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Abstract: This study investigated the drivers of degradation in Southeast Asian mangroves through
multi-source remote sensing data products. The degradation drivers that affect approximately half of
this area are unidentified; therefore, naturogenic and anthropogenic impacts on these mangroves
were studied. Various global land cover (GLC) products were harmonized and examined to identify
major anthropogenic changes affecting mangrove habitats. To investigate the naturogenic factors,
the impact of the water balance was evaluated using the Normalized Difference Vegetation Index
(NDVI), and evapotranspiration and precipitation data. Vegetation indices’ response in deforested
mangrove regions depends significantly on the type of drivers. A trend analysis and break point
detection of percentage of tree cover (PTC), percentage of non-tree vegetation (PNTV), and percentage
of non-vegetation (PNV) datasets can aid in measuring, estimating, and tracing the drivers of
change. The assimilation of GLC products suggests that agriculture and fisheries are the predominant
drivers of mangrove degradation. The relationship between water balance and degradation shows
that naturogenic drivers have a wider impact than anthropogenic drivers, and degradation in
particular regions is likely to be a result of the accumulation of various drivers. In large-scale studies,
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remote sensing data products could be integrated as a remarkably powerful instrument in assisting
evidence-based policy making.

Keywords: mangrove sustainability; deforestation depletion; anthropogenic; natural water balance;
Southeast Asia

1. Introduction

Mangroves are woody plants located in the intertidal areas of tropical and subtropical regions.
They typically thrive under harsh environmental conditions, such as high salinity, high temperature,
extreme tides, and high sedimentation [1,2]. These productive and biologically important ecosystems
provide crucial protection for coastal and marine systems, as well as humans, such as preventing
abrasion [3], reducing tsunami impacts [4], providing an ecosystem for flora and fauna [5], and acting
as a sink for carbon dioxide [6].

In Southeast Asia, mangrove forests cover an area of 63.2 × 105 ha, which constitutes 34.9% of the
area of the world’s mangrove forests (181.1 × 105 ha), with great species richness and structure [7,8].
The depletion rate of Southeast Asian mangroves from 2000 to 2012 was 4.73%, which amounts to an
annual global loss of 0.39% [9]. Because of this depletion, mangrove forests are facing considerable
risks [10,11]. This depletion is due to both anthropogenic and natural changes [12]. In terms of
anthropogenic drivers, a significant proportion of mangrove loss is caused by the direct destruction of
these forests for other land uses. These include overexploitation by coastal communities; conversion to
settlements, tourist resorts, and agricultural land for rice, coconut fields, salt bed, industrial activities,
and brackish-water aquaculture [13]. Natural drivers such as climate change, accelerated sea-level rise,
meteorological phenomena, a changing water balance, and other aspects of global change also affect
mangrove forests across the world [14]. Natural drivers of mangrove loss were frequently observed
and widely distributed across the globe [15–17]. However, natural drivers constitute a substantial
proportion of predicted future losses, primarily due to changes in meteorological phenomena [18,19],
which can reduce precipitation levels and increase evapotranspiration [20], affecting the water balance
that is vital for healthy mangrove forest growth.

Vegetation, soil, and water are interrelated factors that influence mangrove life. Soil has many
functions that are very important for mangrove growth; for instance, each mangrove species requires a
different type of soil texture to live [20–23]. Changes in soil characteristics can affect the capacity of
mangroves to capture carbon [24,25]. In addition, soil factors can also affect vegetation. For example,
changes in nutrient content in the soil can cause competition between mangroves and other vegetation,
resulting in changes in vegetation zone [26,27]. Another factor that greatly influences mangrove life is
water. Mangroves can only survive in tidal inundation with a range of 0.4–1.27 m [28,29]. Increases in
sea level due to climate change will cause mangroves to die and the surrounding area to be no longer
suitable for planting mangroves [30,31].

Changes in vegetation, water, and soil are often detected using indices such as the Normalized
Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), and the Soil
Adjusted Vegetation Index (SAVI). A study by Gupta et al. [32] used NDVI and NDWI to distinguish
mangrove and non-mangrove forests by looking at the greenness index and water content of the
vegetation, which were then compared with SAVI and Simple Ratio (SR). Meanwhile, Ahmed et al. [33]
detected changes in land cover from mangrove areas to water areas in the southwestern coastal
areas of Bangladesh that were flooded using NDVI and NDWI. Another example is the study by
Pastor-Guzman, [34], in which the phenology of mangrove forests was investigated with the Enhanced
Vegetation Index (EVI), NDVI, the Green Normalized Vegetation Index (GNDVI), and NDWI.

Another developing research area, land use and land cover (LULC) change, has emphasized the
generation of global land cover (GLC) products from numerous observation satellites as primary data
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for both global or national scale studies [35,36]. Presently, these accessible GLC products have been
widely utilized through an aggregation in several research topics, including estimating agricultural
enlargement into forests [37], monitoring cropland changes [38], and deriving user-specific maps [39].
In the context of mangroves, Hamilton and Casey [9] successfully integrated MFW [40] as the basis
of mangrove area, world ecosystem, namely ecoregion layer, and GFC [41], namely annual forest
change data, to produce global mangrove forest cover data from 2000 to 2012. This proves that the
assimilation of global data products, mainly GLC products processed through robust and standardized
methodology, has great potential to be addressed in investigating mangroves drivers over a large region.

Future climate models consistently increased variability in temperature and extreme
precipitation [42]. According to Bathiany et al. [43], temperatures increased by 10% C−1 in Southeast Asia
with the mechanism of soil drying and shifting of atmospheric structures. An increase in temperature
will result in an increase in water loss during the evapotranspiration process [44], in turn impacting
water availability for plants. According to Maslin and Austin [45], changes in the predicted total
annual precipitation are very diverse and difficult to ascertain. However, according to Myhre et al. [46],
precipitation will continue to increase almost twofold for any further global warming. An increase in
rainfall will cause plants to die [47]. These studies indicate that an increase in temperature and extreme
precipitation could be one of the reasons for the occurrence of naturogenic deforestation. Therefore,
it is necessary for there to be a study related to water balance in order to determine the effect of climate
change on water content in mangrove vegetation.

Remote sensing has been widely used for forest monitoring, and such multi-temporal change
detection with high spatial and temporal resolution data can be used to monitor meteorological
phenomena that affect water balance [48,49]. An index of mangrove forests derived from satellite
imagery can be used to assess coastal impacts over large areas [50]. However, to diminish the
degradation of mangrove forests, coastal areas must also be constantly monitored. However,
this presents challenges to current remote sensing techniques [51]. Several studies have been
conducted to monitor deforestation and degradation in mangrove forests using remote sensing
and geographic information system (GIS) analysis [9–11,52]. Hamilton and Casey [9] used several
global database maps to estimate the annual global mangrove forest change from 2000 to 2012. Richards
and Friess [10] combined remote sensing and GIS techniques to quantify the proximate drivers of
mangrove deforestation in Southeast Asia by identifying the dominant land use and land cover area
that replaced the areas of deforested mangroves between 2000 and 2012, which they summarized in a
one-degree spatial resolution dataset. Those data products were then improved by Fauzi et al. [52],
who analyzed environmental and socio-economic data products to identify anthropogenic mangrove
forest deforestation drivers in a finer resolution of 10 km grid cells. However, the results of the study
show that the drivers in a high percentage of deforested mangrove areas were unidentified. This has
raised the question as to whether there are contributing factors to mangrove deforestation other than
land conversion, because none of the previous studies used remote sensing data products to identify
both anthropogenic and naturogenic drivers of mangrove deforestation in Southeast Asia.

