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Abstract: Despite increasing interest in monitoring the global water cycle, the availability of in situ
gauging and discharge time series is decreasing. However, this lack of ground data can partly be
compensated for by using remote sensing techniques to observe river stages and discharge. In this
paper, a new approach for estimating discharge by combining water levels from multi-mission
satellite altimetry and surface area extents from optical imagery with physical flow equations at a
single cross-section is presented and tested at the Lower Mississippi River. The datasets are combined
by fitting a hypsometric curve, which is then used to derive the water level for each acquisition epoch
of the long-term multi-spectral remote sensing missions. In this way, the chance of detecting water
level extremes is increased and a bathymetry can be estimated from water surface extent observations.
Below the minimum hypsometric water level, the river bed elevation is estimated using an empirical
width-to-depth relationship in order to determine the final cross-sectional geometry. The required
flow gradient is derived from the differences between virtual station elevations, which are computed
in a least square adjustment from the height differences of all multi-mission satellite altimetry data
that are close in time. Using the virtual station elevations, satellite altimetry data from multiple
virtual stations and missions are combined to one long-term water level time series. All required
parameters are estimated purely based on remote sensing data, without using any ground data or
calibration. The validation at three gauging stations of the Lower Mississippi River shows large
deviations primarily caused by the below average width of the predefined cross-sections. At 13
additional cross-sections situated in wide, uniform, and straight river sections nearby the gauges the
Normalized Root Mean Square Error (NRMSE) varies between 10.95% and 28.43%. The Nash-Sutcliffe
Efficiency (NSE) for these targets is in a range from 0.658 to 0.946.

Keywords: river discharge; satellite altimetry; remote sensing; bathymetry; Manning; roughness;
flow gradient; DAHITI

1. Introduction

Water is essential for all aspects of life on Earth and the global water cycle influences the climate
decisively. In particular, freshwater is elementary as people’s livelihood. While rivers store only
0.006% of the global freshwater resources, they are the main source for freshwater consumption and
irrigation [1]. With growing needs of the Earth’s increasing population and growing attention of
climate change, water management developments are required to be sustainable. River discharge
measurements provide the foundation for water resource planning, decision making, and design
and operation of related infrastructure [2]. Moreover, they are of extreme importance for monitoring
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hydrological change in space and time. As discharge combines a variety of different flow and transfer
processes within the up-stream catchment, it is an essential hydrological variable widely used for
tuning and calibrating hydrological models [3]. Such models help to increase our knowledge about
the global water cycle. While the water cycle is affected by global warming, it also influences the
climate. As water cycles between the land, oceans, and atmosphere, it changes the dynamics and
thermodynamics of the climate system [4].

In situ discharge is usually calculated using the water level measured at a gauge and a functional
relation (rating curve), which is calibrated and regularly adjusted by in situ velocity measurements
and depth soundings [5,6]. Establishing and maintaining such a discharge station is an involved
and complicated process, which is cost- and time-intensive [7]. Thus, despite the need for increased
attention to the global water cycle and freshwater resources, the number of freely available in situ
discharge time-series in public databases such as the Global Runoff Data Centre (GRDC) is rapidly
declining since about 1980, especially in remote areas outside Europe or the USA [8]. Therefore, there is
a strong motivation to estimate discharge with remote sensing techniques.

In contrast to discharge, which cannot be measured directly from remote sensing data [9],
many hydrological and hydraulic variables such as inundated area [10], lake surface area [11,12],
and river widths [13–15] can be measured reliably with multispectral or hyperspectral sensors on
board of satellites [16,17], such as the MODIS, Landsat, and Sentinel-2 satellites. In addition to the
widely used sensors covering the visible and infrared spectrum, water surface area can also be acquired
using other techniques such as SAR or passive microwave radiometers [16,18]. Although intended to
monitor oceans, satellite altimetry can presently be used to measure water levels of inland water bodies
such as lakes and reservoirs [19–22]. Furthermore, satellite altimetry is capable of measuring the water
level and longitudinal topography of rivers wider than 200 m [23,24]. Combining water level and
surface area data, reservoir bathymetry and storage variations can be derived but are limited by the
minimum observed water level [25,26]. Rating curves between previously sampled in situ discharge
measurements and water level from satellite altimetry observations [27–29] are established to allow
discharge estimation beyond the period of the in situ time series. These approaches are constrained by
the need for in situ discharge measurements in order to establish and maintain the rating curve similar
to. Estimating discharge solely from remote sensing data, however, is a big challenge, but allows to
obtain discharge data even in remote, low developed, or crisis-affected regions where it may not be
possible to maintain a network of gauging stations, although these regions are among those most
affected by water scarcity [30,31].

With the announcement and preparation of the Surface Water and Ocean Topography (SWOT)
mission, which will synchronously measure water level, water surface slope, and inundated areas [32],
several studies discussed discharge estimation based on remote sensing data using basic hydraulic flow
laws, e.g., the Manning formula [33], which requires an estimated roughness coefficient. The developed
algorithms can be divided into two approaches: The At-a-station Hydraulic Geometry (AHG),
estimates discharge based on the hydraulic parameters at single stations. Reach averaging methods
such as the At-Many-stations Hydraulic Geometry (AMHG) combine multiple AHG relations along
river reaches, which interact stably and predictably, considering the river equilibrium and conservation
of mass [9,34,35].

Durand et al. [36] developed an reach averaging algorithm called MetroMan that calculates a best
estimate of reach averaged river bathymetry and roughness coefficient based on input measurements
of water level and water surface slope using the Metropolis algorithm in a Bayesian Markov Chain
Monte Carlo scheme to estimate discharge with an normalized root-mean-squared error (NRMSE)
of 36% in a case study for the river Severn. Water levels and time variable slopes are derived from
gauge measurements. Additionally, a high resolution LiDAR digital elevation model (DEM) is used
for the floodplain. This method sucessfully estimates the roughness coefficient, but underestimates the
cross-sectional area. In a previous study [37], the authors emphasize the importance of time variable
flow gradient data, which will be measured by SWOT. Other studies notice only small errors when
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using a constant value [38,39]. The GaMo algorithm by Garambois and Monnier [40] works similar to
MetroMan, using an AMHG approach, synthetic SWOT such as data and the Levenberg-Marquardt
solver to estimate the unknown parameters. The method is tested on 91 synthetic test cases and
the river Garonne. Overall the NRMSE is about 15% without using in situ data. Bjerklie et al. [41]
estimate the bankfull discharge of the Yukon River at two locations in Alaska using a combination
of the Manning formula and the Prandtl-von Karman equation in an AHG approach. The roughness
coefficient is expressed by the Froude number, which is estimated using the meander length and the
water surface slope, derived from satellite altimetry [42]. A parabolic cross-sectional shape is assumed
using four Landsat scenes and an empirical dataset of hydraulic parameters measured at a large variety
of rivers in the US. On average, the uncalibrated discharge results are within 20% of the validation
data. In a recent study, Zakharova et al. [38] use an AHG approach to estimate daily discharge for the
Ob river in Siberia from radar altimetry and a selection of nine Landsat scenes. The NRMSE is 23%
using depth information from topographic maps and 20% after calibration of the parameters of the
Manning formula. Kebede et al. [43] estimate discharge time series for the Lhasa River using only
Landsat and SRTM data. The NRMSE is in a range of 25.7% to 41.4% and the NSE is between 0.886
and 0.956.

No universally applicable approach can be found in a comparison [44] of algorithms for the
upcoming SWOT mission, which shows the need for further algorithm improvements to handle
special cases such as extreme flood events or braided rivers. However, for most rivers there is at least
one approach, but not always the same one, that can estimate the discharge within an NRMSE of
35%. There are several other studies that estimate discharge from remote sensing data (e.g., [45,46]).
However, these require in situ data for calibration. The biggest challenge is the estimation of the flow
velocity. Besides the mentioned methods using hydraulic flow laws, MODIS data was used to estimate
the velocity by measuring the time lag of width variations between two stations [47].

