [40–43] indicates that large down-sampling factors can
bring large valid receptive field, which is good for image classification but will impair the object
location ability. Thus, small down-sampling factors can keep precise location information, which is
beneficial to object location. On the other hand, the proposed FEAF network uses each location
to directly regress the target bounding box. Obviously, precise location information is even more
necessary than the anchor-based detectors. Therefore, we use an effective 49-layer backbone based on
the DetNet59 [40,41], which maintains precise localization information with high spatial resolution in
deep convolutional layers. Moreover, the proposed backbone includes fewer layers against deeper
layers to offer matched receptive fields for small-sized vehicles.

Apart from this, we propose a multi-scale semantic enhancement block (MSEB) to strengthen
discriminative feature representation. Generally, the deeper layers have stronger semantic
information, but localization will suffer from the absence of the fine location information.
Meanwhile, the deeper layers create large receptive field accompanying background interference
for small and low-resolution vehicles, which will limit the vehicle location ability. The proposed MSEB
will widen the network width instead of increasing the depth, which can effectively enhance the
semantics for vehicles at various scales, without changing the spatial resolution of prediction layers.
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As a summary, we have made the following main contributions:

(1) We propose a feature-enhanced anchor-free network (FEAF) for UAV vehicle detection,
reducing excessive complex calculations related to anchor boxes and relieving the imbalance
between positive and negative samples.

(2) We adopt an effective 49-layer backbone that can offer appropriate receptive fields and keep
precise localization information to match exactly small-sized vehicles. Besides, a multi-scale
semantic enhancement block (MSEB) is proposed to strengthen discriminative feature
representation for vehicles at various scales, without changing the spatial resolution of
prediction layers.

(3) Our method achieves the state-of-the-art performance on the two datasets, which are the
UAVDT dataset [44] and the XDUAV dataset [45]. On the first dataset, 81.4% AP is achieved,
which is 2.4%, 1.7%, 0.8%, and 2.2% higher than FPN [28], Mask R-CNN [15], FCOS [30],
and RetinaNet [32] respectively. On the second one, 73.5% AP is achieved, which is 1.6%,
1.7%, 1.9%, and 2.5% higher than FPN, Mask R-CNN, FCOS, and RetinaNet respectively.
Particularly, the main part of UAV datasets is much smaller vehicles, and its accuracy APS
is about 2% higher than other existing methods. While, the proposed detector can run at
22 frames per second on a single NVIDIA TITAN Xp GPU.

The organization of the rest part of this paper is as follows. Section 2 introduces some
related works of this paper. Section 3 describes the technical design and theoretical analysis of
the proposed method. Section 4 presents experimental results of the proposed method and gives
detailed analysis. Section 5 draws the conclusion.

2. Related Work

2.1. Anchor-Based UAV Vehicle Detection

With the impressive progress of deep learning in image processing, UAV vehicle detectors based
convolutional neural networks (CNNs) have been proposed in recent years. Many UAV vehicle
detection methods [19,46] based two-stage detectors, which can achieve improved performance by
enhanced feature representation for one category vehicle. Sommer et al. [47] exploit Faster R-CNN [12]
to extend the detection task for multiple vehicle categories. Zhang et al. [48] adopt Cascade R-CNN [49]
to realize dense and small vehicles detection in UAV vision. However, these UAV vehicle detection
methods cannot satisfy real-time requirement. Subsequently, the single-stage detectors can achieve
real-time object detection. Radovic et al. [21] and Tang et al. [22] use YOLO [50] and YOLOv2 [51]
to complete fast vehicle detection and tracking in UAV images, respectively. ShuffleDet [52] applies
inception modules and deformable modules to consider the size and geometric shape of the vehicles to
finish real-time vehicle detection. However, these vehicle detectors rely on pre-defined anchor boxes
that bring an imbalance between positive and negative samples, a large amount of computation and
memory footprint.