The main objective of this study is to identify mangrove forest areas that have been degraded
and depleted due to anthropogenic and naturogenic factors. For the anthropogenic analysis, various
data products of global land cover (GLC) were compared and then integrated in order to monitor
mangrove deforestation in Southeast Asia. We also determined the spatiotemporal trends of remote
sensing vegetation indices over the land use and land cover (LULC) conversion of mangrove forests
in Southeast Asia, and characterized the relationship between vegetation indices and mangrove
deforestation drivers. For the analysis of natural drivers, the effects of water balance on mangrove
forests’ degradation and depletion were identified. Mangrove forests’ degradation and depletion must
also be affected by the water balance of each species of the mangrove itself. Therefore, this research
analyzed how the water balance in mangroves affected the degradation of the mangrove forests. Thus,
adaptation options to avoid and minimize mangrove depletion can be identified and implemented.
To the best of our knowledge, this is the first study to investigate both naturogenic and anthropogenic
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impacts on mangrove deforestation in Southeast Asia, by integrating the available multi-source remote
sensing data products. We also attempted to develop a novel algorithm for the mangrove water balance
model. Moreover, the method applied in the consistency assessment step can be adopted to evaluate
the accuracy of result involving similar topics. The remainder of this article is presented in four sections
detailing the materials and methods, results, discussion, and conclusion. In Section 2, we specified
the type, spatial and temporal resolution, source, and characteristics of the data we used to analyze
mangroves, land use, land cover, and remote sensing data products. In this section, we described
the general framework of this study and detailed the methods used to process the collected data.
In Section 3, we presented our findings by showing the MODIS vegetation indices’ response for
specific mangrove areas, the estimated land cover conversion of mangrove area based on GLC data
products integration, and the mangrove coefficient growth, and identified the water balance in the
mangrove areas. In Section 4, we reviewed the conformity of data products with Dominant Land
Use of Deforested Mangrove Patches (DLUDMP) and The Southeast Asian Mangroves Conversion
Types (SEAMCT) and the uncertainties associated with the mangrove variation data. We also present a
trend analysis and breakpoint detection in particular deforested mangrove areas and future research
directions. In Section 5, we summarized our findings, highlighted the strengths and limitations of this
study, and elaborated on areas of further research.

2. Materials and Methods

2.1. Data Used in This Study

2.1.1. Mangrove Data Product and Change

This study used several data products produced from previous studies regarding mangrove
distribution and deforestation to provide an improved spatiotemporal analysis (Table 1).

Table 1. Product specifications of mangrove data and their change.

Data Product Data Class Spatial Resolution Available Year Source

MFW-USGS Mangrove Distribution 30 m 1997–2000 [40]
CGMFC-21 Mangrove deforestation 30 m 2001, 2005, 2009, and 2012 [9]
DLUDMP Function of dominant land 1◦ 2012 [10]
SEAMCT Mangroves Conversion Types 10 km 2000 and 2012 [52]

The Global Distribution of Mangroves (MFW) [40] is the primary data produced from the Landsat
satellite image with a spatial resolution of 30 m obtained from 1997 to 2000, while the secondary data
are based on the database of global, national, and local mangrove forests.

The accuracy of this product was validated by dividing the whole area into 500 × 500 grids.
Each grid was qualitatively controlled in virtue of the local experts and very high-resolution images, i.e.,
QuickBird and IKONOS [40]. In addition to the mangrove’s maps existence, although some mangroves
distribution data are available, i.e., Spalding et al. [53], Saputro et al. [54], and Bunting et al. [55],
we decided to only use MFW owing to the year of the existence i.e., 2000, which is more appropriate in
performing long-term evaluation. Nonetheless, those mangrove datasets were processed in providing
the agreement level analysis.

The Global Database of Continuous Mangrove Forest Cover for the 21st Century (CGMFC-21) [9]
was produced by combining the Global Forest Change (GFC) [41], MFW [40], and the Terrestrial
Ecosystem of the World (TEOW) [56] databases, as well as other data, to produce annual global
mangrove forest cover maps from 2000 to 2012 with a spatial resolution of up to 30 m. The Dominant
Land Use of Deforested Mangrove Patches (DLUDMP) [10] data product, compiled in 2012, presents
information about the function of the dominant land in the area of deforested mangroves, with a
spatial resolution of one degree. The function of dominant land is determined by estimating the largest
land function range in the area of deforested mangroves, which is then indicated as the land function
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causing mangrove conversion. The Southeast Asian Mangroves Conversion Types (SEAMCT) by
Fauzi et al. [52] was produced from environmental data products, i.e., MFW, CGMFC-21 [9], MODIS
Land Cover Type Product (MCD12Q1) [57], Global MODIS Water Maps Version 6 (MOD44W) [58],
Global Human Settlement (GHS) [59], and History Database of the Global Environment Version 3.2
(HYDE 3.2) [60], and socio-economic data, i.e., Defense Meteorological Satellite Program–Operational
Linescan System (DMSP–OLS) [61], Gross Domestic Product (GDP) [62], and Gridded Population of
the World Version 4 (GPW) [63], to provide an enhanced mangrove forest deforestation driver map
from 2000 to 2012 with a 10 km spatial resolution. This data product presents detailed information
on anthropogenic deforestation drivers based on the dominant land cover changes, which were
classified as conversion to agriculture, aquaculture, infrastructure, or other human activity, as well as a
combination of these factors.

