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Abstract: Mangrove forests grow in the inter-tidal areas along coastlines, rivers, and tidal lands.
They are highly productive ecosystems and provide numerous ecological and economic goods
and services for humans. In order to develop programs for applying guided conservation and
enhancing ecosystem management, accurate and regularly updated maps on their distribution, extent,
and species composition are needed. Recent advances in remote sensing techniques have made it
possible to gather the required information about mangrove ecosystems. Since costs are a limiting
factor in generating land cover maps, the latest remote sensing techniques are advantageous. In this
study, we investigated the potential of combining Sentinel-2 and Worldview-2 data to classify eight
land cover classes in a mangrove ecosystem in Iran with an area of 768 km2. The upscaling approach
comprises (i) extraction of reflectance values from Worldview-2 images, (ii) segmentation based on
spectral and spatial features, and (iii) wall-to-wall prediction of the land cover based on Sentinel-2
images. We used an upscaling approach to minimize the costs of commercial satellite images for
collecting reference data and to focus on freely available satellite data for mapping land cover classes
of mangrove ecosystems. The approach resulted in a 65.5% overall accuracy and a kappa coefficient
of 0.63, and it produced the highest accuracies for deep water and closed mangrove canopy cover.
Mapping accuracies improved with this approach, resulting in medium overall accuracy even though
the user’s accuracy of some classes, such as tidal zone and shallow water, was low. Conservation and
sustainable management in these ecosystems can be improved in the future.
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1. Introduction

Mangrove forests are considered one of the most important ecosystems on the earth. They occur
in the inter-tidal zones along coasts in most tropical and semi-tropical areas [1,2]. Despite the large
ecological benefits of mangrove forests, such as carbon sequestration, protection of land from erosion,
purification of coastal water quality, and maintenance of ecological balance and biodiversity, mangroves
have been destroyed worldwide as a result of climate change and human activities [3–6].

Qeshm Island, located off the southern coast of Iran in the Persian Gulf, is dominated by the
cosmopolitan mangrove species Avicennia marina. Many studies have focused on the ecological and
physiological characteristics of A. marina [7,8]. Avicennia species grow in oxygen-poor sediments that
cannot supply the underground roots with sufficient oxygen. Consequently, their root system also
includes vertically growing aerial roots (pneumatophores). These aerial roots also anchor the plants
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during the frequent inundation with seawater in the soft substrate of tidal systems, and they play a
significant role in sustaining mangroves [9]. Sea-level rise, a main consequence of climate change,
will have a significant influence on future growing conditions [10]. Recent estimates of the extent of
mangrove forests indicate that their total area has already decreased substantially, by 50% during the
last half-century [11–13].

Identification of the aerial root system at a high spatial resolution would enable efficient
planning of reforestation in mangrove ecosystems, but this detailed information is currently missing.
Image resolution is directly correlated with the ability to identify objects of the same type [14].
Despite the great value of Landsat images for numerous applications, the specifications are inappropriate
for distinguishing mudflats with aerial roots from mudflats without aerial roots. This is also due to
the spectral similarities of these classes and the influence of the soil in the tidal zone (dry and wet
conditions). A more detailed mapping of the mangrove ecosystem, e.g., trees and aerial root systems,
is required to improve assessments of their status and recommend appropriate protection measures.

In the last years, a range of low- to high-resolution aerial images [15–17], hyperspectral images [18],
Synthetic Aperture Radar (SAR) data [19], and Light Detection and Ranging (LiDAR) data [20] has
been used to map the extent and distribution of mangrove cover classes. In the past decade, data have
become available from Very High-Resolution (VHR) satellites, such as Worldview-2 and Pléiades-1,
leading to improved mapping of mangrove cover classes [21,22]. However, the main limiting factor
is the high cost of data acquisition. Consequently, alternatives have been investigated, in particular
combining satellite data of different spatial resolutions [23]. Only recently, studies focusing on the
use of freely available VHR data have been completed [24–28]. For example, in the forestry sector,
a combination of commercially available Worldview-2 (WV-2) images and Landsat time-series data has
been used to map tree species [29]. Different classification techniques, such as traditional statistical
regression [30], machine learning [31], artificial neural networks [32], and tree-based methods [33,34],
have successfully been used with a large geographic extent and high level of detail.