In this paper, we use only remote sensing data without calibration, because we are aiming
to develop a method applicable to ungauged regions. However, a large variety of in situ data is
required for the validation. Therefore, we chose the well surveyed Lower Mississipi River as study
area. In contrast to existing similar AHG and also reach averaging approaches, we use significantly
more remote sensing and satellite altimetry data. In addition to satellite altimetry, the Database for
Hydrological Time Series over Inland Waters (DAHITI) [21] provides long-term land-water masks and
surface area time series since 1982 using satellite imagery from Landsat and Sentinel-2. Observational
data gaps in these satellite images caused by clouds or sensor errors are filled using a long-term
water occurrence mask allowing us to use every available satellite image [12]. To obtain a long-term
water level time series from satellite altimetry observations available in DAHITI, we combine multiple
virtual stations of the Envisat, Jason-2/-3, and Sentinel-3A/-3B missions covering different observation
periods. We further increase the temporal coverage of available data by fitting a hypsometric function
to synchronized satellite altimetry and surface area observations. Using the resulting hypsometry,
we can predict the water level for each surface area observation derived from the images of the Landsat
mission, which launched more than 20 years before the first satellite altimetry measurements over
inland waters. The long-term satellite altimetry and remote sensing data allows us to construct large
parts of the river bathymetry using observed instead of estimated data, because there are multiple
occurrences of low water levels. Based on the predicted geometry, the velocity is estimated with the
Manning Formula. The required roughness coefficient is estimated similar to other studies using
adjustment factors [38,43,47]. The flow gradient is derived from satellite altimetry measurements
at multiple stations along the river. The resulting discharge time series are validated using in situ
data. In situ measurements are substituted for the estimated parameters in order to analyze each
parameter’s error and its effect on the residuals in the resulting discharge time series.

The article is structured as follows. In Section 2 we introduce the selected study areas and
describe the data used for processing and validation. In Section 3 the methodology for estimating river
discharge from remote sensing data is explained. In Section 4 the results are presented and validated
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for each study area. The paper concludes with a discussion of the results in Section 5 and a conclusion
(Section 6).

2. Study Area and Data

Section 2.1 gives an overview of the Lower Mississippi River and the selected study areas.
The results of our study are validated with in situ data which are described in Section 2.2. For the
method of this paper, only remote sensing and satellite altimetry data are required which we describe
in Section 2.3. Additionally, a river centerline is required (Section 2.4).

2.1. Study Areas

The Lower Mississippi River is an alluvial river, with a gradual longitudinal profile. Although
the river is maintained to allow safe navigation for ships and barges, it is still naturally shaped with
shallows, meander, and without artificial dams. Nevertheless, it is modified by human activities
such as riverbank protections to prevent further natural meandering [48]. A long-term assessment of
the historical trends in hydrology, sedimentation, and channel geometry shows a large spatial and
temporal variability of morphological trends in the study area [49]. The Mississippi River basin has a
drainage area of 3.23 million km2 and the water transported by the river comes mostly from winter
snowfall, frontal storms, and convective storms [50]. Measurements at Vicksburg between 1931 and
2017 show a mean daily discharge of 17,543 m3/s with a peak of 65,411 m3/s recorded in May 2011 [51].
The three selected study areas for this paper are located along a 525 km long segment of the Lower
Mississippi River between the cities of Greenville (MS, USA) and Baton Rouge (LA, USA). Figure 1
shows an overview map of the river segment and study areas (red). Each study area includes one of the
in situ gauges at Vicksburg, Natchez, and Tarbert Landing, that we use to validate the respective results.
The study areas also include river reaches up- and downstream of the gauge locations where we apply
our methodology to additional cross-sections. However, the study area at Tarbert Landing covers only
the river reaches downstream of the gauge, because the flow is diverted into the Atchafalaya River at
the Old River Control Complex [52] which is located just upstream the gauge.

2.2. In-Situ Validation Data

We use in situ data collected and distributed by the United States Army Corps of Engineering
(USACE) and the United States Geological Survey (USGS) to validate the predicted river bathymetry,
the resulting discharge time series, and the satellite altimetry time series.

2.2.1. Water Levels and Discharge

In situ discharge time series of the Mississippi River at Vicksburg, available from the USGS
National Water Information System (NWIS) [53], and at Natchez and Tarbert Landing, available from
the USACE RiverGages.com website [54] are used to validate the resulting discharge time series of this
paper. Additionally, water level time series from the stage gauges at Greenville, Vicksburg, Natchez,
Knox Landing, Red River Landing, St. Francisville, and Baton Rouge, available from RiverGages.com
are used to evaluate the quality of the input satellite altimetry data (see Section 2.3.1). The gauge
locations are shown in Figure 1.

2.2.2. River Bathymetry

Multibeam and singlebeam bathymetric point cloud data collected by the USACE in several
hydrographic surveys between June 2018 and September 2019 are available on the eHydro website [55].
Additional multibeam data collected for the 2013 hydrographic survey are available on the the USACE
New Orleans District website [56] for areas not covered by the more recent surveys. The point
cloud data is merged, interpolated, and exported as a raster with CloudCompare [57]. The surveyed
bathymetry is used to evaluate the quality of the predicted bathymetry.

RiverGages.com
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Figure 1. Overview of study areas, discharge and water level gauge locations, satellite altimetry tracks,
and virtual stations with the DAHITI identifier and the short identifier used in this paper (brackets).

2.3. Remote Sensing Data

All remotely sensed data used in this study are processed and provided by the Database for
Hydrological Time Series over Inland Waters (DAHITI) [21], which is developed and maintained by
the Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM).
All datasets are freely available on the DAHITI website (http://dahiti.dgfi.tum.de) after registration.

http://dahiti.dgfi.tum.de
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2.3.1. Satellite Altimetry

Satellite altimetry provides profiled along-track data nearly globally, only limited by the orbital
parameters of the satellite. As the sensors are measuring in nadir direction only, the available
data is limited to the satellite’s ground track. Unlike ocean applications, the major challenge of
satellite altimetry over inland waters are the different reflections caused from multiple land and
water features within the sensor footprint. Depending on the sensor, the reflection of water bodies
narrower than 300 m may be too weak and unidentifiable in the received radar waveform to measure
the water level. Comparisons to in situ time series reveal a Root Mean Square Error (RMSE) of a
few centimeters (for larger lakes) up to some decimeters for smaller rivers [21]. Satellite altimetry
water level measurements are possible also in remote areas with no infrastructure at so-called virtual
stations where the ground track of the satellite crosses a river of suitable width. However, in contrast
to continuous in situ observations, the temporal resolution is low, with one observation every 10 to 35
days depending on the mission.

Within the study area, 21 virtual stations at the Lower Mississippi River are available on the
DAHITI website [21]. To achieve homogeneous altimetry data over multiple satellite missions and
sensors a multi-mission cross-calibration is performed in the preprocessing of the DAHITI data [58].
Additionally, an extended outlier rejection is applied and a Kalman filter approach is used to estimate
water level time series. In this study, we use time series of water heights with respect to the EIGEN-6c4
global gravity field model and formal errors from the Kalman filtering derived from measurements
by the Envisat, Jason-2/-3, and Sentinel-3A/-3B missions. Figure 1 shows the nominal tracks of
the altimetry satellites passing the study area and the available virtual stations at the Mississippi
River. The identifiers of the virtual stations are assigned by DAHITI. An additional short identifier
for this paper is shown in brackets. The time series at each station contains one averaged water level
per crossing and additionally the formal error and acquisition date. Figure 2 shows a Hovmöller
diagram [59] of the satellite altimetry data with every available measurement plotted as its deviation
from the mean height which is shown per station in brackets at the y-axis.

Figure 2. Measured height anomalies for each virtual station. The mean height per station is provided
in brackets at the y-axis.

Envisat orbited the Earth from 2002 to 2010 with a repeat cycle of 35 days. Jason-2 (launched
in 2008) and its successor Jason-3 (launched in 2016) are on an orbit with a repeat cycle of 10 days.
The orbits of Sentinel-3A (launched in 2016) and the structurally identical satellite Sentinel-3B (launched
in 2018) are congruent but shifted and thus interleaved with a repeat cycle of 27 days each. For a
comparison of the water level time series measured at the virtual and in situ stations, Table 1 shows the
closest gauge per virtual station, the along river distance, the number n of synchronous observations
and the respective median offset, RMSE, NRMSE, and the squared Pearson correlation coefficient R2

P.
The last column shows the number of removed in situ outliers detected by a simple outliers detection
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algorithm which is required because the in situ data is preliminary [54]. The average RMSE is 0.46 m
and the mean R2

P is 0.976.

Table 1. Satellite altimetry comparison with in situ gauges showing the distance between the two
locations, the number # of synchronous observations and the respective median offset, RMSE, NRMSE
and the squared Pearson correlation coefficient R2

P. The arrows indicate whether the stage (•) or
combined stage and discharge (◦) gauge is located upstream (↑) or downstream (↓) of the virtual station.