2.1.2. Land Use Land Cover Data Products

To identify land conversion from mangrove forest area to other land cover types, several GLC
data products were used (Table 2). These databases provide adequate spatiotemporal resolution
produced from various remote sensing data. The European Space Agency (ESA) CCI Land Cover [64]
product was compiled from 1992 to 2015 with a spatial resolution of approximately 300 m or lower
and produced through combined classification (guided and unguided) of multi-spectral data from
MERIS obtained from 2003 to 2012. Such data are processed using guided and unguided classification
algorithms combined automatically to obtain different land cover classes. The MODIS Land Cover Type
(MCD12Q1) [65] data product was produced using guided classification of Terra and Aqua MODIS
to produce annual GLC from 2001 to 2012 with a spatial resolution of 500 m. These data function as
early warning indicators of GLC change. The main classes of land cover are vegetation (11 classes),
land (3 classes), and non-vegetated land (3 classes). The GlobCover Global data product [66] is
produced through an annual mosaic obtained from the MERIS inventory with a resolution of 300 m
through the ENVISAT instrument [67]. The first product of GlobCover was produced in 2005 by the
ESA in collaboration with international networks, including the Environmental Agency (EEA), United
Nations Environment Program, Global Observation of Forest Cover and Land Dynamic (GOFC-GOLD),
Joint Research Centre, and International Geosphere-Biosphere Programme (IGBP). The Global Land
Cover by National Mapping Organizations (GLCNMO2008) [68,69] was produced through a global
mapping project conducted by an international steering committee on global mapping. Version 2 of
this dataset was based on 16 days of MODIS data (MCD43A4) from 2008, with a spatial resolution of
500 m due to the two directional reflectance distribution function (BDRF), with an overall accuracy
of 77.9%.

Table 2. Product specification of global land cover (GLC) datasets.

Data Product Data Class Spatial Resolution Data Acquisition Source

ESA CCI Land Cover Land cover 300 m 2001 and 2012 [64]
MCD12Q1 Land cover 500 m 2001 and 2012 [65]
GlobCover Land cover 300 m 2005 and 2009 [66]

GLCNMO2008 Land cover 500 m 2008 and 2012 [68,69]

2.1.3. Geophysical and Vegetation Parameter Products from Remotely Sensed Data

In addition to the processed data provided by the previous studies, other remote sensing datasets
were used to obtain temporal environmental information. The specifications of the remote sensing
datasets used in this study are summarized below in Table 3. The MOD13Q1 Version 6 product [70]
provides a vegetation index (VI) value per pixel basis at a 250 m spatial resolution. There are two
primary vegetation layers (NDVI and EVI). The MODIS Vegetation Indices (MOD13A1 v06) Version 6
product [70] provides VI values at a per pixel basis at a 500 m spatial resolution. The two primary
vegetation layers improved the sensitivity of the MODI3QI and the MOD13A1 datasets over high
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biomass regions such as the equatorial area of Central Africa, South America, and Southeast Asia [71,72].
This improvement is important because the vegetation index is prone to saturation on high biomass
due to the optical signal not being able penetrate the highly dense canopy [73,74]. The MODIS
Global Terrestrial Evapotranspiration (MOD16A2 v05) [75] is a monthly composite dataset produced
at a 5 km pixel resolution to estimate the global terrestrial evapotranspiration. The MOD16 global
evapotranspiration product can be used to calculate the water and energy balance and the soil water
status at a regional scale, providing key information for water resource management. The Climate
Hazards Group InfraRed Precipitation with Stations (CHIRPS v02) dataset [76] is a blended product
combining pentadal precipitation climatology and quasi-global geostationary thermal infrared satellite
observations from the Climate Prediction Center (CPC), and the National Climatic Data Center
(NCDC) [77] atmospheric model rainfall fields from the NOAA Climate Forecast System version 2
(CFSv2) [78] and in situ precipitation observations. These data are used because CHIRPS is an in situ
station dataset used to create a gridded rainfall time series for trend analysis and seasonal drought
monitoring [79]. The MOD44B Version 6 Vegetation Continuous Fields (MOD44B) [80] presents
sub-pixel information about the characteristics of worldwide vegetation cover classified into three
classes: percentage of tree cover (PTC), percentage of non-tree vegetation (PNTV), and percentage of
non-vegetation (PNV), with a 250 m spatial resolution.

Table 3. Product specification of remote sensing datasets.

Data Product Data Class Spatial Resolution Temporal Resolution Source

MOD13Q1 v006 VI and SR 250 m 2000 and 2012 [70]
MOD13A1 v006 Vegetation Indices 500 m 2002 and 2012 [71]
MOD16A2 v005 Evapotranspiration 500 m 2002 and 2012 [75]

CHIRPS v02 Precipitation ~5.3 km 2002 and 2012 [79]
MOD44B v6 PTC, PNTV, PNV 250 m 2000–2013 [80]

2.2. Methodology

This study was divided into three main parts: the investigation of degradation and deforestation,
anthropogenic drivers, and naturogenic drivers, as demonstrated in Figure 1. To investigate
anthropogenic drivers, we examined the ESA CCI, GlobCover, MCD12Q1, and GLCNMO data
products to estimate major LULC change in mangrove areas. Previous studies revealed LULC
changes as the dominant driver of mangroves deforestation [10,11,52]. In this research, we exploited
the available GLC products commonly used to identify human disturbances over Southeast Asian
mangroves. Although these data products were produced based on reliable procedures, we believe that
there is no perfect product. Therefore, we used all the available GLC products to improve the sensitivity
of the results that were then presented through the level of agreement. The level of agreement can also
help us understand how these data are related to each other. Since each product defines mangrove
forests differently and refers to a different classification system, the main challenges in comparing land
cover was the reconciliation of the type of land cover class [81,82]. This was done at the beginning of
the process, then the obtained results were compared with those of other studies.

When investigating deforestation and degradation, we employed MOD13Q1 and MOD44B to
analyze mangrove loss from 2000 to 2012. As mangrove ecosystems are inundated land that consist of
vegetation, water, and soil, we explored three types of commonly used vegetation indices in mangrove
studies that represent each component: NDVI, NDWI, and SAVI [32,83,84]. The derived and calculated
vegetation indices from the 16 day MOD13Q1 data, annual NDVI, NDWI, and SAVI were calculated to
highlight the differences of each index over the 12 years in specific regions. Other indices were identified
and traced by annual PTC, PNTV, and PNV (MOD44B) datasets from 2000 to 2013, using trend analysis
and breakpoint detection [85] to identify the dynamic patterns and the exact years of particular land
use expansion. The trendline slope was calculated by the least-squares-based linear regression method,
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while the breakpoints were identified using the Bai and Perron method [86,87]. Then, we considered
using high resolution imagery to validate our findings.
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Figure 1. Research framework in this study.

To investigate the naturogenic drivers, we focused on the impact of water balance on the mangrove
ecosystem. For data analysis and synthesis, linear regression models that establish the relationship
between the vegetation index and mangrove coefficient growth were used as a proxy for the mangrove
growth coefficient. Since mangroves are highly sensitive to changes in their water supply, the water
balance model was used represent the natural drivers [88,89]. The water balance within an area can also
reflect primary climatic parameters, e.g., precipitation, evapotranspiration, and temperature analysis.
This model can also be used to identify the potential drought impact within mangrove ecosystems
due to ongoing global climate change. The mangroves’ water balance was quantified by multiplying
the mangrove growth coefficient, calculated using NDVI (MOD13A1) data, by the evapotranspiration
(MOD16A2) data, and then subtracting the precipitation (CHIRPS) data from it. The result of this
process has a 500 m grid size. The spatial resolution was decided by considering the most common
spatial resolution of the datasets and of the coverage of the study area. Specifically, we upscaled the
lower resolution datasets and downscaled the higher resolution ones through resampling based on the
bicubic interpolation method. To validate the results, the relationships between the mangrove’s water
balance and degradation and depletion were analyzed.

