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Abstract: The Sahel, a semi-arid climatic zone with highly seasonal and erratic rainfall, experienced
severe droughts in the 1970s and 1980s. Based on remote sensing vegetation indices since early
1980, a clear greening trend is found, which can be attributed to the recovery of contemporaneous
precipitation. Here, we present an analysis using long-term leaf area index (LAI), precipitation,
and sea surface temperature (SST) records to investigate their trends and relationships. LAI and
precipitation show a significant positive trend between 1982 and 2016, at 1.72 × 10 −3 yr −1 (p < 0.01)
and 4.63 mm yr−1 (p < 0.01), respectively. However, a piecewise linear regression approach indicates
that the trends in both LAI and precipitation are not continuous throughout the 35 year period. In fact,
both the greening and wetting of the Sahel have been leveled off (pause of rapid growth) since about
1999. The trends of LAI and precipitation between 1982 and 1999 and 1999–2016 are 4.25 × 10 − 3 yr −1

to − 0.27 × 10 −3 yr −1, and 9.72 mm yr −1 to 2.17 mm yr −1, respectively. These declines in trends
are further investigated using an SST index, which is composed of the SSTs of the Mediterranean
Sea, the subtropical North Atlantic, and the global tropical oceans. Causality analysis based on
information flow theory affirms this precipitation stabilization between 2003 and 2014. Our results
highlight that both the greening and the wetting of the Sahel have been leveled off, a feature that was
previously hidden in the apparent long-lasting greening and wetting records since the extreme low
values in the 1980s.
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1. Introduction

The Sahel is a typical semi-arid climatic zone, located between the Sahara Desert in the North
and the Sudanian Savanna in the South [1,2]. The region suffered severe droughts in the 1970s and
1980s [3,4], which had caused enormous losses and impacts. A recovery of precipitation was recorded
during the 1990s and 2000s [5–9].
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Time and space continuous vegetation indices based on satellite records became available in the
early 1980s, offering long-term time series of vegetation conditions worldwide [10,11]. Several studies
have demonstrated a positive trend in vegetation greenness since the early 1980s using the Normalized
Difference Vegetation Index (NDVI) and, later, the leaf area index (LAI) [12–16]. Generally, in literature,
“greening” refers to a statistical increase in interannual vegetation greenness indicated by vegetation
indices (such as NDVI) and LAI. Currently, the global greening phenomenon and its drivers have
attracted extensive research attention. Climate change, CO2 fertilization effects, land use and cover
change (LUCC), and land management are the main drivers under consideration [15,17,18]. For typical
dryland like the Sahel, precipitation enhancement (wetting) is considered the main factor affecting
the greening trends [19–21] because the vegetation over the Sahel is very sensitive to precipitation
variability, as water availability is the primary limiting climatic factor for vegetation growth in semi-arid
environments [22–24].

The causes of droughts and the subsequent rainfall recovery in the Sahel have been massively
studied from several perspectives and angles. Initially, local deforestation and overgrazing were
considered to be the drivers of significant droughts during the 1970s to the 1980s [25]. Later, sea surface
temperatures (SSTs) based on measurements and modelling were found to be closely related to the
drying trend in the Sahel [26–28]. Several marine regions have been identified as key areas affecting the
precipitation variations in the region. These include the SST gradient across the Atlantic dipole [29],
the tropical Atlantic [30], the Atlantic Niño [31], the Pacific Ocean [32], and the Indian Ocean [33].
In particular, a recent study highlighted the importance of the Mediterranean Sea as a source of
moisture to the Sahel as temperatures rise [34], although a non-stationary relationship between tropical
SSTs and Sahelian precipitation was found [31,35,36]. Therefore, significant achievements have been
made previously through sophisticated physical models showing that SSTs play a dominant role in the
precipitation of the Sahel, although there is still much controversy in quantifying the contributions of
different sea areas [36–38].

The severe droughts in the 1970s and 1980s were extreme, and present extremely low values
in both the precipitation and vegetation time series. Thus, these records have a disproportionally
large weight (bottom values) in their series, which leads to long-lasting greening and wetting trends
in the long-term statistics. Previously, the length of the data records prevented the impact of this
disproportionality to be analyzed. Now an opportunity exists to further evaluate these synergistic
changes in precipitation and vegetation. Whether the strength of the greening and wetting has changed
or not needs to be investigated. Meanwhile, recently developed statistical causality analysis based on
Liang–Kleeman (LK) information flow theory has made benchmark progress, and it is suitable for the
time series analysis of teleconnections problems [39,40]. For instance, based on the LK method, a causal
relationship between greenhouse gases and global mean surface temperature anomalies was found to
have reversed from the paleoclimatic period to the modern climate period (since about 1850) [41].