Station Gauge Distance # Offset RMSE NRMSE R2
P Outliers

(DAHITI ID) [km] [m] [%]

S1 (13257)

Greenville •

28.08 ↓ 13 2.35 0.35 0.99 0.994 40
S2 (13256) 11.69 ↓ 14 1.04 0.11 0.31 0.999 40
J1 (10971) 24.29 ↑ 282 −1.85 0.68 2.11 0.965 40
E1 (13260) 47.97 ↑ 42 −3.68 0.73 2.34 0.951 40
E2 (13258) 58.16 ↑ 36 −4.37 0.39 1.24 0.985 40

S3 (13255)
Vicksburg ◦

66.64 ↓ 12 3.89 0.37 1.38 0.991 28
S4 (13254) 42.86 ↓ 14 2.67 0.53 2.01 0.969 28
E3 (11193) 1.70 ↑ 46 −0.17 1.13 5.44 0.901 28

S5 (13251)
Natchez ◦

39.08 ↓ 13 2.07 0.43 2.13 0.976 24
E4 (10766) 0.70 ↓ 34 0.19 0.47 2.86 0.978 24
S6 (13250) 28.28 ↑ 14 −1.66 0.51 2.60 0.976 24

E5 (13030) Knox Landing • 31.57 ↓ 50 1.18 0.44 3.98 0.986 50
E6 (13029) 17.38 ↓ 53 0.67 0.79 7.03 0.948 50

S7 (13249) Red River Landing • 11.40 ↑ 10 −0.29 0.22 1.49 0.995 42
J2 (2065) 31.99 ↑ 299 −1.50 0.50 4.23 0.981 42

J3 (11416) St. Francisville • 27.67 ↓ 347 1.32 0.49 5.48 0.979 9
S8 (13246) 21.77 ↑ 11 −0.78 0.20 1.71 0.997 9

S9 (13248)
Baton Rouge ◦

15.39 ↓ 7 1.22 0.21 1.78 0.989 39
S10 (11460) 11.29 ↓ 29 0.73 0.14 1.80 0.998 39
S11 (13247) 5.10 ↑ 8 0.07 0.53 5.08 0.970 39

2.3.2. Water Surface Extent

The DAHITI land-water masks and water occurrence masks used in this study, are extracted
using the Automated Water Area Extraction Tool (AWAX) [12], originally designed to extract the
time-variable surface area of lakes and reservoirs. Using five different indices, AWAX calculates a
land-water mask for every multispectral satellite image acquired by the Landsat-4/-5/-7/-8 missions
whose spatial resolution is 30 m and the Sentinel-2A/-2B satellites which use a similar bandwidth as
Landsat, but the spatial resolution improved to 10 m and 20 m, respectively. Additionally, a quality
mask indicating data gaps caused by voids, clouds, cloud shadows, or snow is extracted for every
scene. All land-water masks are stacked to get a long-term water occurrence mask, which is used in an
iterative approach to fill the remaining data gaps in the land-water masks for every scene. This leads
to a gapless water surface area time series which can be obtained from DAHITI for selected targets
together with the void free land-water masks and the water occurrence masks. In this paper, subsets
of the void free land-water masks are used to compute the water surface extent and river width of
the Mississippi River within the study area. On average, 407 land-water masks per target are used
in this paper. The maximum number of available land-water masks is 524 and the minimum 223.
The respective scenes were acquired between January 1983 and December 2019 with an average interval
of 21 days. From 17 June 2002, the date of the first available altimetry measurement, the average
interval is 15 days.
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2.4. River Centerline

The determination of the flow gradient and sinuosity requires a continuous river centerline,
which is available from OpenStreetMaps (OSM) [60]. The centerline is used to measure the distances
between the stations and to define the river kilometer of the virtual-stations, gauges, and cross-sections.

3. Methodology

In this section, we describe the methodology used to estimate river discharge from remote sensing
data at a given cross-section (CS) in detail. The methodology is similar to the AHG relations. Therefore,
the fundamental equations to calculate discharge and flow velocity, described in Section 3.1, require
the determination of the at-a-station hydrographic parameters shown in Figure 3. All parameters at a
CS that are a function of stage are elements of the AHG [35].

Figure 3. At-a-station hydrographic parameters.

Next, we describe the estimation of the shown parameters, starting with the flow gradient
which requires a linear adjustment of the satellite altimetry data (Section 3.2) to derive the elevation
differences between the virtual stations. Additionally, the resulting elevations enable us to combine
short-term satellite altimetry data from multiple virtual stations to one long-term time series.
In Section 3.3, we estimate the geometric parameters by synchronizing the long-term water level
time series with land-water masks to fit a hypsometric curve, construct a bathymetry, and extract
the cross-sectional geometry. The hypsometry fitting requires the estimation of the river depth using
empirically established width to depth relations. The estimation of the roughness coefficient using
geomorphological adjustment factors is described in Section 3.4. Figure 4 shows a detailed flowchart
of the explained approach with the processing steps and data grouped by the describing sections.

3.1. Discharge and Velocity Calculation

In this paper, commonly established equations are used to calculate the hydraulic parameters and
derive a discharge time series. The fundamental equation to calculate the discharge Q at a river CS for
time t is defined as follows [35]:

Q(t) =
n

∑
i=1

v̄i(t) · Ai(t) (1)

where n is the number of subsections of CS, v̄i is the mean velocity in the subsection, and Ai
is the cross-sectional area of the subsection. The CS is divided to consider the velocity
distribution [61]. We divide each channel in 30 subsections analogous to the recommendation for in
situ measurements [5].
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Cross-Section
Satellite

Altimetry
Land-Water

Masks
River

Centerline

Observation
Synchronization

Depth
Estimation

Riverbed
Elevation

Hypsometry
Fitting

Hypsometry

Elevation
Determination

Flow Gradient
Calculationt

Altimetry
Combination

Combined
Altimetry

Virtual Station
Elevations

Flow Gradient

Bathymetry
Construction

Bathymetry
Geometry
Extraction

Cross-Sectional
Geometry

Parameter
Extraction

Roughness
Estimation

Roughness

Geometric
Parameters

Velocity
Calculation

Velocity

Discharge
Calculation

Discharge

Figure 4. Methodology flowchart with time series data (white), constant data (green), processing steps
(blue), and sections (gray). Orange arrows represent data derived from land-water masks and blue
arrows represent satellite altimetry.

The mean velocity v̄ is calculated with the Gauckler-Manning-Strickler formula [33], which is also
known as the Manning Formula:

v̄i(t) = kst · Ri(t)
2
3 · I

1
2 (2)

where kst is the roughness coefficient and I is the flow gradient, both assumed to be constant over the
width of a given CS and time in this study even if they are actually variable. This simplification is
necessary to adapt the equation to the possibilities of remote sensing data. Ri is the variable hydraulic
radius of the subsection, which is expressed as:

Ri(t) =
Ai(t)
Pi(t)

(3)

where Ai is the cross-sectional area and Pi is the wetted perimeter of the subsection. Both variables are
related to the change of the water level h over time obtained from the satellite altimetry time series.
The estimations of each parameter are described in the following sections, starting with I in Section 3.2,
followed by A and P in Section 3.3 and kst in Section 3.4.

3.2. Elevation Determination

The elevation differences of the virtual stations are required for two purposes. First, to calculate
the flow gradient (Section 3.2.1) and second, to combine short-term satellite altimetry data of multiple
virtual stations to one long-term water level time series per study area by subtracting the virtual station
elevations (Section 3.2.2). The mean value of each virtual station is not accurate enough to be used as
the reference elevation. Therefore, the elevations of all virtual stations are determined using a linear
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least-squares adjustment of the observed water level differences, which is applicable for alluvial rivers
with a gradual longitudinal profile without flow control structures so we can assume the functional
model for the difference between two stations to be linear:

∆hij(t) = hi(t)− hj(t) (4)

The most downstream station is defined as reference station with elevation 0. The elevations of
all u remaining stations are unknown. For every water level measurement hi(t) at every station i the
temporally closest measurement hj(t) is searched at each remaining station j. If the time difference
∆tij(t) between two measurements is lower than a threshold of 3 days, the water level difference
∆hij(t) is added as an observation b to the vector of observations l and ∆tij(t) is considered to be ∆tb.
Although a lower threshold would be beneficial to obtain more accurate values, it is not feasible with
the satellite altimetry constellation over the past 18 years because of the low temporal resolution of the
water level measurements. At the end of the iterations, l has the shape (k, 1), where k is the number of
observed water level differences. With a linear least-squares adjustment [62] the unknown elevations x
above the reference station can be estimated:

x = (ATPA)−1ATPl (5)

where A is a (k, u)-design matrix indicating the stations i and j of each observation b. The weights,
or diagonal elements of the weighting matrix P, are calculated for every observation b using the time
differences ∆tb of the water level measurements at the two stations as follows:

pbb =
1

1 + ∆tb
(6)

Additionally, this method provides the inaccuracies of the adjusted heights to evaluate the
accuracy of the derived data.

3.2.1. Flow Gradient Calculation

The flow gradient I at a CS is calculated by the elevation difference ∆x of two virtual stations
upstream and downstream of the CS and their distance s along the river:

I =
∆x
s

(7)

The distance s is extracted from the river centerline. ∆x is calculated using x.