In this study, we tried to explore all available data products with various spatial resolution and time
acquisition to reach maximal outcome. In combining multi-resolution data products, the resampling
must be applied to uniform those datasets. Based on recent research articles, there are diverse
approaches used to decide the basis of the grids size for the resampling result including the coarser
spatial resolution among datasets [90], the modus or the most spatial resolution on the input data [91,92],
the mean spatial resolution [93], and the specific resolution based on other referred data [94,95]. In this
case, we assumed that there is no certain procedure to be adopted in achieving ideal spatial resolution
for assorted topics. Thus, in this study, we consider the most spatial resolution and characteristic of
parameters represented for each dataset (e.g., high spatial resolution is not necessary for precipitation)
as the basis of the resampling result, i.e., 500-m spatial resolution. On the other hand, considering
different time acquisition issues could affect the consistency of the product, we conducted agreement
level analysis in the discussion as carried out by a similar research approach [96–98]. This analysis
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is commonly adopted by overlaying all datasets to assess the accuracy and inconsistency among
these data [96,99,100].

2.2.1. Harmonization of Land Cover Data Product

In the first step, to harmonize the type of land cover data from various land cover products, the data
were separated into two new classes. The first class was considered mangrove forest (Table 4), and the
second class was considered the land cover causing mangrove deforestation (Table 5). The Forest and
Wetland classes from ESA, GlobCover, MODIS Land Cover products, and the mangrove class from
GLCNMO were all considered to be mangrove forest. In this part, we used MFW datasets to determine
the mangrove extent to be overlaid with the forests and wetland classes of ESA, GlobCover, and MODIS
Land Cover products. Thus, we believe that the forests and wetland classes within the MFW data
are mangrove forests, as illustrated in Figure 2. Then, since fishing, farming, and urbanization are
the major deforestation drivers, the urban, agriculture, wetland, and water classes in each land cover
product were considered the conversion class of mangrove forest [101–103].

Table 4. Classes of each land cover product defined in the “mangrove forest” class.

Land Cover Product Class Description Classification Reference

ESA CCI Land Cover
Forest

Trees with large and/or pointy greenish
and yellowish leaves, open or closed

alongside bush and grass, which have a
canopy cover of 15% and over.

Land Cover
Classification System

(LCCS)

Wetland Trees inundated with fresh water or sea
water, mixed in with the bush or grass

GlobCover
Forest

Trees with large leaves and/or pointy
greenish or yellowish leaves, open or
closed with a height of 5 m, mixed in

with other vegetation, such as bush and
grass, with a minimum canopy cover of

15–40%.

Land Cover
Classification System

(LCCS) from FAO

Wetland
Vegetation (Grass, Bush, Wood

Vegetation), open and closed, inundated
by fresh or sea water (>15%).

MODIS Land Cover

Forest

Trees with large or pointy leaves,
greenish or yellowish, with a height of
more than 2 m and a canopy cover of

more than 60%.

International
Geosphere-Biosphere

Programme (IGBP)
Legend and Class

Wetland

Land where 30–60% of its area is
permanently inundated with fresh

water or seawater, covered by at least
10% from other vegetation.

GLCNMO Mangrove -
Land Cover

Classification System
(LCCS) from FAO

Each data GLC product was integrated to estimate land cover changes in the mangrove forest as
explained in Table 4. In the early stages of data harmonization, a temporal comparison was carried
out by subtracting from the CGMFC-21 data for three different time periods: between 2001 and 2012
for the ESA CCI Land Cover and MODIS datasets, between 2005 and 2009 for the GlobCover data,
and between 2008 and 2012 for the GLCNMO dataset. The same process was used for each dataset of
GLC to ensure that the data of land cover change obtained from both the mangrove forest class and the
land cover conversion class had the same time range as the mangrove deforestation data. Furthermore,
we correlated the mangrove deforestation data with the land cover change data. The amount of
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deforestation and land cover change of each product was estimated in a 10
× 10 grid cell to avoid

any bias in the spatial resolution among products. In the final stage, the distribution of land cover
conversion from mangrove deforestation was visualized by each land cover product, along with the
unit amount of mangrove deforestation converted to the “other land cover” class with a 500 m grid
size as the lowest spatial resolution of the input data.

Table 5. Estimation of each type of land cover conversion in mangrove forest areas.

Land Cover Product Early Land
Cover Class

Ultimate Land
Cover Class

Type of Conversion of Land Cover
from Mangrove Deforestation

ESA CCI Land Cover,
MODIS Land Cover, and

GlobCover

Forest

Agriculture Mangrove to farming
Wetlands Mangrove to fishery

Water Mangrove to fishery
Urban Mangrove to housing

Wetlands
Agriculture Mangrove to farming

Water Mangrove to fishery
Urban Mangrove to housing

GLCNMO Mangrove

Agriculture Mangrove to farming
Wetlands Mangrove to fishery

Water Mangrove to fishery
Urban Mangrove to housing
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GlobCover, and MODIS Land Cover products. (A) Mangroves distribution across Southeast Asia 
generated from MFW datasets [40]. (B) Mangrove patches in the northeast of Palembang, South 
Sumatra as sample area. (C) MODIS Land Cover Products that will be reclassified into mangroves 

Figure 2. Illustration of how to define mangroves based on forest and wetland classes of ESA, GlobCover,
and MODIS Land Cover products. (A) Mangroves distribution across Southeast Asia generated from
MFW datasets [40]. (B) Mangrove patches in the northeast of Palembang, South Sumatra as sample
area. (C) MODIS Land Cover Products that will be reclassified into mangroves and non-mangroves
classes. (D) The result of reclassification scheme, i.e., forest and wetland classes defined as mangroves.

In this classification scheme, there are three scenarios that indicate fishery expansion, as shown in
Table 5. The first indicator is the transformation of the forest class into the wetland class. The second
indicator is the transformation of the forest class into the water class. The third indicator is the
transformation of the wetland class into the water class. These three classification scenarios represent
three levels of vegetation degradation and three levels of water increase within an area. Hence,
this classification scheme could provide more sensitive signs of fishery expansion over mangrove forests.
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2.2.2. MODIS Vegetation Indices

The NDVI is the most commonly used vegetation index derived from a combination of red and
near-infrared bands, that indicate the existence and greenness level of vegetation [104]. The NDVI
has already been widely applied in many ecological studies to observe vegetation phenology and
dynamics, monitor spatial trends of forest degradation, and detect abrupt changes in ecosystems,
as well as other studies. [105–107]. The SAVI is similar to the NDVI, but it suppresses the effects of soil
pixels. It uses a canopy background adjustment factor as a function of vegetation density and often
requires prior knowledge of vegetation amounts, as shown in Huete [108]. The NDWI is a reflectance
measurement that is sensitive to changes in the water content of plant canopies. The water content is
important because a higher water content indicates healthier vegetation that is likely to grow faster
and be more fire-resistant [109]. The NDWI uses a normalized difference formulation instead of a
simple ratio, and the index values increase with increasing water content. Applications include crop
agricultural management, forest canopy monitoring, and vegetation stress detection [110–112].

