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Abstract: For efficient building outline extraction, many algorithms, including unsupervised or
supervised, have been proposed over the past decades. In recent years, due to the rapid development
of the convolutional neural networks, especially fully convolutional networks, building extraction
is treated as a semantic segmentation task that deals with the extremely biased positive pixels.
The state-of-the-art methods, either through direct or indirect approaches, are mainly focused on
better network design. The shifts and rotations, which are coarsely presented in manually created
annotations, have long been ignored. Due to the limited number of positive samples, the misalignment
will significantly reduce the correctness of pixel-to-pixel loss that might lead to a gradient explosion.
To overcome this, we propose a nearest feature selector (NFS) to dynamically re-align the prediction
and slightly misaligned annotations. The NFS can be seamlessly appended to existing loss functions
and prevent misleading by the errors or misalignment of annotations. Experiments on a large scale
aerial image dataset with centered buildings and corresponding building outlines indicate that the
additional NFS brings higher performance when compared to existing naive loss functions. In the
classic L1 loss, the addition of NFS gains increments of 8.8% of f1-score, 8.9% of kappa coefficient,
and 9.8% of Jaccard index, respectively.

Keywords: deep convolutional networks; outline extraction; misalignments; nearest feature selector

1. Introduction

The rooftops of buildings are dominant features in urban satellite or aerial imagery. For many
remote sensing applications, such as slum mapping [1], urban planning [2], and solar panel capacity
analysis [3], the spatial distributions and temporal renews of buildings are critical. These information
are collected from labor-intensive and time-consuming field surveys [4]. For analyses in the city or
country scale, especially in developing countries, a robust and cost-efficient method for automatic
building extraction is preferred.

Over the past decades, many algorithms have been proposed [5]. These methods are verified
by datasets of various types (e.g., imagery or point cloud), scales (e.g., city or country), resolutions
(e.g., centimeter or meter), or spectrums (e.g., visible light, or multispectral) [6–10]. Based on whether
sampled ground truths are required, existing building outline extraction methods can be classified into
two categories: (i) unsupervised and (ii) supervised methods.

1.1. Unsupervised Methods

For most unsupervised methods, building outlines are extracted using thresholding pixel values
or histograms [11], edge detectors [12], and region techniques [13,14]. Because of their simplicity,
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these methods do not require additional training data and are fast. However, when applied to residential
areas with complex backgrounds, some artifacts and noises are inevitable in the extracted building outlines.

1.2. Supervised Methods

Unlike unsupervised methods, supervised methods extract building outlines from the images
through patterns learned from ground truths. By learning from correct examples, supervised methods
typically performed better in terms of both generalization and precision [15–17].

In the early stages, a two-stage approach that combines handcrafted descriptors for feature
extraction [18–21] and classifiers for categorizing [22–24] are adopted in supervised methods.
Because of the separation, an optimal combination of both the feature descriptor and classifier is
difficult to achieve. Rather than the two-stage approach, convolutional neural network (CNN) methods
enable a unified feature extraction and classification through sequential convolutional and fully
connected layers [25,26]. Initially, CNN-based methods are constructed in a patch-by-patch manner
that predicts the class of a pixel through the surrounding patch [27]. Subsequently, fully convolutional
networks (FCNs) are introduced to reduce memory costs and improve computational efficiency through
sequential convolutional, subsampling, and upsampling operations [28,29]. Because of information
loss caused by subsampling and upsampling operations, the prediction results of classic FCN models
often present blurred edges. Hence, advanced FCN-based methods using various strategies have been
proposed, such as unpooling [30], deconvolution [31], skip connections [32,33], multi-constraints [34],
and stacking [35]. Among FCN-based methods, two different approaches exist: (a) indirect and
(b) direct approaches.

1.2.1. Indirect Approach

In the indirect approach, instead of extracting the building outline directly from the input aerial
or satellite image, semantic maps are first generated. The outlines on top of those maps are computed
consequently. Because the outlines are derived from segmentation output, the final accuracy relies
significantly on the robustness of semantic segmentation.

In principle, all FCN-based methods mentioned above can be used for indirect building outline
extraction. However, owing to the sensitivity of the outline/boundary, training with only semantic
information typically results in an inconsistent outline or boundary. To prevent this, BR-Net [36]
utilizes a modified U-Net, and a multitask framework to generate predictions for semantic maps and
building outlines based on a consistent feature representation from a shared backend.