Therefore, involving the latest long-term data and statistical methods, the objective of this paper
is to more formally establish the causal chain of changes in vegetation, precipitation, and SST in order
to better understand the covariations of vegetation and climate changes in the Sahel. This is expected
to provide independent statistical evidence to other physically based simulations.

2. Materials and Methods

2.1. Data

Following recent previous studies [15,17,18], LAI is used in this paper to indicate the vegetation
conditions. LAI has two advantages at least compared to NDVI. LAI is one of the essential climatic
variables (ECVs) that have clear physical meanings. Meanwhile, LAI is also the key variable in global
dynamic vegetation models (DGVMs), which are widely applied in mechanism research. LAI data from
the LAI3g dataset is applied; it covers the period of 1982–2016 at a 1/12◦ and 1/2 month resolution [42].
A model derived from an Artificial Neural Network (ANN) was applied to AVHRR (Advanced Very
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High Resolution Radiometer) GIMMS (Global Inventory Modeling and Mapping Studies) NDVI3g to
generate LAI3g [42]. In this paper, greening and browning are consistently linked to the increase and
decrease in trends of the LAI, respectively, as found in previous studies.

A monthly precipitation dataset at 0.5◦ over the period of 1901–2016 was provided by the Climatic
Research Unit (CRU), version TS v4.01 [43]. SST data of the Extended Reconstructed Sea Surface
Temperature (ERSST), Version 5, was used in this study at a 2-degree spatial resolution, covering the
period of 1854–2016 at a monthly timescale [44].

2.2. The Sahel Extension, Growing/Rainy Seasons, and the SST Indices

Following previous studies, the Sahel region is defined as the rectangle area between 10◦N and
20◦N and between 20◦W and 35◦E [37,45] (Figure 1). The topography is illustrated in Figure 1a using
Global 30 Arc-Second Elevation (GTOPO30) [46]. Since the boundaries of the Sahel and the Sahara
in the north are not simple straight lines, only the vegetal area of this rectangle region is selected.
Each 0.5◦ × 0.5◦ cell presents a vegetation cover (LAI > 0) of no less than 50% (Figure 1b). Considering
that the precipitation in this area has a larger gradient in the north–south direction, the region with an
average annual precipitation of no more than 800 mm during the 30 years from 1987–2016 is selected.
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growing period. As indicated by the precipitation seasonal cycle, the Sahel typically has a dry and a 
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Figure 1. The spatial extension of the Sahel. (a) Topography. The DEM (Digital Elevation Model) of
GTOPO30 data is used; (b) annual averaged leaf area index (LAI) based on Global Inventory Modeling
and Mapping Studies (GIMMS) LAI3g dataset between 1982 and 2016.

Due to the delayed response of vegetation changes to the water availability, the maximum
value of LAI appears in September, which is one month behind the August extreme of precipitation
(Figure 2a,b). Vegetation growth is concentrated in the rainy season due to the limitation of water
availability. A 0.5 m2 m-2 LAI threshold was used to determine the growing period of vegetation, i.e.,
June to November (J–N). Precipitation from May to October (M–O) was further selected as the rainy
season for the study, which is consistent with a previous study [7], and this is one month ahead of the
growing period. As indicated by the precipitation seasonal cycle, the Sahel typically has a dry and a
wet season. The total rainfall from November to March is less than 10 mm (Figure 2b). Between 1982
and 2016, the precipitation of the rainy season (M–O) accounts for more than 97.2% of the total annual
precipitation (627.1 mm versus 645.1 mm). During the rainy and dry season, the LAI also shows typical
seasonal variations following precipitation.

Previous studies have identified several key SST regions corresponding to Sahelian
precipitation [7,30,31]. The SST index is generated by the regional SSTs or a combination thereof.
Table 1 summarizes these SST indices, including their spatial expansions and descriptions [7,31,36].
The averages from May to October (M–O) are used to calculate the annual time series in analyzing the
relationship between precipitation and SST.