3.2.2. Altimetry Combination

Figures 1 and 2 show that the altimetry observations are not evenly distributed in space and time.
To achieve a long-term discharge estimation, we combine water level data from multiple selected
virtual stations within and nearby the study area by subtracting the linear adjusted station elevation xi
(Equation (5)) from every water level observation in the time series of each respective virtual station i.
For the combination to be valid, it must be ensured that the flow between the selected virtual stations
is not interrupted or diverted. Appendix A describes further offsets that are applied to the long-term
water level time series in order to validate the derived bathymetry.

3.3. Geometric Parameters

To estimate the parameters A and P, a geometric representation of the river’s cross-sectional shape
is required. The location of the CS is defined by two coordinates at the river bank, which are manually
selected using the river centerline and the DAHITI water occurrence mask to assure the CS includes
the maximum contiguous water extent but no standing water nearby the river. We first construct the
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river bathymetry within an area of interest (AOI) enclosing the CS (Section 3.3.1). Then, we extract
the cross-sectional geometry and geometric parameters from the bathymetry (Section 3.3.2). The AOI
is square-shaped with an edge length of 1.5 times the distance between the coordinates defining the
CS and centered on the midpoint of the CS. The chosen size of the AOI ensures that the AOI includes
the morphologic features of the respective reach and a wide surface area range to derive a robust
area-height relationship in the following steps.

3.3.1. Bathymetry

The bathymetry is constructed using the method by Schwatke et al. [26] whose details and
adaption to rivers are described in the following paragraphs. It combines water levels from satellite
altimetry and land-water masks to estimate the bathymetry and volume variations of lakes and
reservoirs. The two datasets are combined by fitting a hypsometry, which considers the water level as
a monotonically increasing function of surface area. To adapt this method to the application on rivers,
we clip the land-water masks to the AOI and remove non-contiguous water surfaces using image
segmentation methods which ensures that the area-height relationship is monotonically increasing
within the AOI.

Observation Synchronization

The fitting of the hypsometric curve requires contemporaneous observations of water level
measured by satellite altimetry and surface area derived from land-water masks. As the altimetry
and multispectral sensors are onboard of different satellites which do not acquire data synchronously,
the observations have to be synchronized. For an optimized fitting result, it is best to have a large
number of observations with a high correlation of water level and surface area. The correlation is
expected to decrease with a longer time between the observations, because of changing conditions of
water level and inundated area. To get a suitable data set, the synchronizing process iterates from a
long to a short time delta between the observations, reducing the number of pairs with every iteration.
Once the pairs have a correlation higher than a threshold of 0.75, the iteration stops, and the data is
used in the following processing steps. If no iteration yields a sufficient correlation, the threshold is
lowered and the iterations are repeated. As the relation of surface area and water level is not necessarily
linear, the correlation coefficient by Spearman [63] is used.

Depth Estimation

In contrast to the study by Schwatke et al. [26] which only requires a good quality topography
above the minimum water level to estimate volume variations, it is necessary for our methodology
to also characterize the submerged topography or bathymetry and thus, the river bed elevation h0 in
order to estimate the cross-sectional geometry. Using h0 we can optimize the fitting of the hypsometric
function and estimate the cross-sectional geometry below the minimum water level. The elevation
of the riverbed is required in order to optimize the fitting of the hypsometric curve to the observed
synchronized data and limit the predictions to a reasonable minimum water level. Moody and
Troutman [64] studied the relationship of depth, width, and discharge for a large dataset of world-wide
distributed rivers, from small mountain streams to large alluvial rivers. They obtained the following
regression relations:

w̄ = 7.2Q0.50 (8)

d̄ = 0.27Q0.39 (9)

where Q is the discharge, w̄ is the mean water-surface width and d̄ is the mean depth at a CS. By solving
Equation (8) for Q and substituting Q in Equation (9) with the resulting term, d̄ can be calculated by
measurements of w̄:

d̄ = 0.27
(

w̄2

7.22

)0.39

(10)
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To estimate the bed elevation h0, the cross-sectional river width w(t) is extracted from the land-water
masks of the synchronized observations. w(t) is inserted in Equation (10) to calculate d̄(t), which is
subtracted from the synchronous water level h(t) to obtain h0(t). Finally, we use the median result of
all synchronous observations as h0.

Hypsometry Fitting

Because the land-water masks are clipped to the AOI and contain only contiguous water surfaces,
a fixed area-height relationship of the river reach can be described by a hypsometric curve. Due to
the bathymetry and the surrounding topography, the adjusted hypsometric function must always be
monotonically increasing. Following Schwatke et al. [26], we fit a modified hypsometric Strahler [65]
function to the synchronous observations of water level y and surface area x within the AOI:

y =

[
xmin − x

xmin − xip
·

xmax − xip

xmax − x

]z

· yscale + ymin (11)

Six parameters of Equation (11) have to be fitted to the x and y data. xmin defines the minimum
surface area and xmax the maximum surface area of the hypsometric curve. The minimum water level
is defined as ymin and the variations of water level is defined by yscale. The exponent z describes the
shape of the hypsometric curve and xip represents the abscissa of the curves inflection point. To limit
and improve the resulting curve, bounds are given to the fitting process. In contrast to [26], we set the
minimum water level boundary ymin to the estimated river bed elevation h0. The function is necessary
because, although for the period from January 1983 until 2002 land-water masks are available, there are
no contemporaneous satellite altimetry observations. Using the hypsometric function we obtain water
levels for each land-water mask and increase the number of data. Additionally, the use of a hypsometric
function fitted to water level and surface area observations reduces the influence of observational
errors in the satellite altimetry data. In contrast to a width-height relationship, the variation amplitude
of the area-height relationship is larger and incorrectly classified pixels in the land-water masks have a
smaller effect on the resulting water level.

Bathymetry Construction

In this step, all available land-water masks are stacked and sorted by the respective hypsometric
water level. Analogous to [26], each pixel column is analyzed and filtered with a median filter to obtain
a bathymetric layer whose pixel values represent the respective minimum water level, disregarding
outliers. Figure 5a shows the resulting bathymetry within the AOI and the CS between the user defined
coordinates A and B.

3.3.2. Cross-Sectional Geometry

We use evenly spaced samples along the CS with a distance of 1 m to obtain the cross-sectional
geometry from the bathymetric raster. However, the geometry is incomplete below the baseflow
hb, which is the minimum water level either observed by satellite altimetry or estimated using the
hypsometry for the minimum observed surface area. Therefore, we fill the gap between hb and the
river bed elevation h0 with a parabola as proposed by Bjerklie et al. [41]. The parabola is fitted to
the two lowest points of the observed geometry and their midpoint whose ordinate is replaced by
the predicted bed elevation. Figure 5b shows the resulting complete cross-sectional profile with the
sampled geometry above hb and the parabolic fill to h0 below hb.

3.3.3. Geometric Parameter Extraction

Using the cross-sectional geometry, the geometric parameters A and P are extracted for each
water level h in the combined long-term satellite altimetry time series 3.2.2. P is the length of the
profile line below h and A is the area of the polygon enclosed by the profile line and the water line at h.
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As we split the CS in subsections, Pi is only the part of the wetted perimeter touching the river bed in
the subsection and not the border part to a neighboring subsection. Figure 5b illustrates an example
subsection i and the respective parameters Ai and Pi.

(a) Bathymetry (b) Cross-sectional geometry

Figure 5. Constructed bathymetry (a) within the AOI and extracted cross-sectional geometry (b)
with geometric parameters downstream of Vicksburg at CS 694.7. The solid blue line in (b) shows
the estimated cross-sectional profile and the green line the bathymetric survey data as reference.
The dashed blue line shows the observed baseflow hb and the solid orange line the estimated river bed
elevation h0. Ai(t) is the area of subsection i defined by the water level h(t) at the top and the wetted
perimeter Pi(t) at the bottom.