Machine learning techniques such as Random Forest (RF), artificial neural networks (ANN)
and Support Vector Machine (SVM) have gained exceptional attention to classify Land cover/Land
use and identify mangrove forests because they perform better than traditional techniques [33,34].
These techniques use algorithms to learn the relationship between a response and its predictors and
have been categorized into two sub-types: supervised and unsupervised techniques, respectively [35].
A main advantage is that they are all nonparametric classification techniques that require no assumptions
about the distribution of the data and thus no prior knowledge about the characteristics of feature data
is needed either [31]. Many studies in the field of Land cover/Land use classification have been carried
out using different machine learning algorithms as well as comparing them among each other [35].
In the last decade, RF has recently become preferred for mapping land cover classes in several
realms [36,37]. RF is a nonparametric technique based on a set of decision trees. Unlike parametric
techniques, RF can be used to predict land cover classes even based on a small sample size and therefore
reduces both cost and time [38]. Moreover, embedded feature selection in the model generation
process makes it possible to obtain high mapping accuracy. Several studies have demonstrated that
RF, in combination with satellite data (Landsat) [37] and a high spatial resolution [16], can be used to
successfully map mangrove cover classes. Moreover, the latest advances in remote sensing data and
techniques, i.e., increasing availability of datasets in combination with higher temporal, spatial and
spectral resolutions (e.g., ESA Copernicus Program Sentinel-1/-2), enable improved characterization of
mangrove ecosystems. They make it possible to derive leaf area index, height and biomass, map the
mangrove forest extent, and monitor mangrove status over time [39]. Several studies have been
carried out to explore satellite data of different spatial resolutions for improving land cover maps,
i.e., in forestry that have combined data sets from Landsat and AVHRR [40] or Landsat and MODIS [41].
However, to the best of our knowledge, no study exist that combine Worldview-2 and Sentinel-2
images to classify mangrove ecosystems in greater detail which is a prerequisite for managing this
ecosystem. Therefore, freely available Sentinel-2 data, in combination with commercially available
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high-spatial-resolution imagery, has great potential for mapping wall-to-wall mangrove cover at a
high level of detail, i.e., distinguishing between land cover classes with similar spectral properties.

In the present study, we investigated whether the combination of Sentinel-2 and Worldview-2
imagery can be used to accurately map the most relevant land cover classes for mangrove ecosystem
management. We developed a three-step approach: (i) extraction of reflectance values from
high-resolution Worldview-2 imagery, (ii) segmentation based on spectral and spatial features, and (iii)
wall-to-wall mapping of the eight land cover classes based on Sentinel-2 imagery.

The study aims at developing a cost-effective, accurate method that can be applied widely and in
a standardized manner, particularly when field surveys are restricted.

2. Materials and Methods

In order to produce a wall-to-wall map of mangrove cover classes for Qeshm Island, a two-step
method was applied: (i) Reference data were generated at a 0.5-m spatial resolution using an
object-based method performed on Worldview-2 images. The Worldview-2 data were dispersed across
the entire study area and covered 27% of the total land cover. (ii) Reference data based on Worldview-2
images were used for the upscaling.

2.1. Study Area

Qeshm Island is located a few kilometers off the southern coast of Iran, opposite the port cities of
Bandar Abbas and Bandar Khamir. It is the largest island in the Persian Gulf and covers an area of 1491
km2 (Figure 1). Most of the mangrove forests of Qeshm are located in the northern part of the island in
the Hara Protected Area, a biosphere reserve that covers an area of approximately 20 by 20 km and
is characterized by numerous tidal channels [42]. The mangroves are rooted in the saltwater of the
Persian Gulf, but the special pores within their leaves extract the salt from the water. The whole forest
area is affected by frequent boat trips, fishing and a small amount of leaf-cutting for livestock feed.
The forests are the habitat for migratory birds, hooked turtles and venomous aquatic snakes, all of
which are indigenous species.
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Sentinel-2B image (2017, Combination of Bands 8-4-3); right: Worldview-2 image data used for the 
upscaling approach. (B) Aerial roots (pneumatophores) growing in a wide radius around the 
mangrove (Avicenna marina) are highlighted by the red polygon. 

