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Abstract: The mission of Surface Water and Ocean Topography (SWOT) is scheduled to be launched 
in 2022, and global ocean eddies with radius scales of larger than 10 km are expected to be observed 
from space. However, there are still open questions about the capability of SWOT to detect ocean 
eddies. Based on ocean model data and SWOT orbit, this study simulates along-track observation 
of SWOT. Two eddy datasets are derived from simulated observation data via mapping and eddy 
identification procedures, one of which includes SWOT errors and the other does not. The third 
eddy dataset is generated from the original model data. Through comparing these three eddy 
datasets, it is found that 34% (40%) eddies are lost due to insufficient temporal sampling and errors 
in the Kuroshio Extension (South China Sea) region, and numerous artifact eddies are generated. 
To further explain the influence of SWOT errors on smaller-scale eddies, two eddies (a cyclonic eddy 
and an anticyclonic eddy) with the radius of about 10 km are repeatedly observed 100 times using 
the SWOT-simulator. The cyclonic eddy with larger amplitude has been detected 84 times, while 
the anticyclonic eddy is visible 76 times. Therefore, the influence of the SWOT sampling and errors 
on ocean eddy observation is revealed by the results of these observing system simulation 
experiments (OSSEs). 
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1. Introduction 

Ocean eddies play an important role in transporting heat and salt on a global scale [1,2]. In the 
past two decades, with the development of satellite altimeter technologies, global mesoscale eddies 
(with radius scales of larger than ~50 km) have been detected and scientists study the kinematic 
properties, propagation characteristics, intrinsic shape and mass transport of mesoscale eddies from 
a global view [3–8]. However, it is difficult to observe sub-mesoscale eddies (with radius scales of 10–
50 km), which are very important to ocean dynamics and biology research, with current nadir 
altimeters [9-11]. At present, a 2D interferometric altimeter is designed as the primary payload 
instrument of Surface Water and Ocean Topography (SWOT) and high-resolution sea surface height 
(SSH) along a wide swath will be measured in the future [12]. Wang et al. [13] investigated the spatial 
scale resolved by SWOT (SWOT scale), and their results suggested that the SWOT scale, varying 
geographically and seasonally, can reach 15 km in a best-case scenario. Consequently, numerous sub-
mesoscale eddies will be detected, which is desired for all oceanographers and mariners. 

The capability of the satellite altimeter to detect global eddies depends on its space-time 
sampling and observation errors. On the basis of sampling schemes of current nadir altimeters, with 
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insufficient space coverage, only between 6% and 16% of the total number of eddies can be captured 
[14]. In the near future, SWOT will spatially cover almost all ocean areas except polar regions with 
120 km swath width. However, its average revisit time requires approximately 11 days at low 
latitudes [15]. Considering this insufficient temporal sampling scheme, SWOT will inevitably miss 
numerous short-term sub-mesoscale eddies. In addition, the instrument noise of the interferometric 
altimeter and geophysical errors will influence the detection results of eddies, especially sub-
mesoscale eddies. The SWOT error document describes the power spectra of the different error 
components in detail. In this study, these error components are collectively referred to as 
“observation errors”, including the Ka-Band Radar Interferometer (KaRIN) noise, roll errors, baseline 
dilation errors, phase errors, and timing errors [12,16]. Gaultier et al. [12] investigated how these 
observation errors impact the SWOT observation and developed the software named SWOT-
Simulator, which could synthesize observations of SSH with errors in the spectral domain. The results 
reveal that SWOT’s capability to observe the structure of ocean processes down to 15–30 km in 
wavelength [17]. However, the mesoscale eddy detection capabilities of SWOT cannot be revealed 
directly with these curves of the power spectrum. It is necessary to simulate the eddy detection 
capabilities of SWOT through performing special observing system simulation experiments (OSSEs) 
[18–20]. 

This study performed OSSEs to indicate the influences of SWOT sampling and errors on ocean 
eddy observations. Totally, three types of eddy datasets are derived. First, eddies directly detected 
from ocean model data are regarded as the ground truth, which can be used for comparison with 
other results, and this sort of dataset is named “the ground truth eddy dataset (𝐸𝐷 )”. The second 
type of eddy dataset is named “the sampling eddy dataset (𝐸𝐷 )”, which is derived from mapped 
SSH on the basis of wide-swath sampling data. In this procedure, the ocean model is linearly 
interpolated in space into the SWOT grid without any noise, and these sampling data have been 
mapped by employing an optimal interpolation (OI) method. The third type of the dataset called 
“observed eddy dataset (𝐸𝐷 )” is closer to the eddy detection results by SWOT. Compared with the 
second dataset, this dataset includes observation errors, which are derived from the SWOT noise 
power spectrum [12]. 

Through the comparison of these three types of eddy detection datasets, the coincidence status 
of eddies (CSE) among different datasets can be extracted. There are five types of CSE defined in this 
study, which are named “matched”, “split”, “merged”, “missed”, and “artifact”, respectively. Here, 
“matched” means the simultaneous observation of an eddy in three datasets, as shown in Figure 1a. 
Figures 1b and 1c exhibit the process of “split” and “merged”, respectively. After the procedures of 
simulated observations and mapping, a large eddy in 𝐸𝐷  may be “split” into several small eddies 
in two other datasets, and sometimes several small eddies may be incorrectly “merged” into a large 
eddy. In addition, the eddy labelled with “missed” cannot be detected by SWOT, and some “artifact” 
eddies are generated in 𝐸𝐷  and 𝐸𝐷 . According to the analysis of eddy parameters (radius and 
amplitude) variation corresponding to each type of CSE, the influence of SWOT sampling and errors 
on eddy detection will be revealed. 