3.4. Roughness Estimation

The roughness of the river bed is specified by the roughness coefficient kst which can be
interchanged with the expression 1

n where n is the Gauckler Manning coefficient. The lower the
value of kst, the higher is the disturbance of flow from the river bed. The roughness coefficient can be
determined objectively based on different factors [66,67]:

kst =
1

(nb + n1 + n2 + n3 + n4)m
(12)

In Equation (12), nb is a base value for the channel material, n1 is a correction factor for surface
irregularities, n2 is a value for variations in shape and size of the channel CS, n3 is a value for
obstructions and n4 is a value for vegetation and flow conditions. Arcement and Schneider [67]
provide a decision guide to select suitable adjustment factors. m is a correction factor for the channel
meandering depending on the sinuosity s:

m =


1.00 if 1.0 < s ≤ 1.2

1.15 if 1.2 < s ≤ 1.5

1.30 if 1.5 < s

(13)

s is calculated using a segment of the river centerline around the selected CS that has a length of 20 times
the maximum width, since this distance is likely to include at least one meander wavelength [68–70].
This method was also used in other related studies, e.g., for the Yangtze River [47], the Lhasa River [43]
and two siberian rivers [38]. Except for m, we use constant adjustment factors for all cross-sections.
Because the Lower Mississippi River is an alluvial and meandering river with a low flow gradient
and as there are many locks and dams at the Upper Mississippi River we assume the bed material
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to be fine sand or firm soil, which is confirmed by in situ surveys [71]. Therefore, we set the base
value nb to 0.02 according to the decision guide [67]. Each CS is selected to be situated in straight
river segments without obstructions or irregularities such as banks or multiple channels. Therefore,
the adjustment factors for irregularity n1, shape and size variation n2, and obstruction n3 are set to
0. The vegetation factor n4 is set to 0, as well, because the effect of bank vegetation in wide channels
with small depth-to-width ratios is small [67]. Depending on the degree of meandering the resulting
kst is 38.46, 43.48, or 50.00. These values are comparable to literature values for natural channels with
moderate sediment transport (kst = 35), natural channels with solid bed and no irregularities (kst = 40),
and maintained channels with solid sand and clay or gravel (kst = 50) [72]. Therefore, the estimated
values are plausible and suitable to estimate the velocity.

4. Results and Validation

In this section, we present and validate the results for the Lower Mississippi River. Section 4.1
covers the estimated flow gradient and different validation methods. In Section 4.2, we present and
validate the estimated cross-sectional geometries and resulting discharge time series for multiple CS
within each of the three study areas shown in Figure 1.

4.1. Flow Gradient

Figure 6 shows the virtual stations at the adjusted elevations above the reference station S11 (12347)
and the flow gradient I of the resulting longitudinal profile in blue. Additionally, the upper table shows
the maximum, median, and minimum flow gradient between the water level gauges for validation.
In order to obtain these statistics, we calculate the flow gradient between the gauges for each date
that is consistently included across all in situ time series. We ignore any resulting gradient below 0,
assuming bad data or extreme events. This shows the high variability of the flow gradient.

The most extreme values occur around Knox Landing which is nearest to the Old River Control
Complex where the flow is partially diverted into the Atchafalaya River. Figure 6 also shows
a longitudinal profile in black which is derived from single beam soundings conducted in 2019.
The sounding data includes the measured water level at the survey site. The Baton Rouge water level
measured at the survey date and the constant offset between the Baton Rouge gauge and virtual station
13247 (see Table 1) is subtracted to equalize the variation due to surveys at different dates and the
datum difference between in situ and altimetry data.

A comparison of the satellite altimetry derived flow gradient and the in situ statistics shows
that the estimates are mostly within the range of the measurements and close to the median gradient.
The largest deviations occur between stations located close to each other. The flow gradient does not
change continuously, but discretely at each virtual station. Therefore, large deviations are possible at
nearby river segments with a virtual station in between.

Table 2 shows the uncertainties of the resulting station elevations as a formal error from the linear
adjustment. The uncertainties are largest for virtual stations of the Envisat mission and lowest for the
Jason and Sentinel-3 missions.

Table 2. Uncertainties δ of the adjusted virtual station (VS) elevations in millimeters.

VS: S1 S2 J1 E1 E2 S3 S4 E3 S5 E4 S6 E5 E6 S7 J2 J3 S8 S9 S10

δ [mm]: 27 26 20 51 51 21 21 48 21 68 18 42 42 23 18 18 20 23 36
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Figure 6. Flow Gradient [10−6] of the Lower Mississippi River (blue numbers) derived from adjusted
virtual station elevations. A longitudinal profile derived from bathymetric survey data is shown in
black. The dashed lines represent the locations of in situ water level gauges. The minimum, median,
and maximum flow gradient between the gauges is shown at the top.

4.2. Geometry and Discharge

The methodology presented in this paper can be applied at any location along the river since the
input data is not bound to a specific location. However, it may not be suited for every river segment.
For example, it can be expected that the estimated river bed elevation and thus the channel geometry
is incorrect in curved river segments, because of strong erosion along the thalweg [69]. For this study,
we focus on the three in situ discharge gauge locations within the study area at Vicksburg, Natchez,
and Tarbert Landing. For each study area, we examine a CS at the gauge and four to five additional
nearby locations. Using the DAHITI water occurrence mask, the additional CSs are selected to be
situated in reaches with geomorphologic features such as straight and wide river segments without
irregularities such as sand banks or multiple channels. Therefore, the additional CSs are expected to be
most suitable for the application of the methodology. Each CS is numbered according to the respective
estuary distance in kilometers. Figure 7 shows a map for each study area with each gauge, VS, and CS.
Additionally, the figure shows the DAHITI water occurrence masks.

To validate the cross-sectional geometric parameters, we compared the estimated geometry
with in situ bathymetric survey data. We validate the resulting discharge time series against the
measured discharge at the gauge located within each study area. The validation is quantified by
the Nash–Sutcliffe efficiency (NSE) [73], the root mean square error (RMSE), the normalized RMSE
(NRMSE), and the squared Pearson correlation coefficient R2

P. The discharge estimation results for
the three study areas and selected cross-sectional geometries are presented in Sections 4.2.1–4.2.3.
The supplementary material contains figures for each CS.
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(a) Vicksburg (b) Natchez

(c) Tarbert Landing.

Figure 7. Water occurrence, gauges, virtual stations, and cross-sections within the study areas.

4.2.1. Vicksburg

First, we present the results for each CS within the study area around the Vicksburg gauge shown
in Figure 7a. We use satellite altimetry data from virtual stations E3, J1, and S4 which are combined as
described in Section 3.2.2 to one single water level time series with 361 observations in the time period
from 17 June 2002 to 12 March 2020. We use the same long-term water level time series at each CS within
the study area. 458 surface area observations are available between 13 January 1983 and 1 June 2019.
On the left side of Table 3, we show the estimated parameters used to derive the velocity and discharge
for each CS at Vicksburg. The flow gradient I is inconsistent because virtual station E3 is located
between CS 698.8 and CS 694.7. The roughness kst changes depending on the sinuosity of the river as
described in Section 3.4. The cross-sectional area A and hydraulic radius R are given as percentage of
the respective in situ values below the maximum observed water level for validation. The estimated
bed elevation h0 is given as the deviation from the in situ data. To estimate the geometric parameters
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of the CSs, the long-term water level time series and the observations of surface area within each
AOI are synchronized per CS. The number of synchronized pairs, the squared Spearman correlation
coefficient R2

S of water level and surface area, and the average time difference ∆t are listed on the right
side of Table 3. The results are validated using in situ data of the Vicksburg gauge provided by the
USGS which is available for 330 matching days in the time period from 2 January 2008 to 6 March 2020.

Table 3. Estimated Parameters (left), discharge validation results (center), and observations
synchronization statistics (right) at Vicksburg using combined altimetry data from E3, J1, and S4.
A and P are given as percentage and h0 as deviation of the respective in situ data. The synchronization
statistics shows the resulting number of surface area and water level observation pairs, the area-height
correlation coefficient R2

S, and the average time ∆t between the synchronized observations.

Parameters Discharge Validation Synchronization
CS I kst A R ∆h0 ∆Q NSE NRMSE RMSE R2

P Pairs R2
S ∆t

[10−6] [%] [%] [m] [m3/s] [%] [m3/s] [Days]

683.9 51 50.00 92.72 109.31 2.70 −2130.80 0.873 17.34 3827 0.974 239 0.681 5.00
694.7 51 43.48 98.14 104.40 0.97 −4321.02 0.658 28.43 6275 0.976 239 0.704 5.00
698.8 71 38.46 60.72 60.96 20.78 −13457.17 −1.112 70.69 15604 0.960 239 0.634 5.00
702.4 71 38.46 102.47 105.63 3.84 −1938.45 0.844 19.24 4246 0.978 239 0.748 5.00
721.1 71 50.00 97.38 161.45 0.37 1471.94 0.929 12.96 2861 0.975 239 0.720 5.00

Figure 8 shows the fitted hypsometry, estimated bathymetry, and extracted cross-sectional
geometry at CS 721.1 upstream the Vicksburg gauge. Figure 8 and Table 3 show, that the river bed
elevation is correctly estimated at CS 721.1. Therefore, the cross-sectional geometry matches the
bathymetric survey data. However, R is overestimated but the in situ value could be too low due to
interpolation in the upper area.