2.2. Field Data 

The field survey revealed that Avicenna marina was the dominant mangrove species on Qeshm 
Island. Visual analysis of high-resolution images made it possible to distinguish between eight target 
classes of mangrove ecosystem, including three types of mangrove spatial pattern: closed canopy 
mangrove, open canopy mangrove, and individual mangrove trees (found in a small patch on the 
island). The remaining target classes in the study area were mudflat (either with or without aerial 
roots), tidal zone (sand, beaches or unvegetated area), shallow water (rivers or ponds), and deep 
(open) water. 

During the field survey, a total of 170 GPS reference points (Garmin 629sc with spatial accuracy 
between 1 and 5 m) were collected and used for validation of the classification of the eight land cover 
classes. In order to minimize and avoid the negative impacts on the vulnerable ecosystem, the 
collection of field samples was restricted to easily accessible parts. In order to increase the number of 
samples for three types of mangrove and two types of mudflat, 53 points were additionally selected 
from Spot 6/7 data using image interpretation. Figure 2 shows the distribution of the samples for the 
eight land cover classes. The set of reference points collected from both GPS and from the Spot images 
are depicted for each class separately in Table 1. 

Figure 1. (A) Left: location of Qeshm Island and the mangrove ecosystem, shown as a false-color
Sentinel-2B image (2017, Combination of Bands 8-4-3); right: Worldview-2 image data used for the
upscaling approach. (B) Aerial roots (pneumatophores) growing in a wide radius around the mangrove
(Avicenna marina) are highlighted by the red polygon.

2.2. Field Data

The field survey revealed that Avicenna marina was the dominant mangrove species on Qeshm
Island. Visual analysis of high-resolution images made it possible to distinguish between eight target
classes of mangrove ecosystem, including three types of mangrove spatial pattern: closed canopy
mangrove, open canopy mangrove, and individual mangrove trees (found in a small patch on the
island). The remaining target classes in the study area were mudflat (either with or without aerial
roots), tidal zone (sand, beaches or unvegetated area), shallow water (rivers or ponds), and deep
(open) water.

During the field survey, a total of 170 GPS reference points (Garmin 629sc with spatial accuracy
between 1 and 5 m) were collected and used for validation of the classification of the eight land
cover classes. In order to minimize and avoid the negative impacts on the vulnerable ecosystem,
the collection of field samples was restricted to easily accessible parts. In order to increase the number
of samples for three types of mangrove and two types of mudflat, 53 points were additionally selected
from Spot 6/7 data using image interpretation. Figure 2 shows the distribution of the samples for the
eight land cover classes. The set of reference points collected from both GPS and from the Spot images
are depicted for each class separately in Table 1.

Table 1. Overview of the two different sets of reference points collected from the GPS survey and the
Spot 6/7 image interpretation.

Land Cover Class

Source of
Reference

Points

Closed
Mangrove

Cover

Open
Mangrove

Cover

Individual
Mangrove

Trees
Mudflats Aerial

Roots
Tidal
Zone

Shallow
Water

Deep
Water Total

GPS 5 12 0 27 7 6 7 28 92

Spot 6/7
images 12 15 11 15 25 0 0 0 78

Total 17 27 11 42 32 6 7 28 170
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2.3. Remote Sensing Data and Pre-Processing