2.2. Anchor-Free UAV Vehicle Detection

To solve the problems caused by setting anchor boxes, anchor-free detectors [53–61] are proposed
to eliminate pre-designed scales and aspect ratios of anchors and directly output the bounding boxes
from an image. CornerNet [62] directly detects a pair of corners of an object bounding box and
groups them via associative embedding [63] technique. CornerNet achieves superior performance
but comes at high post-processing cost. FCOS [30] and FoveaBox [64] consider locations located the
ground-truth box as positives to predict four distances. For UAV vehicles detection, RRNet [65] first
uses the anchor-free detector to generate the coarse boxes, and then applies a re-regression module to
produce accurate bounding boxes. Cai et al. [66] propose an anchor-free Guided Attention Network
(GANet) to deal with object detection and counting tasks, but it only achieves one class UAV vehicle
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detection. In this paper, we use anchor-free mechanism to achieve efficiency and effective multi-class
vehicle detection in UAV images.

2.3. Feature-Enhanced UAV Vehicle Detection

Vehicles in UAV images are small size and low-resolution, resulting in weak feature
representation of vehicle targets. Feature enhancement is very necessary for vehicle detection.
Intuitively, contextual information [67–71] is helpful for small and low-resolution objects.
Many vehicle detectors in UAV images [72,73] use the FPN-based network to offer contextual
information, which realize high accuracy vehicle detection and counting tasks. SlimYOLOv3 [74]
uses fewer trainable parameters and floating point operations (FLOPs) by pruning feature channels
to achieve real-time vehicle detection. Ammar et al. [75] present a performance evaluation between
Faster R-CNN [12] and YOLOv3 [25] for car detection in UAV images. Liang et al. [76] use
feature fusion and scaling-based SSD for small vehicles detection in UAV images. In this paper,
we use an effective backbone that maintains high spatial resolution in deeper convolutional layers.
Thus, the contextual information is generated through top-down and lateral connection in the network,
which can introduce precise localization information to enhance the features for small-sized vehicles.
Moreover, a multi-scale semantic enhancement block (MSEB) is proposed to strengthen discriminative
feature representation for vehicles at various scales.

3. Proposed Method

In this section, we elaborate the proposed feature-enhanced anchor-free network (FEAF) for UAV
vehicle detection. The overall architecture is shown in Figure 1.

Figure 1. The over architecture of the FEAF network, including feature extraction and shared detection
head. The MSEB is a multi-scale semantic enhancement block to strengthen semantic information.

3.1. Architecture

We introduce the proposed architecture for UAV vehicle detection in detail, including feature
extraction and detection head.

Feature Extraction. The proposed FEAF network adopts the anchor-free mechanism to
achieve regression. If the location (x, y) falls into any ground-truth boxes, it can be considered as a
positive sample to directly output the pixel-wise classification scores and the object bounding boxes.
Therefore, it is very important to maintain accurate location information for the FEAF network.
The DetNet59 [40] employs small down-sampling factors (i.e., 4, 8, and 16) to maintain fine location
information while employing dilated convolution [77] to increase receptive field. Inspired by
this, we adopt an effective 49-layer backbone based on DetNet59 to extract features as shown in
Figure 1. H and W in Figure 1 are height and width of feature maps (e.g., C3, C4, and C5) receptively,
‘/d’ (d = 8, 16, 16) is the down-sampling factor of feature levels to the input image. We use the
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convolutional stages from C1 to C5 as the backbone called DetNet-49 and remove the deeper
convolutional layer stage6 from the DetNet59. Because the deeper convolutional layers introduce
large receptive field for small-sized vehicles, it will bring too much background inference to
compromise the detection performance. Thus, the proposed backbone DetNet-49 can maintain precise
localization information in deeper convolutional layers while providing matched receptive fields for
small-sized vehicles.

The top-down architecture with lateral connection is used to build a feature pyramid structure
from P3 to P5, and offer contextual information to enhance the features of vehicles. The contextual
information involves semantic information and more precise localization information with high
spatial resolution. The predicted layers P3, P4, and P5 are produced by the feature maps C3, C4, and C5

followed by a multi-scale semantic enhancement block (MSEB) with lateral connection. The MSEB will
be explained in detail in Section 3.2. Meanwhile, the channel dimensions of predicted layers are fixed
at 256 as shown in Figure 1, further reducing the computational cost.