1.2.2. Direct Approach

Unlike the indirect approach, the direct approach extracts the building outlines directly from the
input aerial or satellite images. Compared with the indirect approach, the direct approach learns the
extraction pattern directly from the ground truth outline that preserves a higher fidelity. In the direct
approach, building outline extraction is considered a segmentation or pixel-level classification problem
that involves extremely biased data [37]. In recent years, some advanced FCN-based models, such as
RSRCNN [38], ResUNet [39], and D-LinkNet [40] have been proposed for better outline extractions.

However, these models focus on deeper network architectures to better utilize the feature
representation capability of hidden layers. Furthermore, regardless of how these models generate
predictions, their loss functions are computed directly from the pixel-to-pixel similarity of the ground
truth. Owing to the extremely biased distribution of positive and negative pixels, the gradient explosion
during training becomes a severe problem. Additionally, because of occasional human errors, several or
tens of pixel misalignments will inevitably occur between the annotation and the corresponding aerial
image. Owing to the much fewer positive pixels of the building outline, the pixel-to-pixel losses are
extremely sensitive to these misalignments.

Hence, we propose a nearest feature selector (NFS) module, enabling a dynamic re-alignment
between the ground truth and prediction. A dynamic matching between the ground truth and
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prediction is performed at every iteration to determine the matched position. Subsequently,
the overlapped areas of both the ground truth and prediction are used for further loss computation.
Because the NFS is used for the upper stream, it can be seamlessly integrated into all existing
loss functions. The effectiveness of the proposed NFS module is demonstrated using a VHR image
dataset [36] located in New Zealand (see Section 2.1). In comparative experiments, under different
loss functions, the addition of the NFS indicates significantly higher values of the f1-score, Jaccard
index [41], and kappa coefficient [42].

The main contributions of this study can are as follows:

• We design a fully convolutional network framework for direct building outline extraction from
aerial imagery.

• We propose the nearest feature selector(NFS) module to dynamically re-align the prediction and
annotation to avoid misleading by slightly misaligned annotations.

• We analyze the effectiveness of the NFS with different loss functions to understand its effects on
the performances of deep CNN models.

The rest of the paper is organized as follows: At first, we introduce the materials and methods
used for this research in the Section 2. Then, we present the learning curves and quantitative and
qualitative results in the Section 3. Subsequently, we illustrate our discussion and conclusion in the
Sections 4 and 5, respectively.

2. Material and Method

2.1. Data

To evaluate the performance of different methods, a research area located in Christchurch,
New Zealand, is selected. The original aerial imagery, as well as annotated building polygons,
are hosted by the Land Information of New Zealand (LINZ) (https://data.linz.govt.nz/layer/53413-
nz-building-outlines-pilot/). The aerial images are in a spatial resolution of 0.075. Prior to performing
our experiments, we evenly partition the study area into two areas for training (i.e., Figure 1a, left) and
testing (i.e., Figure 1a, right), respectively. The original annotations provided by the LINZ are registered
to the corresponding building grounds instead of rooftops (confirmed by visual interpretation uisng
QGIS GUI (https://qgis.org/)). For accurate outline extraction, we manually adjust vectorized building
outlines to ensure that all building polygons and aerial rooftops are roughly registered (i.e., Figure 1b).
Because of the huge amount of buildings and occasional human errors, sub-pixel or several pixel
misalignments will be inevitable. Thus, we have to train the models with imperfect “ground truth”.

        Im
age                 O

utline

(a) Study area                                                                    

(b) Manual adjustment                                                                    

(c) Sample data                                                                 

Figure 1. (a) Aerial imagery of the study area ranging from 172◦33′E to 172◦40′E and 43◦30′S to 43◦32′S,
encompassing approximately 32 km2. (b) Manual adjustment of provided annotation (e.g., from Red to
Green polygon). (c) Sample pairs of the extracted patches.

https://data.linz.govt.nz/layer/53413-nz-building-outlines-pilot/
https://data.linz.govt.nz/layer/53413-nz-building-outlines-pilot/
https://qgis.org/
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As shown in Figure 1a, the study area is covered mainly by residential buildings with sparsely
distributed factories, trees, and lakes. From training and testing areas, 16,635 and 14,834 patches are
extracted. The size of the patch is 224 × 224 pixels. As shown in Figure 1c, within each pair of the
patches, there are buildings in the center area.