Technical specifications of the Worldview-2 and Sentinel-2 imagery are given in Table 2. Images
were cloud-free over coastal areas. The multispectral bands of Worldview-2 consist of four standard
bands (red, green, blue and near-infrared 1) and four additional bands (coastal, yellow, red edge and
near-infrared 2), which facilitated spatial and spectral analysis, mapping and monitoring of large areas
at a more detailed level [43]. Sentinel-2 bands consist of four bands at a 10-m spatial resolution (blue,
green, red and near-infrared), six bands at a 20-m spatial resolution (four narrow bands near the red
edge and two wider SWIR), and three bands at a 60-m spatial resolution (aerosols, water vapor and
cirrus) [44]. The obtained data were pre-georeferenced to the UTM zone 40 North projection using
the WGS-84 datum. Sentinel-2 data were radiometrically calibrated to apparent surface reflectance
by the FLAASH (Fast Line-of-sight Atmospheric Analysis of Hypercubes) atmospheric corrected
algorithm [45] in ENVI 5.4 software. Fusion of panchromatic with multispectral images of Worldview-2
data resulted in an image with a 0.5-m spatial resolution. In the present study, the Gram Schmidt
pan-sharpening algorithm was applied [46] because it preserves the primary spectral value of the
objects and has successfully been applied to multispectral images. In this study, a Sentinel-2 level
1C product image was applied, acquired on a clear day and under the lowest tide condition over
Qeshm Island.

2.4. Spectral Variability

VHR images show the required details of the mangrove ecosystem. Therefore, the Worldview-2
image was used to select the eight targeted land cover classes: (1) closed canopy mangrove, (2) open
canopy mangrove, (3) individual mangrove trees, (4) mudflats, (5) aerial roots, (6) tidal zone, (7) shallow
water, and (8) deep water. In order to better separate them and distinguish between the spectral
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signatures, based on the field survey and image interpretation, reflectance values of the target classes
(by 100 points) were extracted from Worldview-2 image bands. The boxplots in Figure 3 show that the
two classes closed canopy mangrove and open canopy mangrove are clearly distinguished by the blue
band and the yellow band. Moreover, it shows that the aerial roots are clearly distinguished from the
mudflats in the green, yellow and red bands. Figure 4 shows the reflectance values of the eight land
cover classes for the Sentinel-2 bands.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 19 
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Figure 3. Reflectance values of the eight land cover classes for each Worldview-2 band:
(B2) (Blue: 450–510 nm), (B3) (Green: 510–580 nm), (B4) (Yellow: 585–625 nm), (B5) (Red: 630–690 nm),
(B6) (Red edge: 705–745 nm), (B7) (Near-infrared 1: 770–895 nm), and (B8) (Near-infrared 2:
860–1040 nm). The letters A to H show the land cover classes namely closed canopy mangrove,
open canopy mangrove class, individual mangrove trees, mudflats, aerial roots, tidal zone, shallow
water, and deep water, respectively.
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Figure 4. Reflectance values of the eight land cover classes for Sentinel-2: (B2) (Blue band 490 nm),
(B3) (Green band 560 nm), (B4) (Red band 665 nm), (B5) (Vegetation Red Edge band 705 nm),
(B6) (Vegetation Red Edge band 740 nm), (B7) (Vegetation Red Edge band 783 nm), (B8) (Near-infrared
band 842 nm), and (B8A) (Vegetation Red Edge band 865 nm). The letters A to H show the land cover
classes namely closed canopy mangrove, open canopy mangrove class, individual mangrove trees,
mudflats, aerial roots, tidal zone, shallow water, and deep water, respectively.
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Table 2. Sensor specifications of the Worldview-2 and Sentinel-2 imagery.