 

Figure 1. Illustration of five types of coincidence status of eddies (CSE). Black lines represent the 
boundaries of eddies in 𝐸𝐷 . Red and blue lines represent the boundaries of eddies in 𝐸𝐷  and 𝐸𝐷 . 
(a-e) present examples of “matched”, “split”, “merged”, “missed”, and “artifact”, respectively. The 
points denote surface centers of eddies. 
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In the following, Section 2 provides data and methods. Section 3 illustrates the results of OSSEs 
in the Kuroshio Extension (KE) region. Section 4 discusses the comparison experiment and the 
influence of SWOT errors on two smaller-scale eddies. Finally, Section 5 summarizes the key results. 

2. Data and Methods 

The results of this study are related to four major factors: (1) the SSH model data; (2) the SWOT 
measurements (sampling and observation errors); (3) the mapping methodology; and (4) the eddy 
identification algorithm. Here, we concentrate on indicating how the SWOT measurements perform 
with the assumption that the other three factors are set as specified data or methods. The details of 
these three factors are described as follows. 

2.1. SSH Model Data 

This study employed Hybrid Coordinate Ocean Model (HYCOM) data, which assimilate the 
existing satellite altimeter observations, Argo profiles, and other observation data. The SSH data, 
without tides, are downloaded from HYCOM Center [21]. Several studies investigated the realistic 
HYCOM model. Among them, a comparison of the variability of SSH shows similar values for the 
altimeter and HYCOM model [22]. Luecke et al. [23] indicated that the global maps of the mesoscale 
eddy available potential energy (EAPE) field made by Argo profiles and HYCOM display similar 
features. Therefore, the eddy amplitudes derived from HYCOM data can be considered realistic and 
available. This study selects two regions for conducting OSSEs. One is the region encompassing the 
Kuroshio Extension (KE) in the Northwestern Pacific Ocean (24-44°N and 140-180°E), which is one of 
the most eddy-energetic regions of the global ocean [24,25]. The other region is the South China Sea 
(SCS, 5–25°N and 105–125°E), where the mean energy of eddies is smaller, and the latitude is lower. 
By contrasting high and low energy regions at different latitudes, it can be revealed that the effect of 
eddy amplitude and SWOT sampling density on eddy detection results. To obtain enough eddy data, 
we employed HYCOM SSH data for the whole year of 2015. 

In addition, to understand the influence of SWOT errors on smaller-scale eddies more clearly, 
another high-resolution numerical dataset has been employed in Section 4, which is the Regional 
Ocean Modeling System (ROMS) model dataset off the Oregon coast [26]. These SSH data range from 
42°N (124°W) to 48°N (130°W) and are available online [27]. More details of SSH model data are 
shown in Table 1. 

Table 1. Summary of the sea surface height (SSH) model data. 

Coverage Model/ 
Type 

Spatial Resolution 
Lat × Lon (°) 

Temporal 
Resolution (Day) 

KE 
(24-44°N and 140-180°E) HYCOM 

/Gridded 
1/12.5° × 1/12.5° 1 day 

SCS 
(5–25°N and 105–125°E) 

Oregon Coast 
(42–48°N and 124–130°W) 

ROMS 
/Gridded 

1/170° × 1/130° 
(~0.6 km× 0.6 km) 

1 day 

 

2.2. Mapping Procedure Based on Optimal Interpolation 

As the most popular data mapping algorithm of altimetric satellites, the optimal interpolation 
method is evolved from the objective analysis [28] and has been utilized in AVISO (Archiving, 
Verification and Interpretation of data of Satellites Oceanography) [29]. The mapping results 𝑆(𝑋) 
can be estimated as follows:  
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      𝑆(𝑋) = 𝐴 𝐶 𝛷      (1) 

where 𝜙  (i = 1, 2, 3, …, N) is the observation value, and A represents the covariance matrix for the 
observations themselves. 𝐶 is the covariance matrix between the observations and the field to be 
estimated. The calculation formulas of these are as follows: 𝐴 = 𝛷 𝛷 = 𝐹 𝑋 − 𝑋  (2) 𝐶 = 〈𝑆(𝑋)𝛷 〉 = 𝐹(𝑋 − 𝑋 ) (3) 𝐹  is the space-time correlation function. In this study, the correlation function utilizes the 
Gaussian function consistent with the study of Amores et al. [14], as shown in Formula (4): 𝐹(∆𝑥,∆𝑦,∆𝑡) = 𝑒 (∆ ) (∆ ) ∙ 𝑒 (∆ )

 (4) 

where (∆𝑥,∆𝑦,∆𝑡)  is the space-time difference between two points, which are 𝑋  and 𝑋  in 
Formula (2), as well as 𝑋 and 𝑋  in Formula (3). The R and T are the correlation distance in the space 
and time. In this study, the R and T are set as 50 km and 10 days, respectively, so that the root mean 
square errors (RMSE) between the model and mapping data can be minimized. The RMSE is 4.9 cm 
(3.4 cm) in the KE (SCS). 

2.3. Eddy Identification 

The sea level anomaly (SLA) data can be derived by removing mean sea surface (MSS) from 
SSH, and the MSS data (MSS_CNES_CLS_15) are downloaded from AVISO. A three-step eddy 
identification method similar to Mason et al. [30] is applied in this paper. First, individual SLA fields 
are spatially high-pass filtered using a Gaussian filter with a zonal/meridional radius of 10°/5°. 
Second, the local SLA maximum/ minimum is extracted, whose value is greater (smaller) than its 24 
neighbors (within a 5 × 5 pixel box). Third, SLA contours are computed at 0.1 cm intervals. A closed 
SLA contour is searched from the local SLA minimum (maximum) value upward (downward) until 
0 to identify a cyclonic (an anticyclonic) eddy based on the following criteria: 

(1) Contain no more than one local SLA maximum/minimum; 
(2) Contain a pixel count, 𝐼, satisfying 8≤𝐼≤3000; 
(3) Pass a shape test with error≤55%, where the error is defined as the ratio between the areal 

sum of closed SLA contour deviations from its fitted circle and the area of that circle (more details 
can be found in Mason et al. [30]); 