2.2. Methodology

In this study, we are expected to correctly train and evaluate a model using imperfect annotation.
Due to the inevitable misalignments, values of the loss functions or metrics, which are directly
computed by the pixel-to-pixel comparison of the prediction and annotation, are inaccurate. To avoid
this, we introduce the nearest feature selector (NFS) module to perform similarity selection during
training and testing stages.

As shown in Figure 2, at the training phase, the NFS is applied to prediction and imperfect
annotation to generate aligned prediction and annotation for accurate loss estimation and proper
back-propagation. As for the testing phase, the NFS is applied to prediction and imperfect annotation
to generate aligned prediction and annotation that can be used for reliable accuracy analysis. Since the
NFS is applied to select the most paired overlap, it can avoid misalignments in the ground truth and
produce a more reliable accuracy or prediction error.

NFS

Model

Traing 
input

Prediction

Imper fect 
annotation

Aligned 
prediction

Aligned 
annotation

Loss / back-propagation

Testing 
input

Prediction

NFS

Imper fect 
annotation Aligned 

prediction

Aligned 
annotation

Accuracy

Tr ain ing 
phase

Test ing 
phase

Figure 2. Experimental design for model training and evaluation under imperfect annotation.
The proposed nearest feature selector(NFS) is applied to perform similarity selection during training
and testing stages.

Figure 3 presents the workflow for building outline extraction. The aerial images and their
corresponding building outlines are partitioned into two sets for training and testing. Through several
cycles of training and validation, the hyperparameters, including batch size, the number of iterations,
random seed, and initial learning rate were determined and optimized using the basic model
(i.e., SegNet + L1 loss). Subsequently, the predictions generated by the optimized models are evaluated
using the patches within the test set. For performance evaluations, we select three typically used
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balanced metrics, i.e., the f1-score, Jaccard index, and kappa coefficient. These metrics are computed
before the post-processing operations [43,44].

Model

Per formance      
evaluation

sl ice
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validation

test

p
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Data pr e-pr ocessing

Study       
area

Tr ain ing and evaluat i on

Text
Text

Text
Text

Figure 3. Experimental workflow for buidling outline extraction. Existing loss functions and proposed
nearest feature selector are trained and evaluated using 224 × 224 image patches extracted from
original dataset.

2.2.1. Data Preprocessing

According to the location and extent of every building polygon, a square window is applied to
the centroid of the polygon to extract the corresponding image patch. Later, all patches are resized
as 224 × 224 pixels. After data preprocessing, there are 16,635 and 14,834 image patches extracted
from training and testing area, respectively. Since we have carefully checked the annotations, there are
no negative patches to be discarded. Then, the image patches within the training area are shuffled
and partitioned into two groups: training (70%), and validation (30%). Subsequently, the number of
patches used for training, validation, and testing are 11,644, 4990, and 14,834, respectively.

2.2.2. Proposed Model

For an efficient building outline extraction, we utilize a modified SegNet [30] for feature extraction
and the NFS to achieve a dynamic alignment between the ground truth and prediction (see Figure 4).

Prediction
Ground truth

Nearest Feature 
Selector (NFS)

Conv Block 
Max-pooling 
Unpooling 
Indices 

224x224x24

112x112x48

56x56x96

28x28x192224x224x3

14x14x384

224x224x1

112x112x48

56x56x96

28x28x192

Figure 4. Overview of the proposed model. The model consists of a modified SegNet for feature
extraction and the nearest feature selector (NFS) module for dynamic alignment.
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• Feature extraction

In this study, we utilize a modified SegNet for effective feature extraction from very-high-resolution
aerial images. As shown in Figure 4, the modified SegNet comprises sequential operation layers, including
convolution, nonlinear activation, batch normalization, subsampling, and unpooling operations.

The convolution operation is an element-wise multiplication within a two-dimensional kernel
(e.g., 3 × 3, or 5 × 5). The size of the kernel determines the receptive field and computational efficiency
of the convolution operation. Owing to the complexity of the task, we set the number of kernels of
the corresponding convolutional layers to [24, 48, 96, 192, 384, 192, 96, 48, 24] [34]. Subsequently,
the convolution output is managed using a rectified linear unit [45], which treats all values less than
zero as zeros. To accelerate network training, a batch normalization [46] layer was appended to every
activation function except for the final layer. Max-pooling [47] and the corresponding unpooling [30]
were used to reduce and upsample the width and height of intermediate features, respectively.