Sensor Worldview-2 Sentinel-2

Acquisition date 26.12.2016 02.12.2017

Bands 8 multispectral
1 panchromatic 13 multispectral

Spatial resolution 2 m
0.5 m

10 m (bands: 2, 3, 4, 8)
20 m (bands: 5, 6, 7, 8A, 11, 12)

60 m (bands: 1, 9, 10)
Dynamic range 11 bits 12 bits

Swath width 16.4 km at nadir 290 km
Revisit time 1.1 day 10 days

2.5. Reference Data

The sampling of reference data used Object-Based Image Analysis (OBIA), which is based on
segmentation [34,47]. The multi-resolution segmentation algorithm from eCognition 9.2 software
(Trimble Inc., Munich, Germany) [48] was used, which classifies homogeneous image objects by
using attributes of image objects rather than the attributes of individual pixels or a hierarchical
object-oriented approach using a knowledge base. In the present study, a series of scale parameters,
shape and compactness (from low to high) were tested to control the size of segmentation. In order to
generate reliable reference samples, information from the Normalized Difference Vegetation Index
(NDVI) layer and the Moran Index using the Worldview-2 bands was additionally included for image
segmentation. In previous studies, NDVI has been successfully applied to display and quantify
mangrove forest changes [12,49,50]. NDVI values were computed as:

NDVI =
NIR−Red
NIR + Red

(1)

where NIR is band 8 and Red is band 5.
The Moran index provides the correlation between attributes at each location in a study area and

the statistical mean of the values from neighboring locations. The Moran index has successfully been
applied in almost all studies dealing with spatial autocorrelation (for a review see [51]). It evaluates
the magnitude of homogeneity of a target image object to other objects surrounding it. If targets
are attracted to (or repelled from) each other, the observations are dependent [52]. In addition,
the Moran Index is similar to correlation coefficients and its value ranges from −1 to 1 [53]. Moreover,
the Moran index provides quantitative clustering information that is used to select homogeneous
regions. The Moran index measures the degree of spatial auto-correlation at each particular location [54].
Information and photos from the field observations, as well as a visual interpretation of Worldview-2
images, were used to develop the rule sets to select segmentations for each class as reference data
(Ground Truth or OBIA training). In order to use spectral features (mean and standard deviation
of blue, yellow, red edge bands and NDVI), additional geometric features such as shape and extent
were used. The total number of variables selected was based on visual inspection of the reflectance
values of the eight classes. The feature selection process was completed with the eCognition feature
optimization tool using 100-point datasets.

2.6. Upscaling by Reference Data

After the generation of the reference data, RF was used to classify Worldview-2 and Sentinel-2
images. In this step, Sentinel-2 imagery was preliminarily mapped over the same extent as the
Worldview-2 image with 70% of the reference data. The accuracy of the map of the RF algorithm
was then checked, and the reference data were used for mapping mangrove classes to a larger extent.
A layer stack was created from the NDVI, blue, green, red and near-infrared bands. Sentinel-2 data
(10 m spatial resolution) served as input for the RF classification. RF was performed using the Ranger
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Package in the R statistical software [55]. Figure 5 shows the main steps of the classification approach
applied in this study.

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 19 

 

 
Figure 5. Flow chart of the upscaling approach for mapping land cover in mangrove ecosystems. 

2.7. Accuracy Assessment 

The land cover map based on the classification using Sentinel-2 images (same extent as 
Worldview-2) was assessed using 30% of the reference data, which was excluded from classification 
and from cross-validation. To assess the accuracy of the land cover map based on the upscaling 
approach, a confusion matrix was constructed, consisting of 167 validation points collected during 
the field survey, for image interpretation using the Spot 6/7 images. We used a leave-one-out cross-
validation [56] because our sample was relatively small (30% of the training data did not cover the 
land cover map to a large extent). 

This matrix provides the overall accuracy, the kappa coefficient, and the user’s and producer’s 
accuracies for each class. The producer’s accuracy represents how well reference pixels of the ground 
cover type are classified. The validation points were rasterized to the 10-m resolution of the Sentinel-
2 image. Furthermore, a Wilcoxon test (non-parametric statistical test that compares two paired 
groups) was applied in order to estimate the significance difference between the user’s and 
producer’s accuracies for the two classification maps [57]. 