The SST difference between subtropical North Atlantic and global tropical oceans has been
suggested previously to resolve a disagreement in the projection of Sahelian precipitation [7]. One recent
study [34] suggested that the Mediterranean Sea plays an important role in the Sahel’s rainfall recovery
through moisture supply [38]. The SST index proposed here considers these three regions above with
the aims to improve the coherence of interannual variations between regional SSTs and the Sahelian
precipitation and is a linear combination of the SSTs of the Mediterranean Sea, the subtropical North
Atlantic, and the global tropical oceans, denoted as MAG (Table 1).
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Table 1. List of sea surface temperature (SST) indices evaluated in this paper and interannual correlations
(r) between these indices and the Sahelian precipitation averaged over May to October (M–O) between
1901 and 2016, including the one proposed in this study—a linear combination of the Mediterranean
Sea, the subtropical North Atlantic, and the global tropical oceans.

NO. SST Index Spatial
Extension Comments r (1901–2016) r (1982–2016)

1 Atln3 3◦S–3◦N,
15◦W–0◦W Atlantic Nino 3 −0.29 ** 0.20

2 Atn 10◦N–40◦N,
75◦W–15◦W

subtropical North
Atlantic 0.07 0.59 **

3 Attn 10◦N–25◦N,
75◦W–15◦W

tropical North
Atlantic −0.07 0.46 **

4 Atts 20◦S–10◦N,
75◦W–15◦E

tropical South
Atlantic −0.26 ** 0.27 *

5 Att 20◦S–20◦N,
75◦W–15◦E tropical Atlantic −0.20 ** 0.38

6 Med 30◦N–50◦N,
0◦–50◦E Mediterranean Sea 0.32 ** 0.70 **

7 GT 20◦S–20◦N,
180◦W–180◦E

global tropical
oceans −0.27 ** 0.20

8 Nino3 90◦W–150◦W,
5◦S–5◦N Pacific Nino 3 −0.28 ** −0.29

9 Atd1 Atn minus GT

The difference
between subtropical
North Atlantic and

global tropics

0.51 ** 0.60 **

10 Atd2 Attn minus
Atts

The difference
between tropical
North and South

Atlantic

0.32 ** 0.28

11 MAG a Med × α + Atn
× β– GT × λ

Linear combination
of Atn, GT and Med 0.65 ** 0.72 **

Note. a α = 2.3328; β = 1.8727; λ = −5.2055. * indicates p < 0.1, ** indicates p < 0.01. MAG: linear combination of the
SSTs of the Mediterranean Sea, the subtropical North Atlantic, and the global tropical oceans.
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Figure 2. Time series of LAI and precipitation between 1982 and 2016. (a–b) Seasonal patterns of LAI
and precipitation based on the annual averages between 1982 and 2016. Blue curves are the averages of
each month with standard deviations indicated by grey areas. (c–d) Interannual time series (blue curves
with squares) with corresponding linear fit between 1982 and 2016 and piecewise linear regression
(PLR) analysis fits, using 1999 at the turning point. (e–f) Mann–Kendall–Sneyers MKS analysis of
annual LAI and precipitation between 1982 and 2016 with forward (uk, red line) and backward (u*k,
blue dashed line). (g–j) Similar to (c–f) but using June to November (J–N) LAI and May to October
(M–O) precipitation instead.

2.3. Trend Analysis

A non-parametric Mann–Kendall test is applied to determine the significance of the trends.
To investigate the coherence and the variation of trends in the LAI, precipitation, and SST, two methods
were applied: the non-parametric Mann–Kendall–Sneyers (MKS) and a piecewise linear regression
(PLR) approach.
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The non-parametric MKS method [47–49] is widely used to assess change trends in hydrological
and meteorological time series [50]. For an n length time series x1, . . . , xn, for each element xi,
the corresponding preceding number mi is given by

mi =
i∑

j=1

r jr j =

{
1 xi > x j
0 xi ≤ x j

( j = 1, 2, 3, . . . , i) (1)

A statistical variable is then defined as

sk =
k∑

i=1

mk (1 ≤ k ≤ n) (2)

with the mean and variance given by

E(sk) =
k(k − 1)

4
; var(sk) =

k(k − 1)(2k + 5)
72

(3)

uk = (sk − E(sk))/
√

var(sk) (4)

Under the null hypothesis (no trend), uk is normally distributed. A two-tailed significance test is
used at the significant level α (here α = 0.05, and the confidence interval ± 1.96) if |(uk)| ≤ (uk)1- α/2,
where (uk)1- α/2 is the critical value of the standard normal distribution. An increasing or decreasing
trend is indicated by uk > 0 or uk < 0, respectively. A similar analysis is applied on the backward time
series to get the statistics u*k. An abrupt change of the trends could be detected by the intersection
point of uk and u*k within the confidence interval [51,52].