• Nearest Feature Selector(NFS)

Figure 5 shows the mechanisms of the NFS. The center area of the ground truth slides over the
corresponding prediction along both the X- and Y-axes to generate overlaps of Xi,jXi,jXi,j and YcYcYc, respectively,
where i and j are the distances from the initial position. To obtain a balance between the computational
efficiency and sliding field, we set the maximum values of both i and j to five. Subsequently, they were
used for similarity estimation through different criteria according to the number of channels of
the output.

For the prediction and ground truth containing a single channel, the classic L1 distance is used.
Thus, the distance of the (i,j) overlap can be formulated as:

Di,jDi,jDi,j =
1

W × H

W

∑
i=1

H

∑
j=1
||XXXi,j −YYYc|| (1)

where XXX is the prediction, and YYY is the corresponding ground truth. Both XXX and YYY are ∈ RRRW×H . W and
H are the width and height of the corresponding output, respectively.

Nearest Feature Selector (NFS)

x-axis 
shifting 
(stride=1)

Similarity 
selection

y-axis 
shifting 
(stride=1)

Xi,j

Yc

…

Figure 5. Overview of the nearest feature selector (NFS) module. The center area of ground truth slides
over prediction along X- and Y-axes to generate overlaps that are used for similarity selection.
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For the prediction and ground truth containing multiple channels, the average cosine similarity
along the channels will be calculated. In such cases, the distance of overlaps can be formulated as:

Di,jDi,jDi,j = 1− 1
W × H

W

∑
i=1

H

∑
j=1

XXXi,j ·YYYc

||XXXi,j|| × ||YYYc||
(2)

From all overlaps, location indices of the one with the closest distance to the ground truth is
determined as:

(imin, jmin)(imin, jmin)(imin, jmin) = argmin
i,j

DDD (3)

The nearest overlap (Ximin ,jmin
Ximin ,jminXimin ,jmin ) and corresponding ground truth (YcYcYc) are selected for further

final loss estimation. Four well-known loss functions, namely, L1, mean square error (MSE), binary
cross-entropy (BCE) [48], and focal loss [49], are chosen in this study.

LL1LL1LL1 =
1

W × H

W

∑
m=1

H

∑
n=1
||ym,n − gm,n|| (4)

LMSELMSELMSE =
1

W × H

W

∑
m=1

H

∑
n=1

(ym,n − gm,n)
2 (5)

where W and H represent the width and hight of the nearest overlap (Ximin ,jmin
Ximin ,jminXimin ,jmin ) and corresponding

ground truth (YcYcYc). The values of ym,n and gm,n are the predicted probability and ground
truth, respectively.

For notational convenience, we define pm,n:

pm,n =

{
ym,n, if gm,n = 1

1− ym,n, if gm,n = 0
(6)

As compared with traditional cross-entropy, focal loss introduces a scaling factor (γ) to focus on
difficult samples. Mathematically, the BCE and focal loss can be formulated as:

LBCELBCELBCE = − 1
W × H

W

∑
m=1

H

∑
n=1

log(pm,n) (7)

L f ocalL f ocalL f ocal = −
1

W × H

W

∑
m=1

H

∑
n=1

(1− pm,n)
γlog(pm,n) (8)

Because the NFS is computed dynamically, it can be seamlessly integrated into the existing loss
without further modification.

Three typically used balanced metrics, i.e., the f1-score, Jaccard index, and kappa coefficient,
are used for the quantitative evaluation. Compared with unbalanced metrics such as precision and
recall, the selected metrics provide a more generalized accuracy level by considering both precision
and recall.

F1− scoreF1− scoreF1− score =
2× TP

2× TP + (FP + FN)
(9)

JaccardJaccardJaccard =
TP

TP + FP + FN
(10)

Pe =
(TP + FN)× (TP + FP) + (FP + TN)× (FN + TN)

(TP + FP + FN + FN)× (TP + FP + FN + FN)
(11)

Po =
TP + TN

TP + FP + FN + FN
(12)

KappaKappaKappa =
Po− Pe
1− Pe

(13)
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where TP, FP, FN, and TN represent the number of true positives, false positives, false negatives,
and true negatives, respectively.