2.2.3. Mangrove’ Coefficient Growth

The crop coefficient (Kc) is one of the most commonly used methods for water management.
Similarities between the Kc curve and a satellite-derived vegetation index showed the potential for
modeling Kc as a function of the vegetation index [113]. Therefore, the possibility of directly estimating
the Kc from the satellite reflectance of a plant was investigated. The Kc data used in developing
the relationship with NDVI were derived from back-calculations of the FAO-56 dual Kc procedure,
using field data obtained during 2007 from AmeriFlux sites that are representative of US systems in
the High Plains covered by cropland area [114]. NDVI is an indicator of the density of vegetative cover
that captures most of the observed variation in Kc in the absence of water stress conditions. A simple
linear regression model was developed to establish a general relationship between the NDVI from
moderate resolution satellite data (MODIS Vegetation Indices/MOD13A1 v06) and the Kc calculated
from the flux data measured for a different plan by using AmeriFlux towers. Kc can be estimated by
quantifying the fluxes of trace gases between the land and the atmosphere, which has been derived in
various land cover types, e.g., cropland, mixed forests and evergreen needleleaf forests.

As reported by several previous studies, there is a flux tower that has existed since 2004
in a mangrove forest site, namely the Tower SRS-6 in Florida Everglades Shark River Slough,
which can measure CO2 and H2O (https://ameriflux.lbl.gov/sites/siteinfo/US-Skr) [115]. Although the
recorded data can be applied for either carbon or evapotranspiration studies, the preceding research
mainly discusses carbon balance issues [116] Thus, the flux tower has not been utilized to assist
evapotranspiration coefficient modelling. Besides In addition, according to the approach utilized by
Kamble et al. [113] approach in developing Kc-NDVI relationship, there were used two flux towers
used in the modelling process and the two others for validation purposes. On that account, at least
two flux stations are required both for each of those two functions. Since there was only one flux tower
available, the mangrove growth coefficient has not yet been determined.

The crop growth coefficient (Kc) can be applied to enhance potential evapotranspiration data
based on vegetation dynamic. In this case, it can be applied for cropland phenology where at the
seeding and transplanting phases, the evapotranspiration is much lower than at the ripening phase.
Moreover, the phenological characteristic of cropland is not significantly different with temperate
forest, where in winter the evapotranspiration is much lower than in the other seasons. Therefore,
the utilization of Kc for other ecosystems has potential, especially in the mangrove ecosystem.

Therefore, we employed Kc-NDVI model developed by Kamble et al. [113] to calibrate mangroves
phenology and variability of MODIS evapotranspiration data. Although the model was advanced
for cropland area, we were convinced that the deviation between the crop growth coefficient and
mangrove growth coefficient does not significantly affect the water balance. We tried to estimate the
mangrove growth coefficient using the crop coefficient developed by Kamble et al. [113]. The mangrove
growth coefficient was then multiplied by the potential evapotranspiration within mangroves area to

https://ameriflux.lbl.gov/sites/siteinfo/US-Skr
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obtain the actual mangrove evapotranspiration. The combined relationship between the NDVI and the
Kc is given as

Kc.NDVI = 1.457 NDVI − 0.1725 (1)

where 1.4571 and 0.1725 are the slope and intercept coefficients, respectively. The procedure for
quantifying coefficient growth from NDVI data should be useful in other regions of the globe for
understanding regional water management [113].

2.2.4. Mangrove Forests’ Water Balance

Many processes contribute to the ability of mangroves to maintain water uptake and limit water
loss under different meteorological conditions. The water balance of mangrove forests is calculated as
follows: (1) the Kc of the mangroves is calculated; (2) the effective precipitation (Peff ) of the mangrove
forest area is calculated, where Peff is the fraction of the total precipitation as rainfall and snowmelt
available that does not run off [117]; (3) the mangrove forests’ coefficient growth is multiplied with
potential evapotranspiration, and the effective precipitation is subtracted; and (4) the water balance
in mangrove forests is obtained by employing Equations 1, 2, and 3. Without detailed site-specific
information, Peff is very difficult to determine; in this case, a simple approximation by following the
U.S. Department of Agriculture Soil Conservation Method [117] is used.

Water Balance = (Green Water) − (Kc.NDVI. Epot) (2)

Peff (Green Water) = P (125 − 0.6P)/125 if P ≤ 250/3 mm
Peff (Green Water) = 1253 + 0.1P if P > 250/3 mm

(3)

where Peff is the effective precipitation, KcNDVI is the coefficient growth of NDVI, Epot is the potential
evapotranspiration, and P is the precipitation.

The relationship between the water balance of mangrove forests and mangrove forest degradation
is generated by overlaying pixels and dividing them into the four classifications shown in Table 6.
There are two classes based on water balance processing: surplus, where the water balance is positive,
and deficit, where the water balance is negative. Meanwhile, there are also two classes as the result of
mangrove deforestation processing, i.e., degraded and not degraded.

Table 6. Relationship classifications between mangrove forests’ water balance and mangrove degradation.

Criteria Classification

Water Balance Surplus and Mangroves Degraded Anthropogenic Drivers
Water Balance Deficit and Mangroves Degraded Naturogenic Driver

Water Balance Deficit and Mangroves Not Degraded Mangrove at Risk
Water Balance Surplus and Mangroves Not Degraded Sustainable Mangrove

3. Results

3.1. Spatiotemporal of MODIS Vegetation Indices in Mangrove Area

Figure 3 displays the NDVI difference images between 2000 and 2012. To achieve the most
accurate visualization of changes, the largest deforested areas that corresponded to the land cover
change drivers were selected. For urban conversion, the highlighted areas included Malaysia and
Singapore. North Kalimantan corresponds to aquaculture conversion, Thailand corresponds to rice field
conversion, South Sumatra corresponds to conversion to oil palm plantations, and mangrove regrowth
was found in Papua. Positive changes imply that the index value in 2000 increased, while negative
changes imply that the index value in 2000 decreased. The NDVI difference images provided more
insight into the drivers of mangrove deforestation. It can be clearly observed that the vegetation index
had different responses depending on the different drivers. In (A) Malaysia–Singapore and (B) North
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Kalimantan, the figure shows a slight decrease in vegetation in the mangrove sites. In (C) Thailand,
the figure shows a smaller decrease in vegetation. In (E) South Sumatra, the figure shows an increase
in NDVI. In (D) Papua, the NDVI increased in some areas, but most demonstrated no signs of change.
In terms of healthiness, no change in NDVI implies no vegetation damage, as the density of vegetation
is the same, indicating that there was no deforestation from 2000 to 2012.Remote Sens. 2020, 12, 2720 12 of 29 
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The NDWI difference images provide more insight into the mangrove moisture condition.
A decrease in the NDWI implies that the water content of mangroves is decreasing [109]. Figure 4
displays the NDWI difference between 2000 and 2012 with the highlighted areas representing the
NDVI difference images. It can be clearly observed that the water index had a different response to
each driver. In (A) Malaysia–Singapore and (B) North Kalimantan, which were deforested for urban
and aquaculture conversion, respectively, the figure shows a slight decrease in water content for the
mangrove sites. In (C) Thailand, the NDWI shows a smaller decrease. In (E) South Sumatra, there was
an increase in the NDWI. This trend is also displayed in (D) Papua, where the NDWI increased in
some areas, but overall, there was no relative change. As mangroves are considered an evergreen
vegetation, a higher or decreasing NDWI indicates that the mangrove’s condition is damaged.