(4) Amplitude≥0.3 cm. 
Then, the outermost SLA contour that satisfies all the above conditions is extracted as the 

effective perimeter of the eddy. It should be noted that the minimum amplitude threshold is 1 cm in 
Mason et al. [30], which is on the basis of SLA data from AVISO (0.25°). The spatial resolution of 
HYCOM SLA data is 0.08°, which is 3.125 times that of AVISO data (0.25° 0.08°⁄ = 3.125 ), so the 
minimum amplitude threshold in this study is linearly scaled to 0.3 cm  (1 𝑐𝑚 3.125⁄ ≈ 0.3 𝑐𝑚) . 
Besides, considering the sampling errors enhanced along the ocean-land boundaries [31], the eddies 
over the shelf shallower than 100 m are removed in this study. 

2.4. CSE Determination 

As described in Section 1, five types of CSE have been defined. To determine the CSE type of an 
eddy 𝑒  in dataset 𝐸𝐷 , it is a crucial step to find k eddies (𝑒 , 𝑒 , … 𝑒 ) with similar 
spatiotemporal information in another dataset 𝐸𝐷 , which is named as “space-time matching”. 
Moreover, the eddy 𝑒  (j ∈[1, k]) in 𝐸𝐷  is supposed to be selected with the following conditions:  



Remote Sens. 2020, 12, 2682 5 of 23 

 

                             𝐶𝑒𝑛𝑡𝑒𝑟𝑎  −  𝐶𝑒𝑛𝑡𝑒𝑟𝑏  ≤  𝑅𝑎     (5)              𝑇𝑦𝑝𝑒𝑎  =  𝑇𝑦𝑝𝑒𝑏      (6) 

where 𝐶𝑒𝑛𝑡𝑒𝑟𝑎  and 𝐶𝑒𝑛𝑡𝑒𝑟𝑏  represent the surface center positions of eddy 𝑒  and 𝑒 , 
respectively. The radius of eddy 𝑒  is 𝑅𝑎  in Formula (5). Their polarizations (including the cyclone 
and the anticyclone) labelled with 𝑇𝑦𝑝𝑒𝑎  and 𝑇𝑦𝑝𝑒𝑏  should be same, as shown in Equation (6). 
After the procedure of space-time matching, a sub dataset 𝐸𝐷  containing k eddies can be derived. 
Meanwhile, the closest eddy 𝑒  in 𝐸𝐷  can be extracted, whose center is closest to that of 𝑒 . A vector (𝑘 ,𝑘 ) can be used to describe CSE between 𝐸𝐷  and 𝐸𝐷 . As described above, the value 
of 𝑘  is 1 and that of 𝑘  is equal to k. Furthermore, we introduce a vector K (𝑘 , 𝑘 , 𝑘 ) to describe 
CSE among three datasets, where the 𝑘 , 𝑘  and 𝑘  are corresponding to 𝐸𝐷 , 𝐸𝐷  and 𝐸𝐷 , 
respectively. The labels of CSE defined based on K are shown in Table 2. For example, K (1,2,2) 
represents that there is 1 eddy exists in 𝐸𝐷 , and 2 space-time matching eddies can be found in 𝐸𝐷  
and 𝐸𝐷 . Therefore, these 5 eddies will be labelled with “split”. 
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Table 2. K (𝑘 , 𝑘 , 𝑘 ) and CSE lookup table 𝒌𝒕 𝒌𝒔 𝒌𝒐 CSE 
1 1 1 matched 
1 >1 >1 

split 1 >1 1 
1 1 >1 

>1 1 1 merged 
1 0 0 

missed 1 >=1 0 
1 0 >=1 
0 1 1 

artifact 0 1 0 
0 0 1 

Every eddy in these three datasets can be uniquely labelled with different CSE through following 
algorithm: 

Algorithm: CSE determination for every eddy in three datasets 

Input: 𝐸𝐷 = 𝑒  , 𝑒  , … , 𝑒  , 𝐸𝐷 = 𝑒  , 𝑒  , … , 𝑒  , 𝐸𝐷 = 𝑒  , 𝑒  , … , 𝑒  ; 
Output: the CSE label for every eddy in three datasets; 
begin: 
for i from 1 to m { 
find space-time matching eddies for 𝑒  in 𝐸𝐷 : return a sub dataset 𝐸𝐷  with 𝑘  eddies; 
if (𝑘  > 1) { 
   check space-time matching eddies for 𝑒  in 𝐸𝐷 : return 𝑒 ; 
   if (𝑒   != NULL) {  
      set the CSE labels of eddies in 𝐸𝐷 , 𝑒 , 𝑒  as “merged”;}}} 
for i from 1 to l { 
if (𝑒  without a CSE label in 𝐸𝐷 ){ 
   find space-time matching eddies for 𝑒  in 𝐸𝐷 : return a sub dataset 𝐸𝐷   
   with 𝑘  eddies; 
   find space-time matching eddies for 𝑒  in 𝐸𝐷 : return a sub dataset 𝐸𝐷   

with 𝑘  eddies; 
   if (𝑘  = 1 && 𝑘  = 1) { 
      set the CSE labels of eddies in 𝐸𝐷 , 𝐸𝐷 , 𝑒  as “matched”} 
   if ((𝑘  > 1 || 𝑘  > 1) && (𝑘  & 𝑘  != 0)) { 
      set the CSE labels of eddies in 𝐸𝐷 , 𝐸𝐷 , 𝑒  as “split”} 
   if (𝑘  || 𝑘  = 0) { 
      set the CSE labels of eddies in 𝐸𝐷 , 𝐸𝐷 , 𝑒  as “missed”}}} 
for i from 1 to m { 
if (𝑒  without a CSE label in 𝐸𝐷 ) { 
   set the CSE labels of eddies 𝑒  as “artifact”}} 
for i from 1 to n { 
if (𝑒  without a CSE label in 𝐸𝐷 ) { 
   set the CSE labels of eddies 𝑒  as “artifact”}} 
end  