Detection Head. Many literatures [60,78] have extensively explored that the detection head plays
an important role in high performance. Same as FCOS [30] and RetinaNet [32], we append four 3× 3
convolutional layers on the detection head respectively for classification and regression branches to
improve detection accuracy. Meanwhile, we employ a center-ness branch [30], in parallel with the
classification branch to suppress these low-quality predicted bounding boxes without introducing any
hyper-parameters, which will be introduced in detail in Section 3.3. The parameters of the head are
shared across all predicted levels. For UAV vehicles detection, we predict a C dimensional (C is the
number of categories) vector p of classification labels and a 4 dimensional vector t of bounding
box coordinates in the final layers. In shared detection head, all parameters are shared across
predicted levels, and four 3× 3 convolutional layers are added respectively for classification and
regression branches. The center-ness branch decreases low-quality predicted bounding boxes.

3.2. Multi-Scale Semantic Enhancement Block

Although the network composed of only the DetNet-49 is conducive to the detection for
small-sized vehicles, it is not good for classification and regression of large-sized vehicles.
Intuitively, the deeper network creates large receptive fields and stronger semantic information that
are good for large-sized vehicles classification. However, localization will suffer from the absence of
the fine location information, and large receptive fields will accompany background interference for
small-sized and low-resolution vehicles. In order to maintain precise location information and offer
matched receptive fields for all-sized vehicles, we will widen the network width instead of increasing
the depth, which can effectively strengthen the semantics of vehicles at various scales. Based on
the DetNet-49 backbone, we design a multi-scale semantic enhancement block (MSEB) as shown in
Figure 2 to widen the network, without changing the spatial resolution of prediction layers.

The MSEB contains three branches that are stacked by convolution kernels of different size.
Specifically, the first branch of the MSEB decomposes a 3× 3 convolution kernel into a 1× 3 and
a 3× 1 kernels, the last two branches use a 3× 3 convolutional kernel followed by a 1× 1 kernel and
a 1× 1 convolutional kernel respectively. We fix the number of channels in each layer of the MSEB
to 256. Finally, the three branches are summed in an element-wise manner. Furthermore, we employ
batch-normalization (BN) [79] after each convolutional layer in the MSEB. In this way, the proposed
network can not only strengthen semantic information for vehicles, but also maintain precise location
information and create various receptive fields with different scales from one feature map.



Remote Sens. 2020, 12, 2729 6 of 17

Figure 2. The proposed multi-scale semantic enhancement block (MSEB).

3.3. Anchor-Free Mechanism

In this paper, we adopt the anchor-free mechanism [30] to regress bounding boxes of UAV vehicles.
Given a ground-truth box denoted as (xt, yt, xb, yb) , the points (xt, yt) and (xb, yb) refer to the
left-top and right-bottom corners of the target bounding box respectively. Each location (x, y) on
the predicted layer Pi can be mapped back onto the input image (bs/2c+ xs, bs/2c+ ys), which is
near the center of the receptive field of the location (x, y). s is the total stride and is 8, 16, and 16
in P3, P4, and P5 respectively. If the location (x, y) falls into any ground-truth boxes, it can be
considered as a positive sample; otherwise it is a negative one. If a location falls into multiple
ground-truth boxes, we adopt the multi-level prediction to solve this problem. Besides the label
for classification, the detection head directly regresses a 4 dimensional vector for each location on all
predicted layers that represents the distances between the current location and the four bounds of the
ground-truth box. For example, if location (x, y) falls into the given a ground-truth box (xt, yt, xb, yb),
the regression targets for the location can be calculated as a 4D vector t∗x,y,

t∗x,y = {dxt = x− xt, dyt = y− yt, dxb = xb − x, dyb = yb − y}. (1)

If a location satisfies max(dxt, dyt, dxb, dyb) > mi or max(dxt, dyt, dxb, dyb) < mi−1, we take
it as a negative sample and is not required to regress it, where mi is the maximum distance
that the predicted layer Pi needs to regress. In this paper, m3, m4, and m5 are set as 64, 256,
and ∞ respectively. In other words, the size range is [0, 64] for P3, [64, 256] for P4, and [256, ∞]
for P5. Therefore, compared to the anchor-based detectors, the anchor-free mechanism can make full
use of more positive samples to train. Since the anchor-based detectors only consider the anchor boxes
with larger IoU as positive samples.