(a) Cross-sectional geometry (b) Bathymetry (c) Hypsometry

Figure 8. Estimated geometry, bathymetry, and hypsometry upstream of the Vicksburg Gauge
(CS 721.1). The blue line in (a) shows the estimated and the green line the in situ cross-sectional
geometry. Additionally, the figure shows the predicted bed elevation h0 (orange) and minimum
observed water level hb (dashed blue). The bathymetry (b) is shown within the AOI defined by the
CS which is represented by the orange line. The hypsometry (c) was used to construct the bathymetry.
The dashed orange line represents h0 which was used as boundary condition to fit the hypsometric
function (dark blue) to the synchronized observations. The color of the observations shows the surface
area error within the entire land-water mask not limited to the AOI. The green rectangle shows the
bounds of the entire available water level and surface area observations.

Figure 9 shows the fitted hypsometry, estimated bathymetry, and extracted cross-sectional
geometry at the Vicksburg gauge (CS 698.8). In contrast to CS 721.1 (Figure 8), a wrong h0 is
estimated because the river is narrower than the average reach, causing the geometry to be significantly
underestimated with an area of only 60.72% of the actual size. Furthermore, a bridge obscures the
satellite images of parts of the river. Consequently, the residuals of the discharge time series shown in
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Figure 10 are much larger at CS 698.8 (red) than at CS 721.1 (blue) compared to in situ data (green).
CS 694.7 (orange) has the worst results of the CSs whose locations are not defined by the gauge but
morphological features.

(a) Cross-sectional geometry (b) Bathymetry (c) Hypsometry

Figure 9. Estimated geometry, bathymetry, and hypsometry at the Vicksburg Gauge (CS 698.8).
For details see Figure 8.

Figure 10. Discharge time series with residuals per time (horizontal) and discharge (vertical) of selected
cross-sections around the Vicksburg gauge.

4.2.2. Natchez

Satellite altimetry data from virtual stations E4, J1, S5, and S6 is used for the study area around
the Natchez gauge at CS 580.9 shown in Figure 7b. The combined time series contains 360 observations
in the time period between 8 March 2003 and 12 March 2020. 459 land-water masks are available
from 7 November 1984 to 1 June 2019. Similar to Vicksburg, the Natchez gauge is located on a narrow
river segment. The four additional selected CSs are in regular, straight, and widening reaches. Table 4
shows the estimated parameters, the validation results of the estimated discharge time series, and the
statistics of the observation synchronization per CS. The in situ time series for Natchez is not daily but
contains a record every 14 days on average with 585 entries in the time period from 3 January 2000 to
10 September 2019. To increase the number of validation data, we fit a rating curve using daily water
level measurements at Natchez (see Appendix B). Therefore, 343 entries in the time period between
7 January 1984 and 28 November 2019 can be used to validate the estimated discharge. Although errors
could be introduced by using the rating curve, we assume the result is good enough for validation.
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Similar to Vicksburg, a virtual station (E4) is just in the middle of the study area, so the flow gradient
is not consistent. Meandering in the study area is low, causing the kst to be constant across all CSs.

Table 4. Estimated Parameters (left), discharge validation results (center), and observations
synchronization statistics (right) at Natchez using combined altimetry data from E4, J1, S5, and S6.
For details see Table 3.

Parameters Discharge Validation Synchronization
CS I kst A R ∆h0 ∆Q NSE NRMSE RMSE R2

P Pairs R2
S ∆t

[10−6] [%] [%] [m] [m3/s] [%] [m3/s] [Days]

564.8 76 50.00 125.53 140.19 −2.43 4094.80 0.785 21.92 5059 0.963 232 0.829 5.14
576.0 76 50.00 99.43 118.78 −0.86 1625.15 0.921 13.26 3060 0.966 232 0.572 5.14
580.9 76 50.00 59.14 83.75 11.90 −9632.32 −0.002 47.27 10912 0.956 232 0.714 5.14
591.1 41 50.00 76.13 111.05 1.54 −3714.84 0.745 23.83 5500 0.966 232 0.715 5.14
599.4 41 50.00 87.92 104.37 7.10 −3516.56 0.754 23.42 5405 0.967 232 0.655 5.14

Similar to CS 698.8 at Vicksburg the cross-sectional area is underestimated at the location of
the Natchez gauge (CS 580.9), because the estimated river bed elevation is too high due to the
below-average river width. A figure showing the cross-sectional geometry of CS 580.9 as well as every
other CS is provided in the supplemetary materials. Therefore, the estimated discharge time series
for CS 580.9 at the Natchez gauge (red) shown in Figure 11 has the largest residuals compared to the
rated in situ discharge time series (green). CS 576.0 (blue) and CS 591.1 (orange) are the best and worst
performing additional CSs which are selected by geomorphologic features. For CS 580.9 and CS 591.1
the negative residuals increase with rising discharge. There is no systematic error visible for CS 576.0.

Figure 11. Discharge time series with residuals per time (horizontal) and discharge (vertical) of selected
cross-sections at Natchez.

4.2.3. Tarbert Landing

The third study area shown in Figure 7c is located at and below the Tarbert Landing discharge
gauge. Upstream Tarbert Landing is the Old River Control Complex, where the Mississippi River is
partially diverted into the Atchafalaya River. Therefore, a validation with the Tarbert Landing discharge
would be invalid for estimates in the upstream reach, so we extended the study area downstream to
the St. Francisville gauge. We also do not use Envisat data from the nearby virtual stations E5 or E6 as
they are upstream of the Old River Control Complex. We combine satellite altimetry data from virtual
stations J2, S7, S9, and S10 to a time series of 360 observations between 16 July 2008 and 9 March 2020.
379 land-water masks are available from 7 November 1984 to 21 November 2018. Table 5 shows the
estimated parameters, discharge validation results, and synchronization statistics for each CS. The flow
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gradient varies throughout the study area as multiple virtual stations are located along the reach.
The kst is not consistent because of different degrees of meandering along the river. The estimated
discharge time series were validated against daily in situ data for Tarbert Landing provided by the
USACE for the time period from 3 January 1984 to 28 November 2019. The estimated and in situ time
series can be compared at 344 matching days.

Table 5. Estimated Parameters (left), discharge validation results (center), and observations
synchronization statistics (right) at Tarbert Landing using combined altimetry data from J2, S7, S9,
and S10. For details see Table 3.

Parameters Discharge Validation Synchronization
CS I kst A R ∆h0 ∆Q NSE NRMSE RMSE R2

P Pairs R2
S ∆t

[10−6] [%] [%] [m] [m3/s] [%] [m3/s] [Days]

416.9 39 50.00 115.52 117.83 6.41 1191.17 0.933 12.12 2226 0.981 148 0.899 4.12
427.5 39 43.48 116.25 117.48 −0.71 1188.82 0.924 12.97 2381 0.982 148 0.847 4.12
439.4 39 50.00 103.66 100.79 2.69 −109.32 0.946 10.95 2011 0.978 148 0.818 4.12
460.9 72 43.48 107.07 109.58 2.58 1541.46 0.925 12.86 2361 0.980 147 0.712 4.00
471.4 72 43.48 102.30 112.37 3.66 −555.25 0.926 12.76 2344 0.979 147 0.794 4.00
492.5 31 43.48 99.76 101.60 −0.70 −4914.37 0.389 36.73 6745 0.980 136 0.582 4.38

Figure 12 shows the hypsometry, bathymetry, and cross-sectional geometry of CS 492.5 at the
Tarbert Landing discharge gauge. Although the estimated geometry matches the surveyed bathymetry,
which is also apparent from the low A and R deviations, the resulting time series deviates largely
from the in situ data with an NRMSE of 36.73% and an NSE of 0.389. This is presumably caused
by an erroneously low flow gradient, which is probably introduced by the upstream flow diversion.
Figure 13 shows the estimated discharge and residuals compared to the in situ time series (green) for
CS 492.5 at the Tarbert Landing gauge (red) and the best (CS 439.4, blue) and worst (CS 460.9, orange)
performing additional CS selected by geomorphologic features.

(a) Cross-sectional geometry (b) Bathymetry (c) Hypsometry

Figure 12. Estimated geometry, bathymetry, and hypsometry at Tarbert Landing (CS 492.5). For details
see Figure 8.
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Figure 13. Discharge time series with residuals per time (horizontal) and discharge (vertical) of selected
cross-sections at Tarbert Landing.

5. Discussion

This study is the first application of the DAHITI land-water and water occurrence masks on rivers.
These masks and the modified hypsometric function were previously only used to determine the
surface area, extent, and volume of lakes and reservoirs [12,26]. The study shows that also for large
alluvial rivers that are morphologically more dynamic than lakes or reservoirs, the water occurrence
mask can be used to extract a large amount of void-free land-water masks to fill data gaps caused by
clouds, cloud shadows, instrument errors or ice. Additionally, the modified hypsometric function can
be used to derive the water level within a river reach based on the respective surface area. However,
it cannot be concluded that the approach is applicable to smaller rivers whose size does not exceed a few
image pixels, or braided rivers which are morphologically much more dynamic than the Mississippi.