3. Results 

The mapped land cover classes of the Qeshm Island mangrove ecosystem are given in Figure 6. 
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2.7. Accuracy Assessment

The land cover map based on the classification using Sentinel-2 images (same extent as
Worldview-2) was assessed using 30% of the reference data, which was excluded from classification and
from cross-validation. To assess the accuracy of the land cover map based on the upscaling approach,
a confusion matrix was constructed, consisting of 167 validation points collected during the field survey,
for image interpretation using the Spot 6/7 images. We used a leave-one-out cross-validation [56]
because our sample was relatively small (30% of the training data did not cover the land cover map to
a large extent).

This matrix provides the overall accuracy, the kappa coefficient, and the user’s and producer’s
accuracies for each class. The producer’s accuracy represents how well reference pixels of the ground
cover type are classified. The validation points were rasterized to the 10-m resolution of the Sentinel-2
image. Furthermore, a Wilcoxon test (non-parametric statistical test that compares two paired groups)
was applied in order to estimate the significance difference between the user’s and producer’s accuracies
for the two classification maps [57].

3. Results

The mapped land cover classes of the Qeshm Island mangrove ecosystem are given in Figure 6.
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Figure 6. Classification map of the Worldview-2 image (A), classification map of the Sentinel-2 image
with the same extent as the Worldview-2 image (B), and the final map based on the upscaling approach
(C). The visible differences between (I) and (II) are related to misclassified shallow water. This error
happened two reasons: First, the spectral profiles of the shallow water and tidal zone classes were
similar in the Sentinel-2 image. Second, the date of the images differed, and the relative sea level rise
had acted as an important factor in converting the tidal zone class (D) to shallow water (E). However,
we were able to show more details of mangrove ecosystems with this approach, such as individual
trees and aerial roots (F).

Model accuracies of the RF classification were assessed in two steps. In the first step, random
reference data based on the segmentation of Worldview-2 images was used to validate the subset
of Sentinel-2 imagery. An overall accuracy of 88% and a kappa coefficient of 0.85 were obtained.
The validation revealed the producer’s accuracy of the four classes shallow water (96.5%), deep water
(94.8%), closed canopy mangrove (89.2%), and mudflat (83.1%) (Figure 7). In the second step of the
validation, the overall accuracy of the upscaling approach was calculated at 65.5% and the kappa
coefficient was 0.63. Whereas the user’s accuracy for the two classes deep water (100%) and closed
canopy mangrove (75.1%) was high, the producer’s accuracy for the class mudflat with aerial roots
(66.1%) and without aerial roots (73.3%) were lower (Figure 8). These two classes included a corollary
omission error of 33.9% and 26.7%, respectively. The results of the confusion matrix of the different
classification extents are given in Tables 3 and 4.
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Table 3. Confusion matrix for the classification map of Sentinel-2 over the same extent as for
Worldview-2. Bold-faced numbers indicate the agreement between a class.

Classification

Reference Data

Closed
Mangrove

Cover

Open
Mangrove

Cover

Individual
Mangrove

Trees
Mudflats Aerial

Roots
Tidal
Zone

Shallow
Water

Deep
Water

Closed mangrove cover 1102 119 235 1 3 0 0 2
Open mangrove cover 73 696 122 4 61 5 1 1
Individual mangrove

trees 61 59 23 1 6 4 1 2

Mudflats 0 4 0 991 90 113 2 0
Aerial roots 0 160 19 38 682 163 2 0
Tidal zone 0 28 3 158 232 738 3 0

Shallow water 0 6 0 4 7 2 1049 51
Deep water 0 0 0 0 0 0 28 1042
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Table 4. Confusion matrix for classification map of the upscaling approach. Bold-faced numbers
indicate the agreement between a class.