Center-ness. Since the positive samples far away from the target center will regress low-quality
bounding boxes, a constraint called the center-ness strategy is used to remove those boxes. For a
regression box (dxt, dyt, dxb, dyb) of the location (x, y), the center-ness is defined as,

(cn)∗ =

√
min(dxt, dxb)

max(dxt, dxb)
× min(dyt, dyb)

max(dyt, dyb)
. (2)
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The center-ness does not introduce other hyper-parameters and without fine-tuning in
training process. During the testing, the final scores used for ranking the bounding boxes can be
calculated by multiplying the predicted center-ness with the corresponding classification confidence.
Thus the weights of the bounding boxes far away from the center point are smaller.
Therefore, non-maximum suppression (NMS) can filter out those low-quality boxes and improve
UAV vehicles detection performance.

Loss Function. During the training phase, we minimize an objective function following the
multi-task loss,

L(px,y, tx,y, cn) =
1

Npos
∑
(x,y)

Lcls(px,y, c∗x,y) +
1

Npos
∑
(x,y)

c∗x,yLcn(cn, cn∗) +
1

Npos
∑
(x,y)

c∗x,yLreg(tx,y, t∗x,y). (3)

where the classification loss Lcls uses focal loss [32], the center-ness loss Lcn is binary cross entropy
loss [12], and the regression loss Lreg adopts GIoU loss [80]. Npos is the number of positive samples.
The label c∗x,y is 1 if the location (x, y) is positive and 0 otherwise. The summation is calculated over all
location on the pyramid level Pi(i = 3, 4, 5).

4. Experimental Results and Analysis

In this section, we analyze the proposed network for vehicle detection. In the ablation study,
backbone network, multi-scale semantic enhancement block (MSEB), and anchor-free mechanism are
analyzed in detail.

4.1. Dataset Preparation and Training Implementation Details

XDUAV Dataset. The XDUAV dataset [45] was captured by the DJI Phantom 2 quadcopter
flying a part of urban and suburban areas of Xi’an, China. The dataset consists of 11 vehicle videos
from various traffic environment, such as congested and non-congested conditions, and intersection
scenarios in different weather and lighting conditions. All videos are collected with the drone-view at
approximate 100 meters’ height. The resolution is 1920× 1080 and we captured one target image per
30 frames, and the whole dataset contains 4344 images with 3475 images for training and 869 images
for testing. The dataset has a large amount of small vehicles with truncated, occluded, and multi-angle.
Figure 3a shows some image examples in different scenarios and weather conditions. Training and
testing samples are annotated 6 categories of vehicles (i.e., car, bus, truck, tanker, motor and bicycle).
Each category object number is shown in Table 1.

UAVDT Dataset. UAV Detection and Tracking (UAVDT) benchmark [44] was captured
by DJI Inspire 2 flying different altitude in urban areas, under various weather and lighting
conditions in different scenarios such as arterial streets, highways, crossing and T-junctions, etc.
The UAVDT benchmark consists of about 80,000 representative frames for three fundamental tasks,
i.e., object detection, single object tracking and multiple object tracking. In this paper, we only
implement the fundamental task of object detection. The dataset for object detection contains
39,850 images with 23,258 images for training and 16,592 images for testing, with the resolution of
1080× 540 pixels. The dataset contains 3 annotated categories including car, truck and bus. The vehicle
number of each category and some images examples are shown in Table 1 and Figure 3b, respectively.

Metric. In this paper, we adopt MS COCO metric to evaluate the results of the proposed detector
on two datasets. MS COCO metric can judge detection performance under a rigorous manner,
including AP, AP50, AP75, APS, APM, APL metric. The mean average precision (AP) is calculated by
averaging over all 10 Intersection over Union (IoU) thresholds in the range [0.5, 0.95] with an interval
0.05 of all categories. The AP value is the primary metric for ranking. AP50 and AP75 are calculated
by the average of all categories at a single IoU value 0.5 and 0.75 respectively. Apart from that,
the APS, APM, APL values are computed separately for small-sized (area < 322), medium-sized
(322 < area < 962) and large-sized (area > 962) objects in order to measure the detection performance
on targets of different sizes.
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Figure 3. Samples in various scenes from different vehicle datasets. (a) examples on the XDUAV dataset;
(b) examples on the UAVDT dataset.

Table 1. The number of each category vehicle in the XDUAV dataset and the UAVDT dataset.