We showed in Section 4.1 that the elevation differences between virtual stations of multiple
missions with different observation periods can be estimated accurately within river segments without
flow disruptions such as the Lower Mississippi River. This can be seen from the low inaccuracies
resulting from the linear adjustment shown in Table 2. Additionally, a comparison with the in situ
values (Figure 6) shows that the estimates are within the range of the variable in situ gradient and in
general close to the median value. The largest deviations occur between adjacent stations. In contrast
to the calculation of the flow gradient using SRTM or other DEM data which is limited to a short period
of observation, the usage of multi-mission satellite altimetry allows the calculation of an average flow
gradient over time. Using the mean values of each virtual station is not sufficient to calculate the
flow gradient as these do not monotonically increasing with the estuary distance (see Figure 2) which
would result in a negative flow gradient. However, the continuity and variability of the flow gradient
cannot be determined using our approach. The spatial resolution of the estimated flow gradient is
limited by the fixed orbits of the satellite altimetry missions, but may be increased using long-repeat
orbit missions such as Cryosat-2. In most cases a high spatial resolution of the flow gradient is of
minor importance, but at Tarbert Landing (CS 492.5) a higher resolution would be beneficial to detect
possibly rapid changes due to the upstream flow diversion. Deriving a variable flow gradient from a
satellite-based sensor will first become possible with the SWOT mission.

The roughness coefficient is estimated using multiple adjustment factors, a method that has been
well established in several studies [38,43,47,67]. Most of the adjustment factors are set to 0, because we
select only uniform sections without irregularities such as eroded banks, abrupt changes in CS size,
or obstructions based on the DAHITI water occurrence mask. However, the method is useful because
different rates of meandering could be considered. There is no in situ data available for validation,
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but the calculated roughness coefficients are within the ranges of literature values for natural and
maintained channels with solid bed materials which are common in alluvial rivers.

Our method differs from classical state of the art AHG approaches [38,41,43] by the construction
of the river bathymetry which uses as many observational data from satellite altimetry and remote
sensing images as possible and a hypsometric function which was originally developed for lakes [26].
Our results for 16 cross-sections show that the hypsometry can also be fitted to surface area and satellite
altimetry observations over large alluvial rivers to increase the number of water level observations
when the river depth is estimated correctly. The depth estimation succeeds for straight, wide,
and uniform cross-sections with a median deviation of 2.4 m. We are able to manually identify such
river segments using the DAHITI water occurrence mask. The method and its limitation to specific
river segments might be transferable to similar rivers, because the empirical width-depth relationship
used is derived from a large dataset of world-wide distributed rivers. The geometry extracted from
the estimated bathymetry is validated using bathymetric survey data. Overall, the cross-sectional
area is underestimated with an average coverage of 96.51% of the actual area. However, the average
hydraulic radius is overestimated with 109.97% of the surveyed data, because of the medium spatial
resolution of the Landsat mission and the parabola that is used to extend the geometry below the
baseflow. The larger hydraulic radius leads to an increased velocity and thus discharge estimation,
while the reduced area causes an underestimation of the discharge.

Using long-term satellite altimetry time series combined from multiple virtual stations enables the
estimation of discharge time series over a period of up to 18 years. The validation at 16 cross-sections
against the closest in situ measurements yields a median Normalized Root Mean Square Error (NRMSE)
of 18.29% with a minimum of 10.95% and a maximum of 70.69%. The median Nash-Sutcliffe Efficiency
(NSE) is 0.858 with a minimum of −1.112 and a maximum of 0.946. However, the resulting errors
are significantly high at the three gauge locations. At Vicksburg and Natchez this is caused by the
below average river width, which leads to an underestimation of the river depth and the depending
geometric parameters. At Tarbert Landing the extracted channel geometry is correct, but the estimated
flow gradient is most likely too low. At the 13 other cross-sections, which are not defined by the gauge
locations but are selected to be in straight, wide, and uniform river segments, the median NRMSE is
13.26% with a minimum of 10.95% and a maximum of 28.43%. The median NSE at these cross-sections
is 0.921 with a minimum of 0.658 and a maximum of 0.946. These errors are within the range of results
from an intercomparison of state of the art studies [44].

In contrast to the variable distribution of errors, the correlations between estimated and in situ
discharge are consistently high at all cross-sections with values above 0.95. Figure 14a–c show the
linear regressions of estimated and in situ discharge for each CS. It is apparent that the discharge is
predominantly underestimated at each CS and the deviation increases with rising discharge. At Tarbert
Landing the results of the selected CS are very consistent, while they are more widely spread at
Natchez and Vicksburg.

To evaluate the quality of the estimated geometric parameters, we substitute the estimated
cross-sectional geometry with a geometry extracted from the bathymetric survey data and calculate
an additional time series for each CS. Figure 14d–f show the relation of these new estimates and the
in situ discharge. The estimates improve for CS 698.8 at the Vicksburg gauge and CS 580.9 at the
Natchez gauge which is expected as the geometry is clearly underestimated. This emphasizes the high
importance of correctly estimated geometric parameters. However, the estimated discharge at CS 580.9
is now consistently too high. This could be caused by an overestimated flow gradient which is much
smaller downstream at CS 576.0 and CS 564.8 where the estimated discharge decreased using the
bathymetric survey data. At Tarbert Landing the estimates do not change significantly, which confirms
that the geometric parameters are estimated well.

Next, we use the in situ flow gradient time-series derived from in situ water-level time series
(see Figure 6) to substitute the estimated constant slope. The variable flow gradient is used in two
analyses. First, Figure 14g–i show the relation of in situ discharge and estimates using bathymetric
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survey data and variable in situ flow gradient. In this analysis, all parameters are extracted from in
situ data except the roughness which has to be estimated anyway and the input water level time series
which is obtained from satellite altimetry. Compared to the results shown in Figure 14d–f, the estimates
improve e.g., at the Tarbert Landing (CS 492.5) and Natchez gauge (CS 580.9) where we expected
the estimated gradient to be wrong. However, at some CS (e.g., CS 460.9) there is a higher discharge
deviation using the variable gradient and bathymetric survey data. Therefore, we assume that the
estimated roughness must be wrong at those places. In the second analysis, we use the estimated
bathymetry and the variable in situ flow gradient. Figure 14j–l show the respective relation of in situ
data and estimates. Again, the results are worst at the narrow CS 698.8 and 580.9 where the estimated
bathymetry is too shallow. The use of the variable flow gradient shows no improvement in the results
of these CS compared to Figure 14a–c. At Natchez, the results get more consistent at the different CS
while they are more widely spread at Tarbert Landing using the variable flow gradient.

(a) Vicksburg (b) Natchez (c) Tarbert Landing

(d) Vicksburg (e) Natchez (f) Tarbert Landing

(g) Vicksburg (h) Natchez (i) Tarbert Landing

Figure 14. Cont.
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(j) Vicksburg (k) Natchez (l) Tarbert Landing

Figure 14. In-Situ vs. estimated discharge and linear regression for each CS using all estimated
parameters (a–c), bathymetric survey data (d–f), bathymetric survey data and variable in situ flow
gradients (g–i), and variable in situ flow gradient and estimated bathymetry (j–l). The black dashed
lines show the optimum relation. The colored dashed lines represent the CS at the gauges.

Table 6 shows the NRMSE values per CS for each substitute and additionally the assumed
significant factor for further improvements of the methodology which is chosen as follows: If the
NRMSE increases or the improvements are only marginal using substituted values of I, A and
P, we assume the roughness to be significant for further improvements. If the NRMSE decreases
significantly by either substituting I or A and P we assume the respective substitute to be significant
for further improvements but only when the effect is not negated using all substitutes.

Table 6. Errors of the discharge estimation using estimated parameters and respective increase (+)
or decrease (−) using in situ substitutions per CS. The right column shows the significant parameter
causing the largest error.