3. Results of OSSEs in the Kuroshio Extension (KE) Region 

The OSSEs in the KE region have been conducted in combination with the information of SWOT 
satellite orbit and the noise power spectrum from the SWOT document [15]. As a result, three eddy 
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datasets of the KE region named KE-EDt, KE-EDs, and KE-EDo for one year (2015) are obtained. 
Based on the spatial resolution (0.08°) of HYCOM, the effective radius defined same as Mason et al. 
[30] should be larger than 12 km in KE region. To show the results of eddy identification, the data on 
January 12, 2015 are selected randomly and plotted in Figure 2. 

 
Figure 2. Snapshots of eddies and corresponding SLA data on January 12th, 2015. (a, c, and e) show 
the eddy identification results in the KE-EDt, KE-EDs, and KE-EDo dataset, respectively. The blue 
(red) lines represent the effective perimeter of cyclonic (anticyclonic) eddies, and the blue (red) points 
represent their surface centers. (b, d, and f) show SLA data corresponding to (a, c, and e), respectively. 

To generally compare these three datasets of KE-EDt, KE-EDs, and KE-EDo, their geographical 
distributions of the averaged radius and amplitude are illustrated in Figure 3. Their spatial patterns 
are similar and basically featured with a strengthen zone near 35°N, which is consistent with the 
spatial distributions of eddies with high amplitudes detected by altimeters in Itoh et al. [32]. As an 
energetic eastward flowing inertial jet, the KE is characterized and surrounded by a complicated 
ocean circulation structure, which is flanked by anticyclonic and cyclonic recirculation gyres in the 
south and north, respectively [33]. These strong eddies near the axis of the KE are primarily shed 
from the KE jet and owing to its perturbations of the jet [34]. 
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Figure 3. Geographical distribution of the averaged radius and amplitude on a 1°× 1° grid for (a, b) 
KE-EDt, (c, d) KE-EDs, and (e, f) KE-EDo, respectively. 

After conducting the algorithm of CSE determination as described in Section 2.4, every eddy in 
these three datasets has been uniquely labelled with a CSE type. According to Figure 4, eddies of the 
“matched” type account for the highest proportion, followed by the eddies of “missed” and “artifact” 
types. Besides, a small number of eddies are labelled with “split” and “merged”. 



Remote Sens. 2020, 12, 2682 9 of 23 

 

 
Figure 4. Effective perimeters and centers of eddies on January 12th, 2015. Black, red, and blue lines 
represent the effective perimeters of eddies in KE-EDt, KE-EDs, and KE-EDo, respectively. (a) plots 
the eddies in these three datasets together. (b-f) show the effective perimeters of eddies labelled with 
“matched”, “missed”, “artifact”, “split”, and “merged”, respectively. Besides, those points represent 
their surface centers. 

Although eddies are labelled with “matched” in Figure 4b, the effective perimeters of eddies in 
the three datasets plotted with three colored lines (black, red, and blue) rarely coincide completely. 
The differences between the red and the black lines are caused by the sampling and mapping 
procedures, and the differences between the blue and red lines are due to observation errors. The 
black lines in Figure 4c indicate the effective perimeters of “missed” eddies in KE-EDt, among which 
some eddies are missed considering insufficient temporal sampling, such as eddy1 in Figure 4c. 
Although the effective radius of eddy1 has reached 136 km, the sample data during a period (21 days) 
centered on January 12th of 2015 do not have enough information to reconstruct the eddy after the 
mapping procedure. Obviously, the insufficient temporal sampling will bring about the loss of both 
eddies with the small radius and some large eddies. Other eddies are missed on account of 
observation errors, such as the eddy2 in Figure 4c, whose radius is 30 km, and its amplitude is 1.3 
cm. When the signal to noise ratio (SNR) between the small-scale eddy and observation errors is 
smaller than 1, the eddy would be lost. In addition, some eddies, such as eddy3, are perceived to be 
in a status of unstably “missed” that only appear in KE-EDt and KE-EDo. The SLA data 
corresponding to KE-EDs encompassing eddy3 is close to satisfying the criteria of eddy identification. 
After the procedures of adding observation errors and mapping, the SLA data corresponding to KE-
EDo just meets the criteria of eddy identification. It seems to be a transition state between “matched” 
and “missed”. In Figure 4d, most of these “artifact” eddies seem to have small radii. Sometimes, an 
eddy in KE-EDt is identified as several smaller eddies in KE-EDs or KE-EDo (Figure 4e). In contrast, 



Remote Sens. 2020, 12, 2682 10 of 23 

 

if multiple small eddies gather together, they may also be identified as a larger “merged” eddy 
(Figure 4f). 

The total numbers of eddies in KE-EDt, KE-EDs, and KE-EDo are similar (37090, 35258, and 
35536, respectively). In the KE region, the proportion of eddies for each CSE type in KE-EDt is shown 
in Table 3. First, 66% of eddies can be detected by SWOT, most of which are “matched” eddies, 
accounting for 61% of the total. Besides, 2% (3%) of the eddies are labelled with “split” (“merged”). 
Second, a total of 34% of eddies are lost in KE-EDt. Among them, 6.5% of eddies (such as eddy2 in 
Figure 4c) are lost due to SWOT observation errors, corresponding eddies of which cannot be found 
in KE-EDo. The proportion of eddies in a status of unstably “missed” (such as eddy 3 in Figure 4c) is 
4%. Subsequently, the remaining 23.5% of eddies are lost during the procedures of sampling and 
mapping. In addition, sampling and observation errors of SWOT will lead to the emergence of a mass 
of “artifact” eddies. A total of 8856 eddies belong to the type of “artifact” in KE-EDs, these eddies are 
produced due to the OI mapping method. Furthermore, the number of artifact eddies in KE-EDo 
(9724) is higher than those in KE-EDs, so the SWOT measurements should also produce a small 
amount of artifact eddies. In the future, it will be a technical challenge to remove the “artifact” eddies 
in the eddy identification results detected by the SWOT. 