The PLR approach [53,54] is also called segmented linear regression. A significance test can then
be applied to determine the reasonableness of segmentation. A linear regression approach was applied
to each successive two interval segments to test the turning-point significance by a t-test against the
null hypothesis. This model is given by

Y =

{
β0 + β1X + ε
β0 + β1X + β2(X − α) + ε

X ≤ α
X > α

(5)

where X is time and Y is the LAI, precipitation, or SST indices. A t-test was applied to test if β2 is not
equal to zero. The turning points are confined within the period of 1994–2003 in order to avoid too
few records in either segment of the time series. Be aware that the slopes of the PLR methods (β1 and
β1 + β2) are different from the slopes directly calculated before and after the turning point because the
continuity of the turning point in the PLR method is maintained.

2.4. Teleconnection Analysis between SST and Precipitation

From the perspective of mechanism and observational analysis, the Sahel is a typical semi-arid
region, and vegetation growth is thus strongly constrained by water availability, which is visible
in the regional average and spatial patterns of vegetation and precipitation. However, for SST and
precipitation, the relationship is different and acts through teleconnections. These are more difficult to
analyze simply from the correlation perspective. While correlation analysis is key to explaining the
similarity in the variability of two events, it does not bear the needed asymmetry to imply causality,
that is, to distinguish which event is the driver and which is the effect. Hence, a dynamic causality
formalism capable of handling non-stationary time series to analyze the causal structure of the SST on
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the Sahelian precipitation is needed. Hagan et al. [40] proposed that given any two time series, X1 and
X2, the time-varying information from X2 to X1 at each time step, T2→1t , can be computed as

T2→1t =
P12

P11
•
− P12P1,d1 + P11P2,d1

P11P22 − P2
12

(6)

where Pij is the covariance at each time step between Xi and Xj derived with a Kalman filter, and Pi,dj

is the covariance at each time step between Xi and Xdj, given that Xdj =
[
X j(t + k∆t) − X j(t)

]
/(k∆t).

∆t represents the change in timestep, and k represents an integer. A statistically significant information
flow in T2→1t suggests that the evolution of X1 is, to an extent, dependent on X2. Where it is positive,
X2 makes X1 more uncertain, and where it is negative, X2 stabilizes X1. T2→1t becomes essentially 0
where X1 is non-causal to X2. For more details on this formalism that is based on information flow
theory and provides a robust bidirectional causality analysis, readers are referred to [39,40].

3. Results

3.1. Coherent Trends of the LAI and Precipitation

The greening in the Sahel is evident in the LAI time series. As illustrated in Figure 2, both annual
and J–N LAI have increased significantly between 1982 and 2016 at rates of 1.72 × 10 −3 yr −1 (p < 0.01)
and 3.23 × 10 −3 yr −1 (p < 0.01), respectively. With 1982 as the starting point for the time series, LAI has
increased significantly since about 1990 indicated by the line of uk and the intersection point of uk and
u*k in Figure 2e,i.

Intuitively, the vegetation did not maintain a steady growth rate during the whole period. Based
on the PLR analysis on annual LAI, β2 is significant (p <0.01) for all the years between 1994 and 2003.
The year of 1999 was selected as the typical turning point because the LAI was the largest in 1999
between 1994 and 2003, and 1999 also happens to be the middle point of the study period of 1982–2016.
The LAI interannual trends between 1982 and 1999 and 1999–2016 were 4.25 × 10−3 and -0.27 × 10−3,
respectively (Table 2). The year 1999 is a significant (p < 0.01) turning point of both the annual and
J–N LAI time series (Table 2). R2 increases from 0.45 to 0.60 (annual) and from 0.50 to 0.58 (J–N) from
linear and PLR regressions (Table 2). Therefore, although vegetation continued to green throughout
1982–2016, the greening trend has been leveled off (pause of rapid growth) since about 1999.

