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Abstract: Lake ice thickness is a sensitive indicator of climate change largely through its dependency
on near-surface air temperature and on-ice snow mass (depth and density). Monitoring of the seasonal
variations and trends in ice thickness is also important for the operation of winter ice roads that
northern communities rely on for the movement of goods as well as for cultural and leisure activities
(e.g., snowmobiling). Therefore, consistent measurements of ice thickness over lakes is important;
however, field measurements tend to be sparse in both space and time in many northern countries.
Here, we present an application of L-band frequency Global Navigation Satellite System (GNSS)
Interferometric Reflectometry (GNSS-IR) for the estimation of lake ice thickness. The proof of concept
is demonstrated through the analysis of Signal-to-Noise Ratio (SNR) time series extracted from Global
Positioning System (GPS) constellation L1 band raw data acquired between 8 and 22 March (2017
and 2019) at 14 lake ice sites located in the Northwest Territories, Canada. Dominant frequencies
are extracted using Least Squares Harmonic Estimation (LS-HE) for the retrieval of ice thickness.
Estimates compare favorably with in-situ measurements (mean absolute error = 0.05 m, mean bias
error = −0.01 m, and root mean square error = 0.07 m). These results point to the potential of
GPS/GNSS-IR as a complementary tool to traditional field measurements for obtaining consistent ice
thickness estimates at many lake locations, given the relatively low cost of GNSS antennas/receivers.
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1. Introduction

Lake ice is a significant landscape feature in the winter season at northern latitudes and plays a
key role in climate moderation and the energy balance [1]. Lake ice conditions, notably the length of
the ice season and ice thickness, have a significant impact on the economy of northern regions through
their influence on transportation, travel, fishing, and recreation activities [2]. Therefore, accurate
knowledge about lake ice properties, such as thickness, is necessary. However, manual measurement
of ice thickness is time-consuming and can be expensive to perform in remote locations. Automated
approaches are a possible alternative. For example, upward facing sonar systems such as the shallow
water ice profiler (SWIP) have been used to obtain lake ice thickness throughout the ice season at both
temperate and subarctic latitudes [3,4]. Ground-based radar systems such as Frequency-Modulated
Continuous-Wave (FM-CW) radar have also proven effective for obtaining ice thickness at X- and
Ku-band [5]. However, these systems are pricey to both acquire (e.g., tens to hundreds of thousands of
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dollars) and deploy at multiple locations. Furthermore, while satellite retrievals of ice thickness from
passive microwave and radar altimetry missions can provide reasonable estimates (root mean square
errors ca. 0.15–0.30 m and correlations >0.65), these methods are limited to larger lakes due to the low
spatial resolution of the associated sensors (ca. km to tens of km footprints) [6,7]. Therefore, there is
the need for a lower cost solution that can provide high-resolution estimations of ice thickness.

Non-positioning applications of Global Navigation Satellite System (GNSS) are frequently used
as a low-cost method in various domains of application (e.g., atmospheric and surface monitoring).
GNSS Interferometry Reflectometry (GNSS-IR) is one of the most common remote sensing approaches
among non-positioning GNSS applications to measure surface properties, including soil moisture
content [8], snow depth [9], and vegetation water content [9]. Although the potential of GNSS-IR for
sea ice detection [10] and ice thickness estimation [11,12] has been explored, there has been no direct
field application for measurements over ice cover at multiple lake sites.

In this letter, we demonstrate and suggest the potential use of permanent or semi-permanent
GNSS-IR stations for estimating lake ice thickness using data acquired during March 2017/2019 field
campaigns at 14 sites in the Northwest Territories, Canada. GNSS antennas/receivers were installed
concurrently near locations where manual ice thickness measurements were made. The dominant
frequencies of signal-to-noise ratio (SNR) of reflected signals from the Global Positioning System (GPS)
constellation are extracted using the Least-Squares Harmonic Estimation (LS-HE) method to estimate
the vertical distance from the reflective surface, which is derived from the distance between the GPS
antenna phase centre and the ice–water interface. Ice thickness retrievals are shown to be in good
agreement with in-situ measurements.