Table 3. The proportion of eddies for each CSE type in KE-EDt. 

 

Proportion Of Detected Eddies  
In KE-Edt (%) 

Proportion Of Missed Eddies  
In KE-Edt (%) 

Matched Split Merged 
Missed 

 (Due To Sampling 
And Mapping) 

 (Due To SWOT 
Observation Errors) 

 (“Unstably 
Missed”) 

61.0 2.0 3.0 23.5 6.5 4.0 
66.0 34.0 

 
As shown in Figure 5a, the distributions of the eddy radius for KE-EDs and KE-EDo are similar, 

but they differ from those of KE-EDt when radii are smaller than 75 km, which can be explained 
through comparison of Figures 5c and 5i. The peak of “matched” eddies radius curves (Figure 5c) 
appears at approximately 75 km, while that of “missed” eddies (Figure 5i) is smaller and appears at 
around 33 km. Smaller eddies are likely to be missed, generating the above distinctions. Meanwhile, 
the amplitudes of “missed” eddies are chiefly smaller than 12 cm (Figure 5j). Figures 5e and 5f present 
the curves of the “split” eddies with different radii and amplitudes. Many eddies in KE-EDt with 
radii from 120 to 200 km may be split into eddies with radii from 20 to 50 km, and a lot of small eddies 
with amplitude less than 12 cm are generated in KE-EDs and KE-EDo. Moreover, many eddies with 
radii from 20 to 50 km would merge into ones with the radii from 120 to 200 km as presented in Figure 
5g. However, numerous “artifact” eddies with small radii and amplitudes are generated (Figure 5(k-
l)), which are mainly produced during the mapping process. Furthermore, their distributions are 
similar to those of “missed” eddies in KE-EDt. 
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Figure 5. Histograms of the eddy radius (left) and amplitude (right) for all datasets (the black, red 
and blue lines stand for KE-EDt, KE-EDs, and KE-EDo, respectively) in the Kuroshio Extension (KE) 
region. (a, b) show the histograms of all eddies in three datasets. (c, d), (e, f), (g, h), (i, j), and (k, l) 
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correspond to the eddies of “matched”, “split”, “merged”, “missed”, and “artifact”, respectively. The 
values marked with dashed lines will be discussed in detail. 

According to Table 3 and Figure 5, the proportion of “matched” and “missed” eddies is higher 
than that of other types. To investigate the ratio of the number of “matched” and “missed” eddies to 
the total number of eddies in KE-EDt with disparate radii and amplitudes, we introduce two variables 𝑟 _  and 𝑟 _ , which can be calculated by Formulas (7) and (8). 𝑁 _  and 𝑁 _  are the number of 
one CSE and all eddies on a radius. Similarly, 𝑁 _  and 𝑁 _  are the number of one CSE and all 
eddies on an amplitude.   𝑟 _  =  𝑁 _  / 𝑁 _                                     (7) 𝑟 _  =  𝑁 _  / 𝑁 _     (8) 

The results of 𝑟 _  and 𝑟 _  have been clearly shown in Figure 6. These two variables of 
“missed” eddies continue to diminish with the increase of the radius and amplitude (red lines), while 
the ratio of “matched” eddies show the opposite trend (black lines). Although Wang et al. [13] 
suggested that the SWOT scales in KE region would reach between 25 and 40 km varying seasonally, 
over 70% of the small eddies whose radii are between 12 and 20 km are lost. Among them, more than 
40% of eddies would be degraded by insufficient temporal sampling and mapping process at these 
scales (red dashed line in Figure 6a). When the radius is ~50 km, the 𝑟 _  of “matched” and “missed” 
eddies is equal, both of which are about 50%. Besides, the loss rate of eddies with radius greater than 
100 km is less than 20%. In addition, the red curve in Figure 6b reveals that the loss rate of eddies 
with small amplitude (< 2 cm) is close to 45%, in which more than 30% of eddies are lost due to 
sampling and mapping (dashed red line in Figure 6b). When the amplitude is greater than 14 cm, the 
loss rate of eddies is less than 20%. 

 

Figure 6. The ratio of the number of “matched” eddies (the black line) and “missed” eddies (the red 
line) to the total number of eddies in KE-EDt with the radius (a) and amplitude (b). The red dashed 
lines indicate the ratio of “missed” eddies due to the sampling and mapping process. The values 
marked with black dashed lines will be discussed in detail. 

Furthermore, we have analyzed the influence of errors on “matched” eddies. An eddy 𝑒  
is labelled with “matched” in KE-EDt, and a corresponding eddy can be found in KE-EDs and KE-
EDo, namely 𝑒  and 𝑒 , respectively. Through comparing the variations of the 
parameters (radius and amplitude) of 𝑒  and 𝑒 , the influence of sampling on 
“matched” eddies is derived. Similarly, the comparison between 𝑒  and 𝑒  reflects the 
influence of observation errors on “matched” eddies. The horizontal coordinate of a point in Figure 
7a (7c) represents the radius (amplitude) of 𝑒 , and the vertical coordinate is the radius 
(amplitude) of 𝑒 . Likewise, the horizontal coordinate of a point in Figure 7b (7d) denotes the 
radius (amplitude) of 𝑒 , and the vertical coordinate is the radius (amplitude) of 𝑒 . 
Red lines represent the average radius (𝑅 ) or average amplitude (𝐴  )  at the horizontal 
coordinate R (radius) or A (amplitude), and green lines refer to the ratio of them. 𝑟  is the ratio 
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of 𝑅  to R, and 𝑟  is the ratio of 𝐴  to A, whose calculation formulas are presented as 
follows.   𝑟  =  𝑅  / 𝑅                            (9) 𝑟  =  𝐴  / 𝐴 (10) 