3. Results

Four well-known loss functions, i.e., L1, mean square error (MSE), binary cross-entropy (BCE) [48],
and focal loss [49] are used in this study. The L1 and MSE can be regarded as the most classic and
typically used criteria for pixel-to-pixel comparisons. The BCE is a typical loss function that increases
or decreases exponentially for binary classification. The focal loss introduces a scale factor to the BCE
to reduce the importance of the easy example. These loss functions were trained either with or without
the NFS, separately. All experiments were performed on the same dataset and processing platform.

Three typically used balanced metrics, i.e., the f1-score, Jaccard index, and kappa coefficient,
are used for the quantitative evaluation. Compared with unbalanced metrics such as precision and
recall, the selected metrics provide a more generalized accuracy level by considering both precision
and recall.

3.1. Learning Curves

Figure 6 shows the relative values of loss from different loss functions under the validation dataset.
Among all the loss functions (i.e., L1, MSE, BCE, and focal), the loss with the NFS (i.e., +NFS) indicated
a faster converging speed than those without (i.e., −NFS).
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b. Figure 6. Trends in validation loss values over different iterations.

Figure 7 shows the trend of kappa coefficient values over various iterations from four different
loss functions under the validation dataset. Among all the conditions, the focal loss trained with the
proposed NFS (i.e., focal + NFS) indicates the highest kappa coefficient values in most of the iterations.
By contrast, the L1 loss trained without the NFS (i.e., L1 − NFS) indicated the lowest kappa coefficient
values for almost every iteration.
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Figure 7. Trends in validation accuracy values over different iterations.

3.2. Quantitative Results

Figure 8a shows the relative performances of different loss functions under the test dataset.
Among all loss functions (i.e., L1, MSE, BCE, and focal), the loss with the NFS indicates the higher
values for all evaluation metrics.

Figure 8b shows the corresponding values of the evaluation metrics over various loss functions.
Among four loss functions, regardless of with or without the NFS, the focal loss is generally better than
BCE, MSE, and L1 loss. L1 loss without NFS (L1 − NFS) indicates the lowest values for all metrics
in all conditions. The best performance is achieved by focal loss with NFS, i.e., 0.651 for f1-score,
0.490 for the Jaccard index, and 0.626 for the kappa coefficient. Under all loss functions, the addition
of the NFS results in significantly higher values for all evaluation metrics. The result indicates that
the proposed NFS can effectively manage the slight misalignments from the annotation and achieve
better performance. Interestingly, on the weakest L1 loss, the addition of the NFS results in the most
significant increments among the three evaluation metrics. The increments of the f1-score, kappa
coefficient, and Jaccard index reached 8.8%, 8.9%, and 9.8%, respectively.

3.3. Qualitative Results

Figure 9 presents six representative results of outlines extracted from the model trained by L1
loss with/without the NFS under test dataset. The backgrounds, red lines, and green circles represent
the aerial input, predicted outline, and focused area. In general, the addition of the NFS yields a
better building outline extraction, particularly on shadowed areas (e.g., green circles in a, b, and e) and
turning corners (e.g., green circles in d and f). Additionally, the model trained with the NFS yields a
more intact outline (e.g., green circles in c).

Figure 10 shows six representative groups of building outlines extracted from the model trained
by the MSE loss with/without the NFS. Generally, the addition of the NFS yields a slightly better
building outline extraction. Using the NFS, the extracted outlines contain fewer false positives within
buildings (e.g., green circles in a and b) and fewer breakpoints (e.g., green circles c, d, e, and f).

Figure 11 shows six representative groups of outlines extracted from the model trained by BCE
loss with or without the NFS. The backgrounds, red lines, and green circles represent the aerial input,
predicted outline, and focused area, respectively. As shown in the figure, the addition of the NFS yields
a slightly better line extraction at areas shadowed by surrounding trees (e.g., green circles of column a,
e, and f). Moreover, the additional NFS results in better line continuity around corners of the buildings
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(e.g., green circles of column b, c, and d). In general, using the proposed NFS, the building outline
extracted from the aerial image is more intact, particularly on building corners and shadowed areas.