2. Methodology

2.1. Ice Thickness Retrieval from SNR

The SNR can be derived from the raw data recorded by any GNSS receiver. According to [9], the
SNR has a sinusoidal form that varies with satellite elevation angle (e) and can be written as follows:

SNR = A(e)sin
(4πH
λ

sin(e) + φ
)

(1)

where A(e), H, and φ denote amplitude, antenna height and phase shift, respectively. The carrier
wavelength is represented by λ, which is 19 cm for GNSS L1 band. Next, the frequency (4πH/λ) is
estimated using univariate LS-HE as suggested in [13] to retrieve the antenna height from the reflective
surface. The periodogram presented in Figure 1 is the output of the LS-HE method where the major peaks
represent the distance between the antenna phase centre and the ice–water interface. Readers are referred
to [9] for further details on the approach. This example of frequency waveform was obtained from the
SNR time series recorded by the GNSS receiver at Waite Lake (Site ID 6; see Table 1) with dominant peaks
related to the vertical distance between the antenna phase centre and the reflecting surface. Since the
GNSS antenna is installed on the ice surface, the antenna phase centre height (i.e., the distance between
the antenna phase centre and the ice–water interface) shown by the waveform is used to estimate total
ice thickness. However, because the antenna phase centre is located above the ice surface, an offset
must be applied to obtain the distance between the ice surface and ice–water interface. For this example,
an antenna phase centre height of 0.75 m was retrieved. After applying the offset, ice thickness was
determined to be 0.68 m, while the manual field measurement was 0.73 m.

The reasons that LS-HE is preferred rather than any other periodogram, such as the Fourier
transform, are twofold: (1) the time intervals between data sampling do not need to be equal, and (2)
other dominant frequencies can be used to obtain the antenna height from multiple reflective layers.
However, in the present study, the only layer considered as the reflective surface is the ice–water
interface since it is known that the L-band signal penetrates well into the freshwater ice column overlain
by dry snow [14,15] and the dominant reflection is at the ice–water interface due to the large dielectric
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contrast between the two layers. Figure 2 illustrates the principle behind the GNSS-IR retrieval method
for ice thickness estimation during the ice growth season.
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Figure 1. SNR spectrum obtained by LS-HE for a GNSS antenna installed on the top of the ice surface
at Waite Lake (Site ID 6 in Table 1). Different colors represent the spectrum from different satellites.
The dashed red line shows the median of the dominant peaks obtained from each satellite and is
determined to be the antenna phase centre height (the distance between the antenna phase centre
and the ice–water interface) (0.75 m). The solid blue line shows the estimated ice thickness of 0.68 m
following application of the offset to account for the distance between the ice surface and the antenna
phase centre.

Table 1. General description of field sites along with corresponding geographical coordinates,
deployment dates and ice thickness measurements from drilled boreholes.

GPS Site ID Lake Name

Geographical Coordinates
(Decimal Degrees) Date

Measured Ice
Thickness

(m)Latitude Longitude

1 Gordon Lake 63.04556 −113.2169 9 March 2017 0.82

2 Gordon Lake 62.95611 −113.2667 10 March 2017 0.90

3 Gordon Lake 63.09444 −113.2186 8 March 2017 0.88

4 Gordon Lake 62.95361 −113.2331 10 March 2017 0.86

5 Gordon Lake 62.9425 −113.3003 14 March 2019 1.02

6 Waite Lake 62.8475 −113.3236 16 March 2019 0.73

7 Pensive Lake 62.73028 −113.3075 17 March 2019 0.80

8 Murray Lake 63.01222 −113.4606 12 March 2019 0.86

9 Ross Lake 62.69942 −113.24374 17 March 2019 0.94

10 Dome Lake 62.76222 −113.2561 18 March 2019 0.79

11 Fenton Lake 63.02222 −112.9669 14 March 2019 0.85

12 Upper Ross Lake 62.72933 −113.15086 17 March 2019 1.02

13 Noell Lake 68.51149085 −133.5497 21 March 2019 0.89

14 Noell Lake 68.51185952 −133.551323 22 March 2019 0.89
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Figure 2. Principle behind the GNSS-IR retrieval approach for the estimation of ice thickness showing
the GNSS reflected signal at the ice–water interface.