 
Figure 7. The scatter diagram of “matched” eddies: (a)/(c) are the radius/amplitude of “matched” 
eddies in KE-EDs versus corresponding eddies in KE-EDt, and (b)/(d) show the radius/amplitude of 
“matched” eddies in KE-EDo versus corresponding eddies in KE-EDs. The color shows the data 
density. The black lines are the diagonal. The red lines show the average radius (amplitude). The 
green lines show the average ratio (𝑟  or 𝑟 ). The “CORR” represents the correlation 
coefficient. The values marked with dotted lines will be discussed in detail. 

The red line in Figure 7a suggests that when the radius R of 𝑒  is smaller (larger) than 88 
km, the average radius 𝑅  of 𝑒  is larger (smaller) than R. The green line in Figure 7a shows 
the 𝑟  between 𝑒  and 𝑒 . When R is smaller than 50 km, 𝑟  is greater than 1, 
indicating that the eddy with a small radius would likely become larger after procedures of sampling 
and mapping. The green line in 7c also shows that when the amplitudes of eddies in KE-EDt are small 
(amplitude less than 11 cm), the 𝑟  is larger than 1. The variation of the green line in Figure 
7b (7d) is similar to that in Figure 7a (7c), and the observation errors result in a large 𝑟  and  𝑟  of small eddies (radius smaller than 50 km or amplitude less than 11 cm). For eddies with 
radii greater than 50 km or amplitudes greater than 11 cm, both the 𝑟  and  𝑟  are close 
to 1. From the comparison of the data density distribution presented in Figures 7a and 7b, the data 
near the black line in 7a is found to be sparser, with similar comparison results derived from the data 
density distributions in Figures 7c and 7d. It indicates that compared with the observation errors, the 
variance of the eddy radius and amplitude difference value caused by sampling error is larger. The 
correlation coefficient (CORR) in Figure 7b (7d) is 0.84 (0.93) which is much larger than 0.66 (0.79) in 
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Figure 7a (7c). It is suggested that variations of eddies caused by procedures of sampling and 
mapping are more evident than those triggered by observation errors.  

The mean structures of eddies with different groups are shown in Figure 8 and all closed to 
standard circles. The average radius of the “matched” eddies (Figure 8a) in KE-EDt is significantly 
larger than that of the “missed” eddies (Figure 8b), which is consistent with that the eddies with 
smaller radii are more likely to be lost (Figure 6a, red lines). Two major patterns can be revealed from 
Figures 8c and 8d. One is that the lines in Figure 8c (8d) almost overlap, indicating that the mean 
structures of eddies in the three datasets KE-EDt, KE-EDs, and KE-EDo are similar. The other is that 
there is no obvious difference between the mean structures of cyclonic and anticyclonic eddies. 

 
Figure 8. The mean structures of eddies. (a)/(b) is the mean structure of all “matched” / “missed” 
eddies. (c) is the mean structure of cyclonic eddies for all eddies in the KE-EDo (black line), KE-EDs 
(red line) and KE-EDo (blue line). (d) shows the mean structure of the anticyclonic eddies 
corresponding to (c). 

4. Discussion 

4.1. Comparison with OSSEs in the South China Sea (SCS)  

This study conducts the OSSEs in the SCS region using HYCOM data. Considering the latitude 
range of the SCS region and the criteria of the eddy identification algorithm, the radius of an eddy 
should be larger than 20 km. Consequently, three eddy datasets named SCS-EDt, SCS-EDs, and SCS–
EDo are derived, the total numbers of eddies in SCS-EDt, SCS-EDs, and SCS-EDo are 14037, 13801, 
and 14513, respectively. The proportion of eddies for each CSE type in SCS-EDt is shown in Table 4.  
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Table 4. The proportion of eddies for each CSE type in SCS-EDt. 

 

Proportion of Detected Eddies  
In SCS-Edt (%) 

Proportion of Missed Eddies  
In SCS-Edt (%) 

Matched Split Merged 
Missed 

 (Due to Sampling 
And Mapping) 

 (Due to SWOT 
Observation Errors) 

 (“Unstably  
Missed”) 

58.5 0.5 1.0 29.0 6.0 5.0 
60.0 40.0 

 

The percentage of “matched” eddies, accounting for 58.5%, is also the highest in SCS-EDt, which 
is 2.5% less than that in KE-EDt (61% in Table 3). However, the loss rate of eddies in the SCS region 
(40% in Table 4) is significantly higher than that in the KE region, which is 6% more than that in KE-
EDt (34% in Table 3). Therefore, the loss rate of eddies may be quite disparate in two different regions, 
and it is related to the distribution of the eddy properties (radius and amplitude) and the sampling 
density of SWOT. Figure 9 shows the distribution of the eddy radius and amplitude in KE-EDt and 
SCS-EDt. 
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Figure 9. The scatter diagram of eddy properties in KE-EDt (left) and SCS-EDt (right). (a, b) are the 
radii and amplitudes of all eddies, with the color representing the data density. The “missed” eddies 
are shown in (c, d). (e, f) are the ratio of the “missed” eddies to all eddies. The black line (KE-EDt) and 
the red line (SCS-EDt) in (g)/(i) represent the average amplitude/radius of all eddies. (h) and (j) 
represents the average ratio of “missed” eddies. 