CS Estimated Substitute Significant
I A and P I, A, and P Parameter

NRMSE[%] ∆ NRMSE[%] ∆ NRMSE[%] ∆ NRMSE[%]

721.1 12.96 −1.02 −2.13 +0.65 Roughness
702.4 19.24 +3.19 +3.97 +7.24 Roughness
698.8 70.69 +5.03 −49.11 −47.87 Bathymetry
694.7 28.43 −2.72 +0.30 −2.31 Roughness
683.9 17.34 −2.58 −4.90 −3.79 Roughness

599.4 23.42 −9.76 −11.25 −6.09 All
591.1 23.83 −9.96 −10.69 +4.24 Roughness
580.9 47.27 +13.40 −14.32 −30.78 Bathymetry
576.0 13.26 +8.42 −0.27 +16.95 Roughness
564.8 21.92 −6.60 +0.29 +17.76 Roughness

492.5 36.73 −14.84 +2.46 −12.23 Gradient
471.4 12.76 +19.92 +3.84 +24.11 Roughness
460.9 12.86 +9.80 -1.51 +18.72 Roughness
439.4 10.95 −0.47 +3.49 +1.03 Roughness
427.5 12.97 +1.27 +10.77 +7.67 Roughness
416.9 12.12 +1.47 +8.50 +3.06 Roughness

At CS 721.1, 702.4, 683.9, 591.1, 576.0, 564.8, 471.4, 460.9, 427.5, and 416.9 single or no substituted
parameters lead to improvements while the errors increase when all parameters are substituted.
As we expect the results to improve using the substituted parameters, the estimated roughness must
be the cause of error. At CS 694.7 and 439.4 the estimation improves using the substitutes but the
remaining error is still high compared to the improvements. Therefore, the roughness must also be the
significant parameter at these locations to gain further improvements. At CS 698.8 and 580.9 the results
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significantly improve by substituting the geometric parameters. These are predominantly the narrow
CS at the gauges where the bathymetry construction failed caused by the underestimation of the river
depth. At CS 599.4 the substitution leads to significant improvements but the remaining errors are still
high. Therefore, all parameters (I, A, P, and the roughness) are significant for improvements. CS 492.5
is the only location where the result improve significantly using the in situ flow gradient and the effect
was not dampened by substituting the bathymetry. Here, the estimated flow gradient is probably
incorrect due to the flow diversion just upstream of Tarbert Landing.

Although the number of 16 CS as test locations might be too low to be statistically significant and
the CS are manually selected, the substitution of parameters shows that the largest cause of error is the
incorrect roughness value. This is probably not only caused by the coarse estimation of the roughness
coefficient using adjustment factors but also by the used flow formula itself. To estimate the flow
velocity we use the Manning formula which is the most commonly used relation between velocity and
water level described by a friction factor. However, being an empirical equation, the Manning formula
has no theoretical basis. It is inhomogeneous in terms of dimensional analysis and the value of the
roughness coefficient has no direct relation on the properties that cause bed roughness. Furthermore,
using the Manning formula we can only obtain an average velocity over width and depth, and complex
characteristics as backwater effects, negative flow gradients or uneven velocity distributions due to
meandering cannot be considered. We minimize the effect of generalization in width by dividing
the CS in multiple subsections but to overcome the velocity distribution over depth and the other
mentioned challenges a more sophisticated formula will be required. Some improvements can be
expected by using a variable roughness coefficient as it is the standard for non-remote sensing methods
and already used by Bjerklie et al. [41] with remote sensing data.

6. Conclusion and Outlook

In this paper, we present an approach to determine long-term river discharge time series using
solely satellite altimetry and remote sensing data at the Lower Mississippi River. The methodology
does not require calibration and works at cross-sections in straight, wide, and uniform reaches of the
river and possibly at comperable large alluvial rivers. At river segments without flow disruptions,
a linear adjustment of the virtual station elevations allows us to combine satellite altimetry data from
multiple virtual stations and missions to one single long-term water level time series. At the Lower
Mississippi River, the constant flow gradient derived from the virtual station elevations shows a high
agreement with the average of the variable flow gradient calculated using in situ data. The roughness
coefficient is estimated using multiple adjustment factors similar to many state of the art studies. Using
long-term optical remote sensing data and a hypsometric function, further water levels can be derived
from surface areas in addition to the satellite altimetry observations. In this way, we can cover a
wider range of water levels and use it in combination with the respective water surface extents to
construct large parts of the river bathymetry. The remaining part of the bathymetry below the baseflow
is approximated using a parabola and an estimation of the river bed elevation which is based on an
empirical width-to-depth relationship that shows limitations in below average wide cross-sections.

In straight, wide, and uniform river reaches, the NRMSE varies between 10.95% and 28.43% and
is comparable with other studies without calibration. The NSE is in a range from 0.658 to 0.946.
The NRMSE increases up to 70.69% at CS not defined by the planform shape of the river but by gauges
which are predominantly located in narrow reaches where depth is underestimated in our approach.

To discuss the significance of the parameters in the Manning formula, we substitute in situ
measurements of bathymetry and variable flow gradient for the respective estimated parameters.
Except for narrow CS where the in situ bathymetry leads to the smallest residuals, overall roughness is
the most significant parameter for further improvements of the methodology. The in situ flow gradient
was only significant at one CS of the study where the spatial resolution of the satellite altimetry was
too low to detect a larger change of the flow gradient.
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The case study at the Lower Mississippi river shows that the approach is limited to selected
regular and uniform reaches where the flow is not disturbed by obstacles, bends, or abrupt changes in
width. Such conditions cause an underestimation of the channel depth using the empirical width-depth
relationship. However, potentially suitable reaches can be identified based on the DAHITI water
occurrence mask. At CS in these reaches, the geometry can be approximated well, because of the
large number of synchronized water level and surface area observations and the derived hypsometry.
Since the estimated flow gradient matches the mean of the variable in situ data, only the difficult to
determine roughness coefficient remains as a limiting factor for the application of the methodology in
suitable reaches.

For future studies, improvements of the roughness estimation and selection of cross-sections
will be a particular challenge. In particular, the applicability and potential of more sophisticated
flow equations should be examined. Additionally, the transferability to other targets such as smaller,
braided, or non-alluvial rivers should be studied. The principle of mass conservation and reach
averaging could be used to reduce the currently wide range of errors. Using water levels derived from
surface areas with a hypsometry [26] would extend the resulting discharge time series over the period
of the Landsat mission starting with the launch of Landsat 4 in 1982. The implementation of additional
remote sensing missions gives new possibilities. Cryosat-2 data could be used to increase the spatial
resolution of the estimated flow gradient and in future, the time synchronous observations of water
level, surface area, and time variable flow gradient by the SWOT mission could be used to improve all
aspects of our methodology while the effort of an implementation of SWOT data should be small.
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Appendix A

To validate the cross-sectional geometry (Section 3.3) with in situ bathymetry, we apply two
offsets, ∆hg and ∆hcs to the long-term water level time series h(t) to get an individual time series hcs(t)
for each cross-section cs:

hcs(t) = h(t) + ∆hg + ∆hcs (A1)

where ∆hg is the median of the differences between the long-term satellite altimetry time series and the
time series of a nearby water level gauge g, and ∆hcs is the height difference between the cross-section
and that gauge. To obtain ∆hcs, we determine the gauge elevations analogous to the virtual stations
using Equations (4)–(6) and estimate the elevation at the position of the cross-section using a linear
interpolation between the gauge elevations. ∆hcs is the difference between the interpolated elevation
and the elevation of gauge g.

http://www.mdpi.com/2072-4292/12/17/2693/s1
http://www.mdpi.com/2072-4292/12/17/2693/s1
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Figure A1. Illustration of the determined elevations showing three virtual stations (VS1-3), two gauges
(G1 and G2), and a cross-section (CS) along a river (blue). The dashed blue line shows the river relative
to the satellite altimetry datum. The elevations x1 and x2 above the reference station VS3 are the results
of a linear adjustment of the satellite altimetry data. x1 and x2 are subtracted from measurements at
VS1 and VS2 respectively to combine all VS to one long-term time series. The two offsets ∆hg and
∆hcs are necessary for the validation of the cross-sectional geometry with bathymetric survey data to
compensate for the different datums and the shift in location.

Appendix B

In contrast to Vicksburg and Tarbert Landing, the time resolution of the in situ discharge time
series for Natchez provided by the USACE is not daily but contains a record every 14 days on average
with 585 entries in the time period from 3 January 2000 to 10 September 2019. However, only 21 in situ
observations match a date in the estimated discharge time series and can be used for the validation.
In order to increase the number of validation data, an additional discharge time series is estimated
using a rating curve based on daily water level measurements at Natchez, which are also provided by
the USACE. To consider the hysteresis effect [6], we use the rating curve formula by Jones [74–76]:

Q = Qn

√
1 +

1
SC

∆h
∆t

(A2)

where Qn is the estimated discharge for the water level h using a simple rating curve, in our case an
exponential function, and t denotes time. The parameters of the exponential function, as well as the
river bed slope S and the flood wave celerity C are fitted to the observed data for each year separately
to consider changes in the channel geometry over time. For years when the fitting fails, parameters
fitted to the entire observational period are used. The RMSE of the rated data is 1225 m3/s compared
to the original observations. The respective NRMSE is 5.66% and the R2

P is 0.978.
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