Table 2. PLR analysis of LAI, precipitation, and SST indices between 1982 and 2016 with turning point
(TP) at 1999. The coefficient of determination R2 indicates the linear regression and PLR regressions of
the time series between 1982 and 2016. β1 and β2 are the regression coefficients of the PLR method.

LAI Annual R2 J–N R2 Annual PLR R2 J–N PLR R2

1982–2016 1.72 × 10−3 ** 0.45 3.23 × 10−3 ** 0.50 TP 1999 0.60 1999 0.58
1982–1999 4.25 × 10−3 ** 6.58 × 10−3 ** β1 3.72 × 10−3 ** 5.89 × 10−3 **
1999–2016 −0.27 × 10−3 0.53 β2 -4.00 × 10−3 ** -5.32 × 10−3 **

Precipitation Annual R2 M–O R2 Annual PLR R2 M–O PLR R2

1982–2016 4.63 ** 0.39 4.60 ** 0.39 TP 1999 0.44 1999 0.44
1982–1999 9.72 ** 9.57 ** β1 7.77 ** 7.73 **
1999–2016 2.17 1.99 β2 −6.28* -6.27 *

SST Atd1 MAG Atd1 MAG

1982–2016 1.18 × 10−2 * 5.32 × 10−2 * TP 1999 1999
1982–1999 1.38 × 10−2 5.05 × 10−2 β1 1.68 × 10−2 * 6.67 × 10-2 *
1999–2016 −0.20 × 10−2

−0.87 × 10−2 β2 −0.99 × 10−2 * −2.70 × 10−2 *

Note: The units of LAI, precipitation and SST trends are m2 m−2 yr−1, mm yr−1, and ◦C yr−1, respectively. * indicates
p < 0.1, ** indicates p < 0.01.

Precipitation is usually considered as the primary driver of the vegetation dynamics. An upswing
of rainfall in the Sahel occurred after the severe drought occurrences of the 1970s and 1980s. According to
the records, the rainfall in the Sahel reached a historic low in 1984. As shown in Figure 2d,h, both annual
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and M–O precipitation increased significantly between 1982 and 2016 at the rates of 4.63 mm yr−1

(p < 0.01) and 4.60 mm yr−1 (p < 0.01). With 1982 as the starting point for the time series, precipitation
increased significantly started at about 1994, indicated by the line of uk Figure 2f,j.

However, we notice that the trend of rainfall recovery is also unstable in time. As we have done
with the LAI records, the PLR method is also applicable to precipitation time series with turning points
ranging from 1994 to 2003. β2 is significant (p < 0.1) for turning points between 1994 and 1999 for both
annual and M–O time series. Taking again 1999 as the typical turning point, the change in the annual
precipitation in these two adjacent periods is 9.72 mm yr−1 and 2.17 mm yr−1, respectively (Table 2),
and 9.57 mm yr−1 and 1.99 mm yr−1 for M–O precipitation. Compared with the LAI, which changes
from increasing to slightly decreasing, precipitation still maintained a slight upward trend between
1999 and 2016. The pause of rapid growth in precipitation still suggests that the wetting has leveled off

since about 1999.
Therefore, both the LAI and precipitation have shown relatively consistent changes between 1982

and 2016. Starting from 1982, they all maintained a statistically significant upward trend from the early
1990s to 2016. However, both LAI and precipitation have been leveled off since 1999 statistically.

The spatial pattern of trends based on the PLR analysis is shown in Figure 3. The year 1999 was
used as the typical turning point. From 1982 to 1999, greening (85.0% and 63.8% with p < 0.1) and
wetting (100% and 80.0% with p < 0.1) dominated the Sahel. Such increasing trends are more obvious
between 1982 and 1999 compared to 1982–2016, when greening and wetting accounted for 93% and
100% (all are significant). However, between 1999 and 2016, both the LAI and precipitation leveled off.
Based on the PLR analysis, 1999 was identified as a significant turning point for 96.7% of the areas
with LAI trends, and for all precipitation grids. The greening and wetting grids decreased to 42.2%
and 67%. In fact, large browning and drying areas are also observed (54.4% and 32.9%) (Figure 3).
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3.2. The Relationship between SST Indices and Precipitation

As shown above, interannual variation in vegetation of the Sahel is driven primarily by
precipitation. The actual physical mechanism of interannual variation of precipitation is complicated,
but generally the main controlling factor is the SST. As described in the previous method section,
this paper uses a new SST index MAG based on the key areas studied by previous researchers.