Classification

Reference Data

Closed
Mangrove

Cover

Open
Mangrove

Cover

Individual
Mangrove

Trees
Mudflats Aerial

Roots
Tidal
Zone

Shallow
Water

Deep
Water

Closed mangrove cover 15 2 0 0 0 0 0 0
Open mangrove cover 0 15 1 2 1 5 3 0
Individual mangrove

trees 1 1 5 3 1 0 0 0

Mudflats 0 1 5 22 10 3 0 1
Aerial roots 0 2 0 2 23 4 0 1
Tidal zone 0 0 0 1 0 3 0 2

Shallow water 0 0 0 0 0 0 3 4
Deep water 0 0 0 0 0 0 0 28

The classification revealed that the largest area (27,678 ha) belongs to the class deep water and
smallest (62 ha) to the class individual mangrove trees. The classes closed canopy mangrove, open
canopy mangrove, mudflat, aerial root and tidal zone cover an area of 4857, 3474, 13,099, 2296,
and 2026 ha, respectively. The p-value of the Wilcoxon test for differences in the user’s and producer’s
accuracies between the two classification maps were 0.11 and 0.32, respectively, which is greater than
the significance level alpha = 0.05. We can conclude that the accuracy assessments did not differ
significantly between the two classification maps.

4. Discussion

4.1. General Comments

Mangrove forests typically grow in zones that are marshy and inaccessible [11]. Therefore,
collecting GPS points as training data through field surveys is difficult [14]. Nowadays,
new developments in remote sensing techniques have great potential to overcome the problem
of acquiring field data in inaccessible areas of mangrove ecosystems [58]. Between 1970 and 2018,
approximately 435 studies mapping the area of mangroves were conducted, and after the year 2000 the
majority used Landsat images [14]. While Landsat imagery has the advantages of free availability, a
large archive and extensive coverage, its relatively coarse spatial resolution of 30 m can be a major
limitation. The potential of different datasets from Landsat, ALOS AVNIR-2, Worldview-2 and LIDAR
to map a detailed land cover of mangrove ecosystems was recently evaluated [59]. The results clearly
demonstrated the importance of a higher spatial resolution for mapping specific mangrove features,
such as individual tree crowns and species communities.

With the present study, we contribute to this research with an efficient mapping of mangrove
features using multi-resolution datasets. We add to existing knowledge gained in a previous study [37],
which focused on comparing four classification algorithms based on Landsat images for predicting
six land cover classes in the mangrove ecosystem: mangrove forest, mud flat, other land cover,
tidal zone, water and settlement. The results of this earlier research demonstrated that using Landsat
data enables to potentially distinguish between different mangrove forest stands and can be useful
for detecting their changes over time. However, since mangrove forests usually consist of small
patches, Landsat images are not suitable for extracting more details and are mainly only appropriate
for detecting changes in mangrove forest canopies. This is in accordance with [14,59], in that only
high-resolution images can be used to map more detailed land cover classes. By increasing the number
of spectral bands and the spatial resolution, it is possible to discriminate between small objects and
to detect small objects, such as individual trees and mudflats with aerial roots. Several studies have
shown the potential of Worldview-2 data for detailed land cover mapping, including mangrove forest
ecosystems [16,39,59–61]. However, the main reason for the limited use of such imagery is its high
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cost–in particular, for developing countries. Thus, in our study, an upscaling approach was applied
that reduces costs while still enabling the generation of a more detailed map of land cover classes.

4.2. Modelling Approach

In the last decade, several studies have been carried out combining satellite data of different spatial
resolutions to improve land cover maps in the forestry sector. Some investigations have considered
the combination of Landsat data with datasets of higher spatial resolutions such as IKONOS [62],
GeoEye-1 data [63] or Worldview-2 [29].

Comparison of the two confusion matrices clearly demonstrated that the accuracy and kappa of
the upscale approach were lower than the accuracy and kappa of the map that had the same extent as
the one based on the Worldview-2 imagery. The use of a large amount of reference data to predict the
subset of Sentinel-2 data helped to reduce misclassification.