2.2. Experiment Setup

GPS data were collected from modular (antenna and receiver) GNSS stations installed close to
locations of manual ice thickness measurements between 8 and 22 March in 2017 and 2019. The systems
were not initially deployed for GNSS-IR purposes, but rather as control points in support of airborne
and satellite synthetic aperture radar (SAR) investigations on lake ice. GNSS antennas/receivers
were installed at 14 lake ice sites located in the Northwest Territories, Canada (Figure 3; Table 1).
The systems consisted of dual-frequency TRIMBLE NETR9 receivers and AshTech Pinwheel (model
ASH701975.01A) antennas with 1 Hz sampling rate. Snow was cleared from a roughly 1x1 m patch so
that the antenna could be placed directly on the ice surface (phase centre situated 0.071 m above the
top of the ice surface) (Figure 4). Since reflected signals at low elevation angles easily interfere with
line-of-sight signals [16], data were collected only from GPS satellites from low elevation angles (5 to
30◦). The software package introduced in [17] was used to extract SNR data from raw data files. Based
on the average ice thickness of 0.88 m measured from all sites, the first Fresnel zone has a major axis
length of about 20.22 m and a minor axis length of about 1.76 m with the lowest GPS satellites elevation
angle of 5◦, and 1.21/0.61 m (major/minor axis) with the larger elevation angle of 30◦. The process
described in Section 2.1 was used to estimate ice thickness for all sites. Manual measurements of ice
thickness were taken by drilling boreholes in the ice using ice augers. Ice thickness was determined
using a tape measure with an ice thickness gauge to the nearest 0.01 m. Meteorological data for 2017
and 2019 were extracted for the two Environment and Climate Change Canada (ECCC) stations nearest
the study sites, “Inuvik Climate” and “Yellowknife Airport” [18,19] to identify days experiencing
above-freezing air temperatures that could have an impact on the quality of GPS ice thickness retrievals.
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3. Results and Discussion

Following the retrieval procedure described in Section 2.1, ice thickness was estimated at each of
the 14 sites (Figure 5). For all sites combined, the mean absolute error (MAE) is 0.05 m, mean bias error
(MBE) is −0.01 m, and the root mean square (RMSE) is 0.07 m. The obtained RMSE from this method is
an improvement compared to best estimates of ice thickness from Great Bear and Great Slave Lakes,
which showed a RMSE of 0.19 m [6]. The negative MBE indicates slight underestimation of retrieved



Remote Sens. 2020, 12, 2721 6 of 9

ice thicknesses overall. The correlation between in-situ measurements and GNSS-IR retrievals is 0.66
(Figure 6), which fits in the range for previous satellite-based estimates at >0.65 [7].
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Temperature records from the two ECCC stations provide insight into likely sources of larger
error observed for some retrievals. These stations show that temperatures during or 2–3 days prior
to coincident GPS-IR and ice thickness measurements reached 0 ◦C or above, particularly for sites at
Pensive, Ross, and Upper Ross Lake (sites 7, 9, and 12) (Figure 7). Above-freezing daytime (maximum)
temperatures led to melt followed by possible refreezing (minimum) at night. These conditions affected
the GPS signals leading to larger retrieval errors (maximum of 0.13 m) as these temperature fluctuations
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during the 2019 field campaign resulted in snow surface melt and possibly within layers above the ice
surface. These layers have a higher water content and act as additional sources of L-band reflection for
direct GPS signals. Therefore, this added reflection can add noise to the measured signals and cause a
decrease in the accuracy of the estimation of ice thickness. This was not found to be an issue for data
collected in 2017, as the average temperature was −22.6 ◦C. Roughness of the ice–water interface may
have an impact on the retrieved estimates. However, for the purpose of this research letter, the interface
was assumed planar. Roughness of the ice–water interface for lake ice is difficult to retrieve and is an
area of ongoing research. While other factors (i.e., snowpack and ice structure) may have affected the
accuracy of estimated values (sites 1 and 11), further field information is needed to understand the
extent of this impact and should be an area of future study.
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4. Conclusions and Future Work