XDUAV
Dataset

Category Car Bus Truck Motor Bicycle Tanker

Number 33,841 2690 2848 6656 2024 173

UAVDT
Dataset

Category Car Truck Bus - - -

Number 755,197 25,086 17,450 - - -

Training Implementation Details. The proposed UAV vehicle detector FEAF is end-to-end
trained on 4 NVIDIA TITAN Xp GPUs with a total of 16 images per minibatch (4 images per GPU).
Our network is optimized by stochastic gradient descent (SGD) with a weight decay of 0.0001 and
momentum of 0.9. Unless otherwise specified, all models are trained for 100 k iterations with an initial
learning rate being 0.01, which is reduced by a factor of 10 at iteration 60 k and 80 k respectively.
We initialize our backbone network using the pretrained weights on ImageNet [81]. We resize the
shorter side of the input images to 800 and the longer side less or equal to 1333 to avoid too much
memory cost.

4.2. Ablation Study

In this section, we take the XDUAV dataset as an example to conduct an ablative analysis for the
proposed vehicle detector.

4.2.1. Backbone Network Analysis

To maintain precise spatial location information and demonstrate the effectiveness of the backbone
DetNet-49 for small-sized vehicles detection, we make comparative experiments in different backbone
networks, including ResNet-50, ResNet-101, and DetNet59 as shown in Table 2. All experiments are
used anchor-free regression mechanism [30] to detect UAV vehicles.
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Table 2. Performance comparisons between the proposed backbone DetNet-49 and other backbones in
terms of MS COCO metric. The bold numbers represent the best results.

Methods Backbone Additional Layers AP AP50 AP75 APS APM APL

FCOS [30]

ResNet-50 w 71.2 95.4 82.3 33.2 68.1 80.9

ResNet-50 w/o 70.2 95.4 80.9 34.1 65.3 79.3

ResNet-101 w 71.6 96.1 82.6 34.1 67.1 81.3

ResNet-101 w/o 71.3 96.1 82.4 34.3 68.3 80.2

Ours * DetNet-59 - 71.6 96.0 83.1 35.1 67.9 81.0

DetNet-49 - 71.9 95.7 83.5 35.4 69.4 80.1

* We use DetNet-59 and DetNet-49 as the backbone respectively to achieve anchor-free regression location.

Firstly, to maintain precise spatial location information, we adopt the DetNet59 [40] as the
backbone that employs small downsampling factors (i.e., 4, 8, and 16). The FCOS [30] uses ResNet-50
and ResNet-101 as the backbone respectively, and increases two additional predicted layers using large
downsampling factors 64 and 128. Line 2 and line 6 from Table 2 illustrate that DetNet59 based on
anchor-free regression mechanism is 0.4% and 1.9% higher in AP and APS respectively than ResNet-50.
Although the AP value is the same when the backbone is ResNet-101 and DetNet59 as shown in line 4
and line 6, the APS and APM value of DetNet59 as the backbone are higher than that of ResNet-101.
For fair comparison, we remove two additional layers with the large factors 64 and 128 in FCOS [30].
Experimental results from Line 3 and Line 5 without additional layers show that the accuracy APS for
small-sized vehicles is higher than that with additional layers, but at the same time it is lower than the
accuracy of DetNet59 with the small factors (i.e., 8 and 16). These results evidence the importance of
spatial location information for small-sized vehicles.

Secondly, to prove the effectiveness of the proposed DetNet-49, we analyze the role of a
deeper convolutional layer stage6 from the DetNet59. As shown in line 6 and line 7 from Table 2,
the comparison of experimental results proves the deeper convolutional layer stage6 is helpless
for small-sized vehicle detection. Since the deeper convolutional layers introduce large receptive
field for small-sized vehicles, it will bring too much background inference to compromise the
detection performance. The experimental results show that the proposed backbone DetNet-49 not only
reduces the parameters and the computational cost of the model to train more stable, but also offers
precise location information and matched receptive fields to improve the detection performance for
small-sized vehicles.

4.2.2. Multi-Scale Semantic Enhancement Block (MSEB) Analysis

As shown in Table 2, the APL value of DetNet-49 as the backbone is less than that of other
backbones, which shows that the absence of deeper convolutional layers leads to insufficient semantics
for large-sized vehicles. Therefore, we use the proposed MSEB to enhance the semantics for the
large-sized vehicles while maintaining spatial location information for the small-sized vehicles.