Loss Condition F1-score Jaccard Index Kappa coefficient
L1 � NFS 0.524 0.503 0.382
L1 + NFS 0.571 0.548 0.419

MSE � NFS 0.596 0.573 0.445
MSE + NFS 0.611 0.587 0.458
BCE � NFS 0.596 0.573 0.444
BCE + NFS 0.613 0.589 0.459
Focal � NFS 0.618 0.588 0.459
Focal + NFS 0.624 0.597 0.468

1

0.300

0.400

0.500

0.600

0.700

− NFS + NFS − NFS + NFS − NFS + NFS − NFS + NFS

L1 L1 MSE MSE BCE BCE Focal Focal

Va
lu

es
F1-score Jaccard Index Kappa coefficient

(a) Bar chart 

(b) Table
Figure 8. Performances of different losses, either with or without nearest feature selector (NFS). (a) Bar
chart for comparison of relative performances (b) Table of performances under different loss functions.
For each loss function, the highest values are highlighted in bold.

                 a                             b                             c                              d                            e                             f       

        G
round truth             L1 (-N

FS)              L1 (+N
FS)    

Figure 9. Representative results of extracted outlines from model trained by L1 loss with/without
nearest feature selector (NFS). Backgrounds, red lines, and green circles represent aerial input, predicted
outline, and focused area, respectively. Selected results are denoted as (a–f).
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                 a                             b                             c                              d                            e                             f       

        G
round truth            M

SE (-N
FS)         M

SE (+N
FS)    

Figure 10. Representative results of outlines extracted from model trained by mean square error (MSE)
loss with/without nearest feature selector (NFS). Backgrounds, red lines, and green circles represent
aerial input, predicted outline, and focused area, respectively.Selected results are denoted as (a–f).

                 a                             b                             c                              d                            e                             f       

        G
round truth            B

C
E (-N

FS)          B
C

E (+N
FS)    

Figure 11. Representative results of outlines extracted from model trained by binary cross-entropy
(BCE) loss with/without nearest feature selector (NFS). Backgrounds, red lines, and green circles
represent aerial input, predicted outline, and focused area, respectively.Selected results are
denoted as (a–f).

Figure 12 presents six representative pairs of building outlines extracted from the model trained
with the focal loss with or without the NFS. Owing to the robustness of the focal loss, even without
the NFS, the model successfully recognizes and extracts the major parts of the building outline from
the aerial input (e.g., b, c, and f). However, with the additional NFS, the generated outlines contain
fewer false positives around corners with complicated backgrounds (e.g., a, d and e). Compared with
L1 loss, the addition of NFS imposes a less significant effect on the model trained with focal loss.
This observation is consistent with the quantitative result shown in Figure 8b.
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                 a                             b                             c                              d                            e                             f       

        G
round truth            Focal (-N

FS)        Focal(+N
FS)    

Figure 12. Representative results of outlines extracted from model trained by focal loss with/without
nearest feature selector (NFS). Backgrounds, red lines, and green circles represent aerial input, predicted
outline, and focused area, respectively.Selected results are denoted as (a–f).

Figure 13 presents four representative pairs of failure cases from the model trained with the loss
function that combines with or without the nearest feature selector (NFS). As compared with the model
trained without NFS, the addition of NFS might lead to un-expected misclassification around corners.

                 L1                             MSE                             BCE                             Focal                                        G
round truth                -N

FS                      +N
FS    

Figure 13. Representative failure cases of outlines extracted from model trained by four losses
with/without nearest feature selector (NFS). Backgrounds, red lines, and green circles represent
aerial input, predicted outline, and focused area, respectively.

3.4. Computational Efficiency

All experiments are trained and tested on a Sakura “koukakuryoku” Server (https://www.sakura.
ad.jp/koukaryoku/) equipped with a 4times NVIDIA Tesla V100 GPU (https://www.nvidia.com/
en-us/data-center/tesla-v100/) and installed with 64-bit Ubuntu 16.04 LTS. The original SegNet
is implemented on Caffe [50] and trained on multi-class scene segmentation tasks, CamVid road
scene segmentation [51] and SUN RGB-D indoor scene segmentation [52]. The stochastic gradient
descent (SGD) with a fixed learning rate of 0.1 and a momentum of 0.9 is applied to train the

https://www.sakura.ad.jp/koukaryoku/
https://www.sakura.ad.jp/koukaryoku/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/data-center/tesla-v100/
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model. The implementation of the modified SegNet is based on geoseg (https://github.com/
huster-wgm/geoseg) [53], which is built on top of Pytorch(version ≥ 0.4.1). To avoid interference
by other hyperparameters, all models are trained with a fixed batch size (i.e., 24) and a constant
iteration (i.e., 10,000). The Adam stochastic optimizer, which operates at default settings (lr = 2−4,
betas = [0.9, 0.999]), is used for training different models.