MAG better characterizes the impact of oceans on the Sahelian precipitation between 1901 and
2016 than any of the other SST indicators (Table 1), with a significant correlation coefficient (r) of 0.65
(p < 0.01) between 1901 and 2016 and 0.72 (p < 0.01) between 1982 and 2016. We also calculated the
correlation coefficients for the other 10 SST indices. The index proposed by Giannini [7] has the highest
r of 0.51 within these 10 indices between 1901 and 2016, although it is still lower than that of MAG
(Table 1).

The correlation coefficients for 1901–2016 show the general relationship between SST index and
the Sahelian precipitation. It is interesting to note that, although previous studies have illustrated a
non-stationary relationship between tropical SST and the Sahelian precipitation [31,36], MAG exhibits
a rather stationary relationship with the Sahelian rainfall. As shown in Figure 4, similar to previous
studies, a 20 year sliding window running correlation analysis between 1901 and 2016 was used
between the SST indices and Sahelian precipitation. The non-stationary relationship between tropical
SST and the Sahelian precipitation claimed before is also quite clear. However, the situation changes
once the Mediterranean SST is also considered. The correlation between MAG and Sahel rainfall ranges
from 0.22 to 0.76 and is 0.54 ± 0.11 using a 20 year sliding window. Of the 97 values, 89 are significant
(p < 0.1), accounting for 91.1%.

Whether SST is responsible for the Sahelian precipitation trend changes at about 1999 as shown
above is now further investigated. The anomalies of precipitation and SST indices between 1982
and 2016 are illustrated in Figure 5a. The time-dependent information flow (IF) from three of the
SST indices to the Sahelian precipitation is shown in Figure 5b, and is computed from Equation (6)
(see Data and Method). The IFs using the other 8 SST indices are not shown due to insignificant results.
The broken lines indicate the evolution of the IF, and the solid lines indicate the statistically significant
periods of the IF. Since 1999, all IFs of the three SST indices are negative. Both Med and Atd1 have
some significant negative IFs between 2003 and 2014. At the same time, better performance appears on
the MAG index with all significant negative IFs between 2003 and 2014. This implies that, within this
period, the SST anomalies have contributed to the stabilizing or leveling off of the precipitation in
the Sahel. While a positive IF would indicate that SST anomalies function to make the precipitation
either increase or decrease, the negative IF here suggests that the evolution of SST anomalies keeps
the precipitation around a long-term constant mean; that is, it levels it off. Quantitatively, this is most
clearly seen in the IF of the MAG. This suggests that these are important sources of information for
understanding the Sahelian precipitation variability. It is important to note here that the direction
of impact is implied in the IF obtained, so this represents the real causality of the SST interannual
variations with respect to that of the Sahelian precipitation [39].
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4. Discussion

Significant greening and wetting trends existed in the Sahel between 1982 and 2016. However,
due to the extreme drought of the 1980s, the weight of this period in the time series affected the overall
trends disproportionally. Long-term continuous vegetation data of 35 years provides the opportunity
to examine whether trends have really changed. Based on the PLR methods, significant turning points
have been detected in both the LAI and precipitation time series. Taking the year of 1999 as the typical
turning point, greening and wetting trends have leveled off. Such changes are also clearly expressed in
the spatial patterns (Figure 3). Even considerable browning areas are found due to the drying trends
between 1999 and 2016. Although overall both greening and wetting have leveled off, precipitation is
still slightly increasing, and vegetation has begun to decline slightly. Several potential mechanisms
have been considered to account for this phenomenon. Changes in surface water balance are caused
by temperature changes, which may not be fully reflected in changes in precipitation. Secondly,
human activities in this area are intense. Although quantifying the contribution and impact of human
activities has always been an unresolved problem, previous studies have long realized this.

These statistics-based results largely depend on the accuracy of the data. Previous studies have
shown that deviations exist among the vegetation indices of different satellite sources [42]. Meanwhile,
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the low density of site measurements also affects the quality of the precipitation data in the area.
We addressed this issue by comparing LAI3g and Moderate Resolution Imaging Spectroradiometer
(MODIS) LAI products (MOD15A2H, V006) [55] and comparing CRU data with remotely sensed
precipitation (TRMM, Tropical Rainfall Measuring Mission) [56], which has the advantage of coverage
(Table 3).