The SAVI difference images provide more insight into the canopy height of the mangrove forests.
The higher the SAVI value, the higher the vegetation canopy [108]. In Figure 5, it can be clearly
observed that the SAVI has different responses to each driver. In (A) Malaysia–Singapore and (B)
North Kalimantan, the figure shows a severe decrease in canopy height. In (C) Thailand, there was
deforestation due to rice plantations; hence, the figure shows a lower decrease in canopy height. In (E)
South Sumatra, there was deforestation due to oil palm plantations, and the figure shows an increase
in SAVI. The same trend was observed in (D) Papua, where the SAVI increased for some areas but
most had no signs of change. From these results, the SAVI could be a potential index for detecting oil
palm expansion over mangrove area, as reported by previous research [118]. However, it could be
misinterpreted if no other information is available.
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3.2. Results of Land Cover Conversion from Deforested Mangroves in Southeast Asia

From the ESA CCI Land Cover product, Figure 6a shows that the rate of deforestation in Myanmar
is large, where, averaged over one grid, more than 50 ha of mangroves were converted into the
farming class. This was followed by Indonesia, where fishery and farming in Kalimantan and Sulawesi
are the major contributors to mangrove deforestation, with the average over one grid cell being
5–25 ha. The product of MODIS Land Cover (Figure 6b) shows that Indonesia has the highest amount
of mangrove deforestation owing to the fishery class that has spread across Sumatra, Kalimantan,
Sulawesi, and Papua, averaging at 10–25 ha of deforested mangrove. Myanmar also has a high
deforestation level; approximately 25–50 ha of deforested mangroves averaged over one grid cell
were converted to the farming and fishery classes. From the GLCNMO results, Figure 6c shows that
Indonesia has the highest number of deforestation points due to the spread of the farming classes
from Sumatra to Papua, with an average deforested area of 50–100 ha. Meanwhile, Malaysia and the
Philippines have mangrove deforestation points due to changes in land cover, with an average of less
than 50 ha. As observed from the GlobCover product results (Figure 6d), Indonesia has the highest
deforestation point distribution as a consequence of the farming class spreading across Sumatra and
Kalimantan, with an average deforestation of less than 10 ha. Myanmar has a significant deforestation
point where one point of mangrove deforestation of more than 7.5 ha has been converted into the
farming class.
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Figure 7 is a map displaying the confidence levels in mangrove forest conversion obtained by
combining all GLC products with the same land cover conversion classes from mangrove forests
(farming, fishery, and housing) within a 1◦ grid cell. The confidence level is ranked from lowest
to highest; level 1 means that the land cover conversion class is recognized by one GLC product,
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while level 4 means that the land cover conversion class in that location is recognized by all GLC
products. This agreement level map (Figure 7) does not show the accuracy of each GLC product
while detecting deforestation classes or the mangrove land cover changes. However, the confidence
level illustrates the occurrence of spatial conversion from mangrove forests to land cover classes,
as recognized by the GLC products in this study. Figure 7 shows that the highest confidence levels
are in degraded mangrove areas, i.e., in Myanmar caused by farming, Indonesia caused by fisheries,
and Malaysia caused by housing.Remote Sens. 2020, 12, 2720 15 of 29 
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3.3. Mangrove Coefficient Growth

The value of Kc in each country in Southeast Asia ranges from 0.01 to approximately 1.3. This value
indicates the growth rate of mangroves; a value close to 0 implies that the mangrove is not growing,
and a value close to 1.3 implies the opposite. Some mangrove forests in Southeast Asia follow the dry
rainy seasons, whereas others do not. The dry season usually occurs from April to September, and
the rainy season from October to March. As shown in Figure 8, the countries that follow the seasonal
pattern are Cambodia, Myanmar, and Thailand; other countries, such as Indonesia, Brunei Darussalam,
Malaysia, and the Philippines, do not follow this seasonal pattern.
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3.4. Mangrove Forests’ Water Balance for Degradation and Depletion Identification

The resulting values in the form of water balance deficits and surpluses are shown in Figure 9.
In Cambodia, Myanmar, and Thailand, the values of deficit and surplus followed the pattern of dry
and rainy seasons, respectively, while in Indonesia, Brunei Darussalam, Malaysia, and the Philippines,
they did not follow the seasonal patterns.
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As shown in Figure 10, this research shows that natural drivers have a larger effect on
mangrove forests’ degradation and depletion compared with anthropogenic drivers. In this study,
the determination of the effect of natural drivers focuses on evapotranspiration and precipitation
data, as well as other meteorological phenomena such as whether or not regional patterns follow
seasonal variation. The classification “mangroves at risk” refers to regions where the water balance is
in deficit but not yet degraded. This should encourage policy makers to enforce the necessary steps to
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prevent mangrove degradation, recognizing the many advantages mangroves bring to society and the
natural environment.
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4. Discussion

4.1. Mangrove Agreement Level

Agreement analysis is used to compare the similarity of various data with the same product
level [119]. In this study, agreement analysis was used to compare four mangrove distribution datasets
by making four levels of agreement. The first level indicates low agreement, level 2 indicates moderate
agreement, level 3 indicates high agreement, and level 4 indicates very high agreement. Mangrove
distribution data that will be compared are World Atlas of Mangroves v 1.1 for the period 1999–2003 [53],
Global Distribution of Mangrove USGS v 1.3 for the period 1997–2000 [40], Indonesia Mangrove Map
for the period 2006–2009 [54], and Global Mangrove Watch for the period 2010 [55]. Figure 11 shows
that the majority of the level 4 mangrove agreements are in the Bintuny Bay (Papua) area. In the area
of Sumatra, especially South Sumatra, the majority of mangrove agreements are level 3. Meanwhile,
the majority of mangrove agreements for level 1 and 2 are on the island of Kalimantan.