In order to prove the effectiveness of the designed MSEB for vehicles, we adopt different blocks
as shown in Figure 4 to predict the targets and analyze their impact on the detection performance.
The original feature pyramid network (FPN) only uses a 1× 1 convolutional layer that is named M_1
block to perform lateral connection as shown in Figure 4a. For the proposed FEAF, the M_1 block
cannot enhance semantics for UAV vehicles. We adopt two 3× 3 convolutional layers (M_2 block as
shown in Figure 4b) instead of M_1 block to enhance vehicles semantics. The experimental results
show that the AP and APL of the M_2 block are 0.5% and 1.1% higher respectively than the M_1 block
as shown in Table 3. Although the M_2 block has achieved the semantic enhancement for large-sized
vehicles, the APS value of small-sized vehicles has decreased, which may be caused by the absence of
the precise location due to the deep convolutional operation.
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Figure 4. Different multi-scale semantic enhancement blocks. From left to right are (a) M_1 block,
(b) M_2 block, (c) M_3 block, and (d) proposed MSEB block.

Table 3. Performance comparisons between the Proposed MSEB block and other blocks in terms of MS
COCO metric. The bold numbers represent the best results.

Different Blocks Backbone AP AP50 AP75 APS APM APL

M_1 block DetNet-49 71.9 95.7 83.5 35.4 69.4 80.1
M_2 block DetNet-49 72.4 96.0 83.7 34.3 69.5 81.2
M_3 block DetNet-49 72.6 95.7 83.7 34.8 69.1 81.3

Proposed MSEB block DetNet-49 73.5 97.5 84.2 35.7 71.9 81.4

Inspired by the GoogleNet [82], we will widen the network width instead of increasing the depth
as shown in Figure 4c,d, which can effectively improve the semantics of vehicles at various scales.
Compared with the M_2 block, the M_3 block widens the network width to extract more rich semantics.
However, the APS and APM of the M_3 block still become poor compared with the original M_1 block.
To enhance the semantics and maintain location information for the small-sized vehicles, we decompose
a 3× 3 convolution kernel into 1× 3 and 3× 1 kernels as shown in Figure 4d. All AP values have
been increased as shown in line 5 from Table 3, and the amount of parameters has also reduced.
The proposed multi-scale semantic enhancement block (MSEB) can not only strengthen semantic
information for vehicles, but also retain fine location information and create various receptive fields
with different scales.

4.2.3. Anchor-Free vs. Anchor-Based Vehicle Detectors

The qualitative comparisons between the anchor-based and the proposed anchor-free methods can
be seen in Figure 5. Compared with the anchor-based method [24] (Figure 5a), our anchor-free method
(Figure 5b) obviously reduces false positives rate, missed rate, and redundant bounding boxes, etc.
We analyze the two main reasons as following: firstly, because the scales and aspect ratios of anchors are
fixed for the anchor-based vehicle detectors, even with careful design, it is difficult to deal with object
candidates with large scale variations, particularly for small-sized vehicles. Secondly, anchor-based
vehicle detectors that only consider the anchor boxes with a highly enough IoU with ground-truth boxes
as positive samples, but the anchor-free methods consider the locations falling into any ground-truth
boxes as positive samples. Compared with the anchor-based vehicle method, the anchor-free vehicle
detector has more positive samples for training to reduce the imbalance between positive and
negative samples.



Remote Sens. 2020, 12, 2729 11 of 17

Figure 5. Qualitative results comparing the proposed anchor-free method with the anchor-based
method. (a) detection results from anchor-based method and (b) detection results from our
anchor-free method.

4.3. Overall Performance

Due to the designs of the anchor-free regression mechanism, the effective backbone DetNet-49,
and multi-scale semantic enhancement block, the proposed FEAF network can achieve 73.5% accuracy
on the XDUAV dataset. We compare single-stage detection methods (including anchor-based methods
and anchor-free methods) and two-stage high-accuracy detection methods by COCO metric as shown
in Table 4. Among single-stage methods, the proposed FEAF obtains the top AP, which is even better
than two-stage methods. Our method is 1.6%, 1.7%, 1.9%, and 2.5% higher in AP than FPN [28],
Mask R-CNN [15], FCOS [30], and RetinaNet [32] respectively. All methods are trained under the same
conditions, so the experimental results are credible.