As shown in Figures 9a and 9b, the amplitudes of eddies in the KE are significantly greater than 
that in the SCS. A large number of eddies in the KE have an amplitude greater than 30 cm, while the 
amplitudes of eddies in SCS are mostly less than 30 cm. Figures 9c and 9d demonstrate that eddies 
with smaller radii and amplitudes (the radius less than 50 km and amplitude less than 5 cm) are more 
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apt to be lost. According to Figures 9e and 9f, the loss rate of eddies gradually decreases with the 
increase of radius and amplitude. Statistically, the average amplitude of eddies in the SCS is smaller 
than that in the KE region (Figure 9g), and the corresponding loss rate is larger (Figure 9h). In 
contrast, the average radius of eddies in the SCS is larger than that in the KE region (Figure 9i), and 
the loss rate is almost smaller (Figure 9h). When the amplitude is smaller than 1.8 cm (dashed line in 
Figure 9j), the reversed situation appears. This should be caused by the smaller sampling density of 
SWOT in the SCS. 

Compared with the KE region (at higher latitudes), the average revisit time of SWOT in the SCS 
(at lower latitudes) is longer, and the sampling density (number of observations per cycle) is smaller 
[35]. Figure 10 presents that the average sampling density of SWOT in the KE region (2.0) is bigger 
than that in the SCS (1.6) during a period (21 days) of SWOT. The average revisit time in the KE is 
roughly 10.5 days, and it is nearly 13 days in the SCS. The distances measured along latitude between 
two adjacent ground tracks in the KE and SCE are in the range of 96-127 km and 125-139 km, 
respectively. 

 
Figure 10. Sampling density of Surface Water and Ocean Topography (SWOT) within a period (21 

days). (a) Kuroshio Extension (KE) region. (b) South China Sea (SCS) region. 

For a better understanding of the impact of sampling density on the loss rate of eddies, two sub-
datasets with similar characteristics are selected from KE-EDt and SCS-EDt. The radius and 
amplitude range of these two sub-datasets are shown the in red shading area of Figure 11a and also 
marked with black rectangles in Figures 9a and 9b. Data density of the sub-datasets is relatively large, 
which ensures the reasonable statistical results. The curves of the average amplitude of eddies in the 
two sub-datasets, as shown by the red and black lines in Figure 11a, mostly overlap, which indicates 
their similar properties distributions. As shown in Figure 11b, the eddy loss rate of the sub-dataset in 
the SCS (red line) is larger than that in the KE region (black line), especially for eddies with radii of 
25–40 km, which has the rate variance of about 7%. It is noteworthy that the difference of the eddy 
loss rate between these two sub-datasets is mainly attributed to the different sampling density of 
SWOT in the KE region and the SCS region. 

 
 

Figure 11. Comparison of the loss rate of eddies between the two sub-datasets with similar 
characteristics selected from KE-EDt and SCS-EDt. (a) The black line (KE) and the red line (SCS) are 
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the average amplitudes; the red shading shows the selected range of the radius and amplitude. (b) 
shows the eddy loss rate of the two sub-datasets. The black line stands for KE and red line stands for 
SCS. 

4.2. The Influence of SWOT Errors on Small Scale Eddies (with Radius Scales of ~10km) 

When the spatial scale is smaller than 15 km, the ocean decorrelation time is below one day, 
which is much shorter than the revisit time of SWOT [17]. The errors caused by temporal interpolation 
in mapped SSH data will make it difficult to reconstruct the sub-mesoscale eddies which are not 
directly sampled by SWOT. In order to clearly understand the influence of SWOT errors on the 
observation results of small scale eddies, the OSSEs without the OI process have been conducted 
based on high-resolution ROMS model data and the software of the SWOT simulator [12]. As shown 
in Figures 12a and 12b, two eddies are selected on the single swath of pass 095 in cycle 1, with their 
radii being about 10 km. Cyclone eddy in the north, named SCE, whose amplitude is about 1.5 cm. 
Furthermore, the anticyclone eddy in the south, named SAE, has the amplitude about 1.0 cm. In this 
study, these two eddies are repeatedly observed for 100 times by the SWOT simulator and the SWOT-
like SSH fields are synthesized. In these 100 repeated observations, the input model SSH fields are 
the same, but the error fields are random and different. Two examples of SWOT-like SSH (model plus 
errors) are selected randomly and plotted in the right sub images of Figures 12d and 12e. Similar to 
Gaultier et al. [12], the SWOT-like SSH data are filtered with a spatial optimal interpolation locally 
on each swath, so that the geostrophic velocity can be well revealed, as shown in the middle of Figures 
12d and 12e.  

 
Figure 12. (a) and (b) show the along-track geostrophic velocity fields and SSH in the Oregon area. 
(c) shows the geostrophic velocity fields of the two eddies without errors. Two examples with 



Remote Sens. 2020, 12, 2682 19 of 23 

 

observation errors are shown in (d) and (e). The contours of SSH are shown in the left, the geostrophic 
velocity fields are shown in the middle, and the right sub images present observation errors. 
Anticyclone (cyclone) eddies are located in the positions of orange (blue) circles. 

As shown in Figure 12d, centers and rotating structures of these two eddies are visible, so these 
two eddies are considered to be successfully detected by SWOT. In contrast, there are many 
observations similar to Figure 12e, in which their eddy centers are difficult to be determined and 
rotating structures are hard to be found from the velocity fields, and they are considered to be missed 
due to observation errors. Therefore, the eddy can be identified with following visual criteria: 

 The eddy center is visible in the geostrophic velocity field; 
 The rotating structure is visible in the geostrophic velocity field; 
 The SSH contour is closed in the SSH field. 
On the basis of this visual eddy identification method, we classify these observation results. The 

loss rate of SCE is 16%, and that of SAE is 24%. The amplitude of SCE is 0.5 cm larger than that of 
SAE, while the loss rate of SCE is 8% less than that of SAE. Moreover, a one-dimensional (1D) power 
spectrum of the sampled SSH is computed along the track. The power spectra are averaged across 
the swath and plotted in Figure 13. The observation SSH spectrum (the black line) follows the true 
SSH spectrum (the red line) until 54 km (dashed line in Figure 13). Compared with the power 
spectrum of observation, the spectrum of the filtered observation (the blue line) is basically the same 
as the one in the model SSH, indicating that filtering can indeed improve the resolution to 20 km. 
However, the fact is that more than 16% of the filtered sub-mesoscale eddies with radii of ~10 km 
would be missed. Therefore, the spectrum is difficult to reveal the eddy detection results directly, 
and it is essential to conduct these special OSSEs. 

