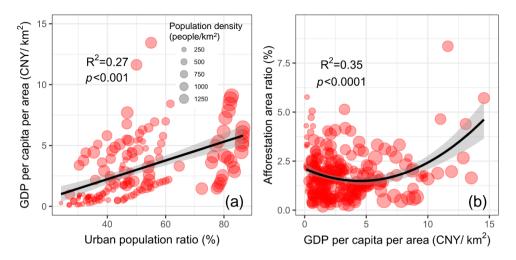


Article

Urbanization-Driven Changes in Land-Climate Dynamics: A Case Study of Haihe River Basin, China

Supplementary Materials

Indicator	Database	Provider	Original cadence	Spatial resolution
NDVI	MOD13Q1.006 Terra	NASA LP DAAC at the USGS EROS Center	16-day	250 m
albedo	MCD43A1.005 BRDF	NASA LP DAAC at the USGS EROS Center International Scientific & Technical Data	16-day	500 m
LST	MODLT1M	Mirror Site, Computer Network Information Center, Chinese Academy of Sciences	1-month	1000 m
CWC	MOD08 V6 Atmosphere Monthly Global Product	NASA GSFC	1-month	1 arc degrees
Р	Global Land Data Assimilation System	NASA	3-hour	0.25 arc degrees


Table S1. The databases of the key land-climate indicators.

Year	Agricultural land	Forest	Grassland and shrub	Waters and wetland	Bare land	Urban
2000	53.05%	10.02%	33.25%	1.47%	0.01%	2.20%
2001	52.90%	10.20%	32.92%	1.47%	0.01%	2.50%
2002	52.77%	10.21%	32.79%	1.46%	0.01%	2.76%
2003	52.57%	10.30%	32.61%	1.46%	0.01%	3.05%
2004	52.12%	10.45%	32.39%	1.46%	0.01%	3.57%
2005	51.91%	10.45%	32.34%	1.46%	0.01%	3.83%
2006	51.63%	10.44%	32.26%	1.45%	0.01%	4.21%
2007	51.37%	10.46%	32.19%	1.43%	0.01%	4.54%
2008	51.11%	10.47%	32.15%	1.40%	0.01%	4.86%
2009	50.95%	10.48%	32.09%	1.40%	0.01%	5.07%
2010	50.65%	10.47%	32.07%	1.38%	0.01%	5.42%
2011	50.44%	10.46%	32.08%	1.38%	0.01%	5.63%
2012	50.18%	10.47%	32.07%	1.37%	0.01%	5.90%
2013	49.84%	10.47%	32.02%	1.36%	0.02%	6.29%
2014	49.50%	10.45%	32.02%	1.37%	0.02%	6.64%
2015	49.25%	10.45%	32.00%	1.37%	0.02%	6.91%
			Linear regression by y	ear		
Slope	-2.58E-03↓	2.12E-04 ↑	-7.04E-04↓	-8.60E-05↓	5.74E-06 ↑	3.15E-03 ↑
Intercept	5.69	-0.321	1.74	0.187	-1.14E-02	-6.28
R ²	0.996	0.556	0.801	0.917	0.459	0.997
р	< 0.0001	0.0009	< 0.0001	< 0.0001	0.004	< 0.0001

Table S2. The area proportion dynamics of the land use and cover change from 2000 to 2015 in the Haihe River Basin and the trends regression.

 \uparrow : increasing trend; ↓ : decreasing trend.

Figure S1. The bivariate regression between the urban population ratio and the regional gross domestic product (GDP) per capita per area (y= 0.077x – 0.847) (**a**). The bivariate regression between the regional GDP and the regional afforestation area ratio (y = 0.029x² – 0.259 x+ 2.083) in the 26 cities of the Haihe River Basin during the period 2000–2015 (**b**).