Table 1 shows the computing speeds of the methods in frames per second (FPS). Among all the
loss functions, the additional NFS results in slightly longer processing time during both training and
testing. However, the decline in PFS is not significant.

Table 1. Comparison of the computational efficiencies of different loss functions under conditions that
with or without NFS.

Loss Condition Training FPS Testing FPS

L1 −NFS 102.3 264.4
L1 +NFS 98.5 236.1

MSE −NFS 101.9 265.9
MSE +NFS 98.4 236.2

BCE −NFS 102.1 266.8
BCE +NFS 98.7 236.6

Focal −NFS 101.6 268.5
Focal +NFS 97.9 236.3

4. Discussion

4.1. Regarding the NFS

In recent years, fully convolutional networks have demonstrated their ability in automatically
extracting line features, including roads and building outlines [36,39,54]. However, those studies mainly
focused on designing deeper or more complex network architectures to enhance the representation
capability for better predictions. The loss functions of fully convolutional networks cannot handle
misalignments or rotations between inputs and manually created annotations. Because the building
outline occupies a small portion of pixels, misalignments and rotations will severely interfere with the
building outline extraction accuracy.

Herein, we propose the NFS module to dynamically re-align the prediction and corresponding
annotation. The proposed framework can be easily appended into existing loss functions, such as L1,
MSE, and focal loss. Through a dynamic re-alignment, the addition of NFS enables the correct position
of the annotation to be located for an appropriate loss calculation. Qualitative and quantitative results
based on the testing data demonstrated the effectiveness of our proposed NFS.

4.2. Accuracies, Uncertainties, and Limitations

Among all methods, the focal loss with NFS indicates the highest values for all evaluation metrics.
Its values of the f1-score, Jaccard index, and kappa coefficient are 0.624, 0.597, and 0.468. Compared
with the naive L1 loss, the addition of the NFS results in significant increments in all evaluation metrics.
The increments of the f1-score, kappa coefficient, and Jaccard index reach 8.8%, 8.9%, and 9.8%,
respectively. As it is arguable that the kappa coefficient is unsuitable in the assessment and comparison
of the accuracy [55], the actual performance gained from the NFS might be less significant (i.e., less than
9.8%). For robust loss functions (e.g., focal, and BCE loss), the improvement afforded by the NFS is
less significant (see details in Figure 8b). Owing to the sliding-and-matching mechanism, the proposed
NFS cannot be applied to annotations that require rotation correction. Since the methods are designed
and trained on image patches with dense buildings, the trained model is not appropriate for evaluating
the entire study area where buildings are sparsely presented.

https://github.com/huster-wgm/geoseg
https://github.com/huster-wgm/geoseg
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We observe a slight decrease in processing speed when the NFS is applied through the analysis
of computational efficiency. Considering the performance gain by the NFS, computational efficiency
degradation is negligible. Because the NFS is independent of the aerial characteristic, in principle,
it should apply for not only aerial images, but also other data sources (e.g.satellite, SAR, and UAV).
The effectiveness of the NFS will be further estimated using publicly available datasets from
various sources [56].

Because of the extremely biased negative/positive ratio, complete building outline extraction
is still challenging. With the current classification-based scheme, the model is trained to generate
pixel-to-pixel prediction using features extracted from sequential convolutional layers. The predicted
pixels of the building outline lack of internal connectivity that some pixels might be misclassified as
non-outline (e.g., 2nd and 3rd rows in Figure 9).

5. Conclusions

For an accurate building outline extraction, we design a nearest feature selector (NFS) module to
dynamically re-align predictions and slightly misaligned annotations. The proposed module can be
easily combined with existing loss functions to manage subpixel or pixel-to-level misalignments of
the manually created annotations more effectively. For all loss functions, the addition of the proposed
NFS yielded significantly better performances in all the evaluation metrics. For the classic L1 loss,
the increments gained by using the additional NFS are 8.8%, 8.9%, and 9.8% for the f1-score, kappa
coefficient, and Jaccard index, respectively. We plan to improve the similarity selection mechanism
and apply it to other data sources to achieve better generalization capacity for large-scale applications.
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