 
Figure 13. Power spectrum of the true SSH (red), the observation SSH (black), and the filtered 
observation SSH (blue). 

4.3. Underlying Assumptions and Biases 

The results of OSSEs implemented in the regions of KE and SCS make sense under several 
assumptions, including employing HYCOM data, SWOT error budget, OI based mapping, and an 
SLA contour based eddy identification algorithm. These assumptions would lead to overestimating 
or underestimating the eddy detection capabilities of SWOT. First, the HYCOM SSH data we used 
do not have tides. Therefore, the effect of internal tides on SWOT measurements has not been 
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considered. When the spatial scale decreases to tens of kilometers, the SSH variance shifts from 
balanced-motion (eddy) dominant to wave dominant. If the SWOT scale (Ls) is larger than the 
transition wavelength (Lt), it is difficult to separate the signals between internal tides and eddies [36]. 
From the results of Wang et al. [13], the mean Ls is smaller than the mean Lt in the KE and SCS 
regions. However, during February–April, the Ls is larger than Lt in the north of KE, indicating that 
proportion of “missed” eddies detected by future SWOT will be increased in winter. Second, the 
observation errors, especially the Sea-State Bias (SSB) related to surface waves, are under-estimated 
by the error document and SWOT simulator. Bai et al. [37] analyze the impact of sea-state on 2D 
altimeter measurement errors, and they find that the SSH would be significantly underestimated due 
to velocity bunching. However, there is no sophisticated error model for SSB to use here. The actual 
SSB would increase the proportion of “missed” eddies. Third, different mapping techniques would 
generate various results. Traditional OI method is difficult to adapt to the SWOT sampling data, and 
some eddies in EDs and EDo may be deformed and missed due to the limitation of the statistical OI. 
At present, although there is no established method for SWOT yet, some new mapping methods, 
such as dynamical interpolation [38] and back-and-forth nudging approach [39], are proposed 
successively. Besides, the future SSH maps should be a combination of both SWOT and the existing 
nadir satellite datasets. The proportion of “missed” eddies should decrease through conducting an 
improved mapping method of multi-satellite altimeter data. Forth, eddy identification algorithm also 
impacts the results. The SLA contour based methods [3,30] are the most popular at present. These 
methods are proved to be effective in identifying mesoscale eddies, while some improved methods 
need to be developed to identify smaller scale eddies. The results of the present study are derived 
only on the basis of current eddy identification technology. Finally, compared with the actual eddy 
detection capabilities of upcoming SWOT, the simulation results of this study would be biased 
inevitably due to the limitation of existing technologies. For the influences of SWOT sampling and 
errors on eddy observation, this study has explored as much as possible through combining current 
typical model data and technologies. 

5. Conclusions 

In this study, three OSSEs and five types of CSE are designed to characterize the influences of 
SWOT sampling and errors on ocean eddy detection results. The results of OSSEs implemented in 
the KE region indicate that the “matched” eddies account for the highest proportion (61%) and the 
proportion of “missed” eddies is as high as 34%. Among them, 23.5% are lost due to insufficient 
temporal sampling; 6.5% are missed owing to SWOT errors; 4% of eddies are considered as “unstably 
missed”. The relative “missed” rate is employed to compare the SWOT capabilities to detect eddies 
with different radii. When the radii are greater than 100 km, the relative “missed” rates of the eddies 
are less than 20%. Contrastingly, more than 70% of the small eddies with radii between 12 and 20 km 
are lost. In addition, after the procedures of simulated observation, mapping and eddy identification, 
numerous “artifact” eddies are unexpectedly generated in the KE-EDs and KE-EDo datasets. 

This study implemented another similar experiment for comparison in the SCS. The results 
demonstrate that the proportion of “missed” eddies in the SCS is 40%, which is 6% more than that in 
the KE region. Two exists reasons: on the one hand, the smaller average radii and amplitudes of 
eddies add to the difficulty of detection for eddies in the SCS. On the other hand, because the average 
sampling density of SWOT in the SCS (a zone between 5°N and 25°N) is smaller than that in the KE 
region (a zone between 24°N and 44°N), the less temporal sampling leads to the loss of more eddies. 

To further analyze the influence of SWOT errors on smaller-scale eddies, this study conducts the 
third simulation experiment, in which two eddies are observed for 100 times on the basis of the SWOT 
simulator and high-resolution ROMS model data. In these 100 repeated simulation observations, the 
SWOT error fields are random and different. The cyclonic eddy with a larger amplitude (1.5 cm) can 
be detected 84 times, while the anticyclonic eddy with a smaller amplitude (1.0 cm) can be observed 
the characteristics of eddy only 76 times. Therefore, relatively large amplitude of the sub-mesoscale 
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eddy can have large probability of being detected by SWOT, but it is difficult to ensure the all-time 
detection.  

SWOT will certainly offer new opportunities to observe the sub-mesoscale eddies on a global 
view. However, the simulation results in this study uncover that some challenges will surface, such 
as the difficulty of identifying the sub-mesoscale eddies and the emergence of numerous “artifact” 
eddies, etc. In the future, it is necessary to design improved sub-mesoscale eddy identification 
criteria, and the “artifact” eddies may be reduced through dynamic interpolation mapping 
technology. 
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