The confusion matrix of the upscaling approach (Table 4, Figure 8) indicates that the overall
accuracy and kappa decreased with increasing map scale. There was a high incidence of misclassification
of individual trees and tidal zone when Sentinel-2 data were used. Several possible reasons for this
error exist. First, it might be due to the amount of reference data because the Worldview-2 data only
cover about 27% of the Sentinel-2 image. On the other hand, in the Worldview-2 image, the area of these
two classes is less than that of the other classes. It is well known that the number of reference samples
from the Worldview-2 image affects classification accuracy. In a recent study, it was demonstrated that
the large amount of reference data obtained from the Worldview-2 image was the main driving factor
for the accuracy of the classification of two pine tree species by Landsat data [29]. Future work could
include the collection of more training samples in order to further improve the distinction of these land
cover classes. Second, the error could be a result of the similarity of the spectral profile of individual
trees and open canopy mangrove forest. The use of fewer reference samples decreases the spectral
separability of classes and potentially decreases the accuracy. Third, the decrease in accuracy could be
related to the level pre-processing and viewing geometry of Sentinel-2 imagery.

Nevertheless, the present study demonstrates that areas with different canopy densities and
mudflat areas (occurrence of aerial root systems) can be accurately classified using the upscaling
approach with Sentinel-2 images. Overall, high accuracies were obtained for mapping closed canopy
mangrove (75% user’s accuracy, 94% producer’s accuracy) and aerial roots (72%, 66%). Moreover,
the combined use of Worldview-2 and Sentinel-2 images further increases map accuracies–in particular
when the overall accuracy is not very high, and the user’s accuracy is low in problematic classes.

4.3. Importantance of Mapping of Detailed Information on Mangrove Forests

Detailed maps of mangrove ecosystems are a prerequisite for successful protection and
management. Since mangroves occur in areas with a high salt concentration in the soil, they have
developed aerial roots for physiological functions and cover a large area within the Hara Protected
Area [64]. This specialized root system reduces the power of sea waves and guarantees sustainable
establishment of mangrove communities, as well as providing a protected place for aquatic animals [42].
In order to plan the development of mangrove forests, both naturally or artificially, the selection of
potential suitable land is relevant. The land areas on the map that show the mangrove forests and
mudflat with aerial roots are preferred to other areas that are not covered by vegetation. Moreover,
the occurrence of mangrove is an indication that the land provides optimal conditions for the
development of mangrove forests in terms of soil parameters such as salinity and pH. Mapping
the details of mangrove ecosystems is an effective way to visualize, evaluate and better understand
mangrove ecosystem development. Changes over a long period, as well as the recognition of unexpected
changes due to natural or dramatic anthropogenic impacts, can be assessed at an early stage [65,66].
Moreover, assessing changes in the aerial root area can indicate the status of these forests because these
roots are destroyed by an increase in water level or sediments.
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5. Conclusions

In the present study, we demonstrate that field surveys in mangrove ecosystems are not always
feasible, due to the high costs and inaccessibility of the area. Mangrove distribution mapping is a hot
topic in the field of mangrove remote sensing [14]. Based on field observations, the mangrove forests
in the present study have a uniform composition of the species Avicenna marina and the detectable
differences are limited to canopy density, which consists of mangrove zonation patterns including
forests of immature trees and of mature trees, and isolated trees. The use of VHR satellite imagery for
sampling reference data in combination with freely available satellite data and machine learning is
an effective and straightforward approach to further improve the details of land cover maps and to
assess relevant forest parameters. Upscaling is a cost-efficient tool for producing accurate large-scale
land cover maps in inaccessible ecosystems. The findings of the present study support the sustainable
management of mangrove ecosystems and can be used to assess the efficiency of ecosystem services.
Although the upscaling approach produced low user accuracies for the shallow water and tidal zone
classes, overall accuracies were generally high.

With the proposed method, it is possible to distinguish between the two most relevant classes for
management, i.e., canopy mangrove canopy and mudflat. Our findings confirm that advances in remote
sensing data and techniques are favorable for developing novel methods to map mangrove ecosystems
in greater detail. We conclude that the selection of appropriate images remains an important factor and
that Sentinel-2 images have great potential for identifying different land cover types, thanks to their
high spatial, temporal and spectral resolution. Continuity of the presented approach is guaranteed
since Sentinel-2 data will be continuously acquired.
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