To further demonstrate the robustness of the proposed method, we also evaluate it on the
UAVDT dataset. In the analysis of Backbone Network, Multi-scale Semantic Enhancement Block
(MSEB), and Anchor-free mechanism, we conduct the same ablative experiments on the XDUAV
dataset. The experimental results of the UAVDT dataset can also prove the effectiveness of the
proposed detector. Table 5 shows an overall result of different detection methods on the UAVDT
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dataset. Our method achieves 81.4% AP that is 2.4%, 1.7%, 0.8%, and 2.2% higher than FPN [28],
Mask R-CNN [15], FCOS [30], and RetinaNet [32] respectively. Figure 6 shows detection results on the
UAVDT dataset in different scenarios using our proposed method. It is noted that the UAVDT dataset
only focuses on vehicles on the main road, and vehicles parked around the road are ignored.

Table 4. Detection Results (%) of Different Methods for the XDUAV Dataset. The bold numbers
represent the best results.

Methods Backbone Input Size AP AP50 AP75 APS APM APL

two-stage

Faster R-CNN+++ [37] ResNet-101 ∼1333× 800 69.9 95.0 79.7 34.2 66.7 79.3
Faster R-CNN w FPN [28] ResNet-101 ∼1333× 800 71.9 96.8 83.7 35.0 67.4 80.5
Mask R-CNN [15] ResNet-101 ∼1333× 800 71.8 96.3 82.8 35.2 67.2 81.3

single-stage

RetinaNet [32] ResNet-101 ∼1333× 800 71.0 95.1 81.5 31.8 67.1 81.4
FCOS [30] ResNet-50 ∼1333× 800 71.2 95.4 82.3 33.2 68.1 80.9
FCOS [30] ResNet-101 ∼1333× 800 71.6 96.1 82.6 34.1 67.1 81.3

Our Method DetNet-49 ∼1333× 800 73.5 97.5 84.2 35.7 71.9 81.4

Figure 6. Qualitative detection results in different challenging scenarios. The black regions are ignored
in the UAVDT dataset.
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Table 5. Detection Results (%) of Different Methods for the UAVDT Dataset. The bold numbers
represent the best results.

Methods Backbone Input Size AP AP50 AP75 APS APM APL

two-stage

Faster R-CNN+++ [37] ResNet-101 ∼1333× 800 74.1 98.1 88.7 67.4 82.3 89.8
Faster R-CNN w FPN [28] ResNet-101 ∼1333× 800 79.0 97.9 93.3 73.1 85.5 90.7
Mask R-CNN [15] ResNet-101 ∼1333× 800 79.7 98.3 94.2 74.1 86.0 90.7

single-stage

RetinaNet [32] ResNet-101 ∼1333× 800 79.2 97.6 90.4 71.0 86.8 93.7
FCOS [30] ResNet-50 ∼1333× 800 79.4 98.7 93.2 73.1 85.9 93.5
FCOS [30] ResNet-101 ∼1333× 800 80.6 98.7 93.2 73.3 87.1 93.7

Our Method DetNet-49 ∼1333× 800 81.4 98.7 94.5 75.3 87.4 93.6

5. Conclusions

This paper proposes a novel feature-enhanced anchor-free network for vehicle detection in
unmanned aerial vehicle (UAV) vision, which achieves accurate detection. Firstly, in order to avoid the
problems caused by the setting anchors, we adopt the anchor-free mechanism to eliminate predefined
anchor boxes, relieving the imbalance between positive and negative samples, and handling objects
large scale variations. Secondly, to enhance the features for vehicles, we design a multi-scale semantic
enhancement block (MSEB) and an effective backbone DetNet49. The backbone includes fewer
layers against deeper layers to offer matched receptive fields for small-sized vehicles and precise
localization information. The MSEB widens the network width, which can effectively strengthen
discriminative feature representation of vehicles at various scales. The experimental results on
two publicly available vehicle datasets demonstrate that the proposed method can achieve the
state-of-the-art detection performance, which proves the effectiveness and robustness of the detector.
In our future work, we intend to integrate logical reasoning relationships and knowledge priors into
the vehicle detection network to further improve detection accuracy for more low-resolution vehicles.
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