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Abstract: This paper presents a new method, based on clustering and thresholding, to automatically
perform binary change detection in multitemporal spectral indices. The method is denoted as
Buffer-From-Cluster Approach (BFCA). To estimate the distributions of changed and unchanged
pixels, as needed for the purpose of a reliable thresholding of a spectral index, a clustering algorithm
is preliminarily applied to identify image objects possibly corresponding to areas where significant
changes occurred. Then, a buffer zone is created around the selected cluster to identify unchanged
areas surrounding changed ones. The cluster and the buffer zone are jointly analyzed to estimate the
distributions of changed and unchanged pixels and to verify that they can be distinguished from
each other. Finally, the results of thresholding and clustering are combined to generate the binary
change map. The BFCA has been conceived to map the extent of the areas affected by a natural
disaster like wildfire. To validate the proposed method, burned area maps produced by applying the
BFCA to spectral indices derived from Sentinel-2 data have been compared to maps produced by
the Copernicus Emergency Management Service. For testing the multi-hazard detection capability,
the same kind of exercise has been carried out for a flooding test case too. The positive results of the
comparison have confirmed the effectiveness of the proposed method.

Keywords: change detection; Sentinel-2; damage assessment; disaster monitoring; burned
areas; floods

1. Introduction

The frequency and the destructivity of natural hazards is continuously increasing. They leave in
their wake a trail of injury, death, loss of livestock, property damage, and economic loss. This implies
the need for improving the capability to manage these events. The availability of a synoptic map of the
affected area in a short time strongly supports a rapid response to natural disasters [1]. Satellite earth
observation (EO) data represent the most useful source of information to quickly map the extension of
the area affected by a natural hazard [2].

Operational services like the rapid mapping component of the Copernicus Emergency Management
Service (CEMS) currently provide emergency managers with maps of natural disasters at different
spatial resolutions depending on the kind of EO data used to produce the maps. CEMS is an on-demand
service, being triggered on request by authorized users (e.g., National Civil Protection Agencies),
which is often at least partially based on the visual interpretation of a skilled operator. However,
the present availability of Sentinel-1/2/3 data allows for routinely producing maps of areas affected by
disasters (without the need of waiting for an activation). An unsupervised, fully automatic algorithm
able to rapidly map the disaster’s extent is needed to accomplish this routine production, especially if
many EO data must be sequentially processed (e.g., when working at large spatial scales).
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Change detection aiming at producing binary maps where changed and unchanged areas
are separated, often denoted as binary change detection [3], represents the most commonly used
technique for disaster extent assessment through EO data. It is usually applied using multitemporal
satellite images. Several unsupervised binary change detection methods were developed in past
studies including image differencing (mostly used for multispectral images) or ratioing (for SAR
images) (e.g., [4,5]) principal components analysis (e.g., [6,7]), change vector analysis (e.g., [8,9]),
and vegetation index differencing (e.g., [10]). In [3,11,12], thorough reviews of change detection
techniques are provided.

Due to its simplicity, image (or vegetation index) differencing is a popular method for performing
binary change detection. It only requires calculating the values of the difference between the
corresponding pixels in two images. Basically, large values in the difference map indicate the occurrence
of change. From the difference map, the binary map representing change/no-change classification is
usually produced by thresholding the difference map at a determined value. The determination of the
threshold value is often very critical, because too low a value may give rise to a binary map presenting
many false alarms, while too high a value may suppress significant changes. The proper value of the
threshold generally depends on many factors such as environmental and satellite system parameters,
so that it can be highly variable. Therefore, thresholds derived in an empirical way may lack generality
and their applicability to data acquired under different environmental conditions can be questioned,
while determining thresholds through photointerpretation is not consistent with a routine production
of many change maps.