In addition to other applications examined up until now, this study suggests that GPS/GNSS-IR
can be employed as a low-cost and reliable remote sensing approach to estimate lake ice thickness.
This method is also beneficial over spaceborne passive microwave estimates of ice thickness as it
allows for finer-scale estimates and can be used for small and medium size lakes. Among different
frequency retrieval methods, LS-HE is used in this experiment, because it allows for the use of data at
unequal time intervals. Ice thickness was estimated using a GNSS-IR approach at 14 lake ice sites and
compared to in-situ measurements. The RMSE of the results is 0.07 m, the MBE is −0.01 m, and the
MAE is 0.05 m, which is an improvement compared to previous estimates on large lakes made using
passive microwave and radar altimetry data [6,7]. Moreover, a correlation of 0.66 is found between
GPS-IR retrievals and in-situ measurements. Temperature records from weather stations located close
to the locations show that higher temperatures, which can lead to snow surface melt and produce
layers with higher water content, likely impacted the accuracy of ice thickness estimation. Further
development of this method could allow for the development of a network of GNSS-IR station that
may supplement current measurements of ice thickness along crucial ice routes.

It is also worth noting that this study focused on measurements at high-latitude lake sites that
experience more consistent (colder) winter conditions compared to mid latitudes. At lower latitudes,
mid-winter thaw and rainfall events are more common throughout the winter season [20]. This means
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that unlike the lakes presented in this study, where the main reflective surface was the ice–water
interface as expected under cold conditions, additional reflective surfaces (slush/water layers, ice layers
in the snowpack, and varying ice types) may be present in the snowpack or upper ice layers of lake ice
cover at lower latitude lake locations. These effects should be studied in future research. Moreover,
measurements were only obtained during late-winter field campaigns (March 2017 and 2019); therefore,
a limitation of this study is that we do not know with certainty how well the retrieval approach would
perform from initial ice formation with thin ice in late-fall/winter until just before melt onset in spring.
Although the correlation between estimated and measured ice thickness is relatively high and retrieval
errors are low, further research is needed to determine the consistency of the retrievals throughout the
ice season.

Future experiments to expand on this novel work should involve the establishment of a
semi-permanent station mounted on mast along the shore of a lake to observe the GNSS-IR reflected
signals to lake ice throughout one or more full ice seasons. The additional height of the mast would
allow for the retrieval of ice thickness over a larger area compared to placing the antenna directly
on the ice surface as was done in this initial experiment [21]. Additionally, this setup can include
tests of different antenna orientations, such as a side-looking antenna as described by [22] or the
three-antenna approach (one zenith and two side-looking) as described by [14]. The establishment of a
semi-permanent station would provide valuable information on how the approach proposed herein
could be used to monitor lake ice growth and decay. Furthermore, supplemental field measurements
would lead to a better understanding of how the GNSS-IR reflected signals are impacted by ice and
overlying snow properties under colder and warmer weather conditions (e.g., snow surface melt,
slushing at the snow–ice interface and snow–ice formation following refreeze of slushy layers) and
uncertainty characterization in ice thickness retrievals. In addition to field measurements, forward
modelling using radiative transfer models, such as the Snow Microwave Radiative Transfer (SMRT)
model [23], will help to further identify uncertainties in the estimate of ice thickness. An assessment
of the various sources of uncertainty is a necessary step towards the implementation of a GNSS-IR
network of stations where lake ice thickness estimates could be obtained on a regular basis across
various regions of northern countries such as Canada.
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