Figure 12 shows the percentage level of agreement for each mangrove distribution. The USGS
Global Distribution of Mangrove (v 1.3) has the highest percentage agreement among other products
at level 4 (47%), while level 3, level 2 and level 1 have a percentage of 31%, 13%, and 9%, respectively.
The mangrove distribution dataset that has the second highest value at level 4 is Global Mangrove
Watch at 45%, while level 3, level 2 and level 1 are 33%, 14%, and 8%, respectively. World Atlas
of Mangroves has a value of 43% for level 4, 16% for level 3, 14% for level 2, and 27% for level
1, while Indonesia Mangrove Map has a value of 25% for level 4, 21% for level 3, 16% for level 2,
and 38% for level 1. It can be seen that the USGS Global Distribution of Mangroves (v 1.3) has the
highest agreement value, so this study uses the USGS Global Distribution of Mangroves (v 1.3) as the
distribution of mangroves.

4.2. Conformity of Data Products with DLUDMP and SEAMCT

The consistency of each land cover product was evaluated with reference to DLUDMP [10] and
SEAMCT [52] in terms of the rate and the trigger of mangrove deforestation in Southeast Asia from
2000 to 2012. For this purpose, research related to the function of the dominant land in deforested
mangrove areas from 2001 to 2012 as well as Southeast Asian mangrove conversion types were used
for comparative data to assess the accuracy of the land cover conversion results obtained from each
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product of GLC. The calculation of the percentage of data products existing in one single land cover
class was carried out in a 1◦ × 1◦ grid.
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In the spatial context, this study illustrates that the points of mangrove forest conversion are similar
to those in DLUDMP and SEAMCT. Figure 13 shows the locations of mangrove forest conversion,
which is recognized by three to four GLC products, as mentioned previously. The results show that
the conversion of mangrove forests into the farming class mostly occurred in the Rakhine region,
Myanmar. The Myanmar government has strong policies that support national food security through
increased rice production. As a result, many mangrove forests have been converted into paddy
fields [120]. The conversion of mangrove forests into the fishery class mostly occurred in East
Kalimantan and Sulawesi, Indonesia. The expansion of fisheries was driven by Indonesia’s government
policies, which were aimed at making the country the largest fish producer in the world by 2015 [121].
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Meanwhile, mangrove forests were converted to land for the housing class in the peninsulas of Malaysia
and Singapore.
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To the best of our knowledge, this research is the first to compare GLC products for monitoring
mangrove deforestation over large areas. The approach used in this study is accompanied by certain
assumptions to make the comparison of each GLC product easier (owing to the fact that these products
have different characteristics). These assumptions, therefore, limit the quantitative comparison among
different GLC products and increase the potential for bias in the results. In addition, the results cannot
represent an assessment of the overall quality of each GLC product. However, the study focuses on
drawing conclusions and finding policy recommendations for monitoring mangrove deforestation.

In general, based on the areas of mangrove forests converted into other land cover classes as shown
in Table 7, the similarity of each GLC product to DLUDMP-SEAMCT varies by different proportions,
from 40% to 60% to less than 2%. Among the global land cover products, GLCNMO shows the highest
conformity to DLUDMP, with an average difference of 3.81%. ESA CCI LC has the highest conformity
to SEAMCT, with a mean difference of approximately 1.21%.

Table 7. Conformity percentage between each data product with DLUDMP land use classes and
SEAMCT based on the area of deforested mangrove.

Mangrove Forest Conversion
Area Based on Global Land

Cover Data Products (GLCM)

Width
Percentage

(GLCM)

Width
Percentage
(DLUDMP)

Width
Percentage
(SEAMCT)

Difference
between

GLCM and
DLUDMP

Difference
between

GLCM and
SEAMCT

MODIS
(2001 dan 2012)

Farming 8.19% 52.70% 77.59% 44.52% 69.40%
Fishery 88.12% 41.47% 20.05% 46.65% 68.08%

Housing 3.69% 5.83% 2.36% 2.14% 1.33%

GlobCover
(2005 and 2009)

Farming 92.42% 52.70% 77.59% 39.71% 14.83%
Fishery 5.76% 41.47% 20.05% 35.71% 14.29%

Housing 1.83% 5.83% 2.36% 4.00% 0.54%

ESA CCI LC
(2001 and 2012)

Farming 77.07% 52.70% 77.59% 24.36% 0.52%
Fishery 21.85% 41.47% 20.05% 19.62% 1.81%

Housing 1.08% 5.83% 2.36% 4.75% 1.29%

GLCNMO
(2008 and 2012)

Farming 55.63% 52.70% 77.59% 2.92% 21.96%
Fishery 44.26% 41.47% 20.05% 2.79% 24.21%

Housing 0.12% 5.83% 2.36% 5.71% 2.25%
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4.3. Uncertainties in Mangrove Change Data

As shown in Figure 14, the number of pixels located in the mangrove pixel class produced by
MODIS Land Cover (2001 and 2012) reaches 4000 km2, with 1000 km2 of deforestation. In ESA CCI
LC (2001 and 2012), the total area of the mangrove forest class reached 37,500 km2, with a deforested
area of 6500 km2. In GlobCover (2005 and 2009), the total mangrove forest reached 28,000 km2 and
showed no signs of significant deforestation. Lastly, the area of mangrove forest class produced
by GLCNMO (2008 and 2012) from the global land cover products was very similar to the area of
mangrove owned by CGMFC-21. Hence, the assumptions made for the harmonization of the mangrove
forest classes can be considered correct. Furthermore, the area of the mangrove forest measured by all
products of GLC declined for several years, indicating widespread mangrove deforestation in that
time period. The variations in the total area of mangrove forest could be caused by different methods
of data acquisition, classification techniques, class definitions, and the production year of each land
cover product.Remote Sens. 2020, 12, 2720 20 of 29 

 

 
Figure 14. Total area of mangrove forest class of each GLC product. 

4.4. Trend Analysis and Breakpoint Detection on Deforested and Degraded Mangrove Area 

PTC, PNTV, and PNV data were applied to identify extreme deforestation events (e.g., 
agriculture expansion in Myanmar, infrastructure expansion in Thailand, and aquaculture expansion 
in Indonesia) using trend analysis and breakpoint detection as explained below. Figure 15 shows a 
sample of a mangrove deforestation area driven by agriculture expansion in Rakhine State, Myanmar, 
as explained in the PTC trend. Positive values indicate an increase in PTC, while negative values 
indicate a decrease. 

 
Figure 15. Mangrove deforestation driven by agriculture expansion in Rakhine State, Myanmar. The 
(a) slope and (b) breakpoint maps are produced by annual percentage of tree cover (PTC) and 
percentage of non-tree vegetation (PNTV) (MOD44B) data from 2000 to 2013 using the green-brown 
and bfast package in R [85,87]. (c) shows the breakpoint detection processed by annual PTC and PNTV 
(MOD44B) data from 2000 to 2013 using the bfast package in R [85] and a land cover comparison 
before deforestation in 1999 (left) and after deforestation in 2013 (right) using the Google Earth 
archives. 