Table 3. Trend analysis of the LAI between 2001 and 2016 and precipitation of 1999–2016 from
different sources.

2001–2016 Annual J–N 1999–2016 Annual M–O

GIMMS LAI3g 0.38 × 10−3 ** 1.08 × 10−3 ** CRU Precipitation 2.17 ** 1.99 **
MODIS LAI 1.69× 10−3 ** 1.88 × 10−3 ** TRMM Precipitation 1.33 ** 1.26 **

Note. The units of LAI and precipitation trends are m2 m-2 yr-1 and mm yr-1, respectively. CRU: Climatic Research
Unit, TRMM: Tropical Rainfall Measuring Mission. ** indicates p < 0.01.

As illustrated in Figure 6 and Table 3, the seasonal variations between LAI3g and MODIS–LAI
and between CRU and TRMM precipitation are very similar. MODIS–LAI had a higher positive
trend at 1.69 × 10−3 yr−1 than that of LAI3g at 0.38 × 10−3 yr−1 between 2001 and 2016; however,
this trend of MODIS–LAI is still less than half of the trend of LAI3g between 1982 and 1999 at
4.25 × 10−3. Meanwhile, the trend of TRMM precipitation was lower than that of CRU records (Table 3),
which indicates that the wetting may level off in a stronger way. In addition, the spatial patterns
of the changes between these datasets were also generally consistent (Figure 7), although TRMM
precipitation has more areas with negative trends in the middle of the Sahel (Figure 7d). This suggests
that the results found above could be maintained across different datasets.

Until the middle of 2020, papers about the Sahel greening (or re-greening) and its mechanism
were published every month, as suggested by Google Scholar when the term “greening Sahel” is used.
Some work, although not much, has begun to investigate the turning points of dryland ecosystems [57].
Due to the intensive human activities and land–atmosphere interactions, the mechanisms of ecosystems
change are still under study. The findings of this paper suggest that the different stages of vegetation
changes should be considered.

In water-limited regions, the response of vegetation growth to precipitation is relatively evident.
A broader perspective could be expected if the drivers of precipitation can be determined. Here,
we developed a new SST index, MAG, by using SSTs from three ocean areas, including the Mediterranean
Sea, the subtropical North Atlantic, and global tropical oceans. Although MAG is based on statistical
fit, the three selected regions are based on key areas identified by previous studies [7,34], rather than on
a random basis. In order to avoid a result that is generated fortuitously, we further arranged the above
eight independent sea areas (thus not including Atd1 and Atd2) with all the combinations in groups
of three. The number of three-combinations of eight elements is equal to 56. Thus, 56 correlation
coefficients (not shown) were obtained with precipitation time series. The maximum correlation in
this set still appears in the MAG combination. Therefore, this index identifies three key SST areas
that affect precipitation in the Sahel. MAG is found to be closely related to Sahel precipitation on an
interannual scale, and the relationship between these is found to be stable in time based on a 20 year
sliding window running correlation analysis. Application of a causality analysis further revealed
that, in recent years, these SST indices become a source of stability (equilibrium) for the Sahelian
precipitation, with the MAG being the most significant driver of the variability, although it is important
to note that changes in SST may be either natural or have an anthropogenic signature [34,58].
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5. Conclusions

In conclusion, the semi-arid Sahel still shows small greening and wetting trends between 1982
and 2016. Based on a piecewise linear regression analysis, both the greening and the wetting of the
Sahel have been leveled off since about 1999 in both regional averaged and gridded records.

Even some browning areas are found due to the drying trends between 1999 and 2016.
The differences between the trends of the whole period and segments are mainly due to the extremely
low records during the severe drought in the early 1980s. The SST index present here, MAG,
by considering the Mediterranean Sea, the subtropical North Atlantic, and the global tropical oceans,
could explain the stable station of precipitation since about 2003. Therefore, the levelling off of the
greening is a response to precipitation changes affected by the SST. Our analysis shows furthermore
that care needs to be taken when analyzing climate records that have decadal trends that show extreme
values. These may disproportionally affect the causal structure of the variability.
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