Figure 14. Total area of mangrove forest class of each GLC product.

4.4. Trend Analysis and Breakpoint Detection on Deforested and Degraded Mangrove Area

PTC, PNTV, and PNV data were applied to identify extreme deforestation events (e.g., agriculture
expansion in Myanmar, infrastructure expansion in Thailand, and aquaculture expansion in Indonesia)
using trend analysis and breakpoint detection as explained below. Figure 15 shows a sample of a
mangrove deforestation area driven by agriculture expansion in Rakhine State, Myanmar, as explained
in the PTC trend. Positive values indicate an increase in PTC, while negative values indicate a decrease.
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Figure 15. Mangrove deforestation driven by agriculture expansion in Rakhine State, Myanmar. The (a)
slope and (b) breakpoint maps are produced by annual percentage of tree cover (PTC) and percentage of
non-tree vegetation (PNTV) (MOD44B) data from 2000 to 2013 using the green-brown and bfast package
in R [85,87]. (c) shows the breakpoint detection processed by annual PTC and PNTV (MOD44B) data
from 2000 to 2013 using the bfast package in R [85] and a land cover comparison before deforestation in
1999 (left) and after deforestation in 2013 (right) using the Google Earth archives.

We detected 1269 grids with a 250 m spatial resolution that show the area converted for agriculture
use in Rakhine State, Myanmar. Using trend analysis, at least 911 or 71.79% of those grids showed
there was a negative trend in PTC and a positive trend in PNTV from 2000 to 2013. Using breakpoint
detection in a particular grid, we revealed that the expansion occurred in 2003 when the PTC dropped
and the PNTV jumped (Figure 15c). In Myanmar, especially in Rakhine State, nearly 70% of mangrove
forests have been degraded since 1983 due to the vast expansion of rice farming as a consequence of
the low productivity levels and competition [122,123].

Figure 16a portrays infrastructure expansion in Samut Sakhon State, Thailand. Trend analysis of
PTC and PNV data indicated that 18 out of the 21 grids (75%) showed a negative trend in PTC and a
positive trend in PNV. Meanwhile, the breakpoint detection discovered that the expansion happened
in 2007, when the PTC dropped and PNV jumped in the same year (Figure 16a). According to the
earlier studies, mangrove forests around the coastal areas of the Thailand Peninsula, which has a dense
urban population, e.g., Phuket, Songkhla, and Phang Nga, were converted to residential areas and
tourism facilities [124].
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In Northern Sulawesi, Indonesia, trend analysis of PTC and PNV data revealed that 291 out of 309
grids (94.14%) showed a negative trend in PTC and positive trend in PNV. Meanwhile, the breakpoint
detection identified that most of the mangrove forest conversion in this region occurred in 2009
(Figure 16b). As reported in previous research, the very rapid decline of mangrove forest in this area
was due to major brackish-water pond developments [121].

4.5. Future Possible Directions

To detect other drivers of mangrove deforestation, other satellite-derived indices should be studied.
For more information on the indices, higher spatial resolution datasets, such as Landsat and Sentinel,
are needed to better establish their utility beyond the initial findings of this study. Implementing trend
analysis and a break point detection algorithm to NDVI, NDWI, and SAVI for a time series analysis
could form the basis of future studies. Another potential direction is a deeper phenology analysis
based on water balance and remote sensing indices using long-term data. The continuous use of
remote sensing indices will help to detect spatial and temporal changes in mangrove deforestation;
thus, necessary steps toward mitigation can be planned and regulated.

The addition of other anthropogenic and naturogenic factors is crucial to the validation and
completion of this research. Moreover, the spatial resolution used in this study should be improved
and synchronized to increase the minimum level of detail and make it easily comparable. Notably,
the approach used in this study can be used as an alternative for conducting a spatiotemporal analysis
of a phenomenon on a regional or global scale. In addition, the method used in the consistency
test stage can also be adopted to test the accuracy of information on various remote sensing data
products involving similar topics. The combination of all available multi-temporal GLC products with
a robust methodology for investigating global forest change would be the next stage of this research.
Although this study has revealed that mangroves have been converted for various land uses, mangrove
rehabilitation is still being conducted. Many concerned players have already made collaborative efforts
in designing pilot projects for mangrove protection. Rehabilitation activities are abundant in Southeast
Asian countries [125]; however, these have been deployed in relatively small areas, and the results are
not noticeable because of the coarse spatial resolution of the data products. This research could be
useful for designing mangrove forest rehabilitation strategies by combining the results of this study
with supporting data [125].

Future applications that address environmental and socio-economic implications arising from
these findings could be explored. The impact of this mangrove forest change on the environment,
including on climate change [126], biodiversity [127], sea level rise, and coastal economies [128],
could also be explored. Further investigations are required to elucidate the reason for this degradation
change, such as the impact of long-term anthropogenic factors, that include cropland expansion and
intensification change [129], urban change models [130], and water surface change [131] would enhance
our ability to measure and improve future mangrove forest management [132,133].

5. Conclusions

The summary presented herein offers the primary points that will serve as the basis of future
investigations. First, the relationships between remote sensing indices and deforestation drivers
highly depend on the type of drivers. In future studies, exploring more satellite-derived indices
could allow us to expose more deforestation drivers. Second, by adopting a trend analysis and
break point detection in three difference sites, Rakhine State, Samut Sakhon, and North Sulawesi,
we confirmed that mangrove forests were converted for agriculture, infrastructure, and aquaculture in
2003, 2007, and 2009, respectively. Moreover, the aggregation of PTV, PNV, and PNTV datasets is a
highly recommended method of measuring the rate of changes, examining the degradation drivers,
and tracing the exact year of expansion. Thirdly, the assimilation of GLC products revealed that
agricultural and fishery classes are the predominant drivers in Southeast Asia, notably from 2001 to
2012. Although the study could not accurately describe the amount of mangrove conversion, the data
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processing and accuracy assessment method can be applied as an alternative method for conducting
spatiotemporal analysis of either regional or global scale studies. Fourth, by analyzing the connection
between the water balance and degradation of mangrove forests, we discovered that the natural drivers
have a greater effect than the anthropogenic drivers. This finding could be investigated further by
increasing the number of natural driver variables in the same spatial resolution, making the output
more robust and comparable with the data of anthropogenic drivers. We hope that longer-term studies
will be undertaken to determine how the water balance in Southeast Asian mangrove forests affect
their level of degradation and depletion. Fifth, this extensive investigation leads us to deduce that we
cannot easily determine a single factor as a sole driver of degradation in a particular mangrove patch.
The combination of both anthropogenic and naturogenic drivers greatly affects and perhaps accelerates
mangrove degradation. Finally, the abundance of remote sensing data and products recorded from
extraterrestrial sensors could reveal valuable information required to understand and protect our
terrestrial ecosystem, and it could be the foundation of important recommendations for creating
impactful policy making.
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