To cope with the aforementioned problems, it is possible to rely on automatic thresholding.
Several methods to automatically select a threshold are available in the literature (e.g., [13–18]).
However, they generally assume that the histogram of the analyzed image is the mixture of two
distributions: changed and unchanged pixels, in this case. Thus, the histogram should have two peaks
and the population of changed pixels should be large enough to give rise to a significant statistical
mode in the histogram. This happens if the spatial extent of the area affected by the change is not much
smaller than the size of the image. Hence the idea, originally proposed in [4], to divide the considered
image into a set of non-overlapping sub-images (or splits) and select the splits having a high probability
to contain a significant amount of changed pixels. This technique is known as the split-based approach
(SBA). The choice of the size of the sub-images is subjective and if no splits are selected, their size
can be decreased to try to increase the percentage of changed pixels in the sub-images. Along this
line, in [19], splits of various dimensions are sequentially analyzed to search for bimodal histograms.
The analysis of a large number of splits might be time consuming if many images have to be processed,
e.g., when working at large spatial scales, and/or when simultaneous observations of the same scene
must be considered, e.g., when different bands (or combinations of bands) of a multispectral image
have to be processed.

Thresholding can be applied in combination with other image segmentation techniques to deal
with the uncertainties in the determination of the threshold. Within the framework of a region
growing algorithm (RGA), the threshold is used to identify an initial seed region. Then, RGA analyses
neighboring pixels of the seed points and determines whether the pixel neighbors should be added to
the seed region based on a tolerance criterion [20,21]. RGA is applied to disaster damage mapping
through change detection in several papers, for instance in [22–24] for burned area (BA) mapping
and in [25,26] for flood mapping. Recently, cluster-based thresholds have been introduced. In [27],
where BA maps are derived from MODIS highest resolution (250 m) data, active fire (hotspots)
information, provided by the MODIS Global Monthly Fire Location Product (MCD14ML), is used to
identify the clusters. Then, a threshold is computed by analyzing burned and unburned pixels from
the vicinity of each cluster. A combination of clustering and thresholding is proposed in [22] as well.
Both in [22] and in [27], thresholding is applied within the framework of a RGA.

In this paper, an innovative method to perform automatic change detection, aiming at mapping
the extent of the area affected by a natural disaster, is presented. It will be indicated hereafter as
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“Buffer-From-Cluster Approach” (BFCA). The BFCA has been conceived to work with one, or more
than one, multitemporal spectral index (difference between the corresponding pixels in two spectral
index images). The use of more than one spectral index generally adds complementary information for
the change detection task (e.g., [28]), thus likely improving the accuracy of the result of the BFCA.

The BFCA combines clustering, thresholding, and region growing. With respect to the approach
proposed in [27], that has been specifically designed for BA mapping, the BFCA can be applied to map
the extent of other kinds of disasters like floods. In addition, the BFCA does not need any information
furnished by ancillary products and the thresholds discriminating changed and unchanged pixels
are determined using one of the automatic thresholding algorithms available in the literature [14].
With respect to the processor designed in [24] for AVHRR data, which uses the thresholding method
developed in [14] and the RGA, the BFCA estimates the distribution functions representing changed
and unchanged pixels to reliably apply automatic thresholding. In the processing chain designed
in [22], which combines clustering, thresholding and region growing, a SBA similar to that proposed
in [4,15] is used to determine the threshold. Conversely, the BFCA directly analyzes portions of an
image of a multitemporal spectral index (MTSI) that likely contains comparable amounts of changed
and unchanged pixels.

Burned area mapping has been chosen as main application of the BFCA and, to assess the
aforementioned possibility to apply it even to other kinds of natural disasters, flood mapping has been
tested as well. In both cases, Sentinel-2 (S2) data have been used to derive the MTSIs. This paper
describes the various phases of the BFCA and presents the results of its application to S2-derived MTSIs
useful to map BAs and floods. Validation has been accomplished by comparing the BFCA-derived
maps to maps produced by the CEMS in the period 2018–2020, which have been therefore considered
as the benchmark.

2. Materials and Methods

2.1. The Buffer-From-Cluster Approach

The flowchart of the new BFCA is shown in Figure 1. Each operation will be described in
detail hereafter.Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 21 
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2.1.1. Clustering and Creation of the Buffer Zone

The first step of the BFCA consists of the application of the Iterative Self-Organizing Data Analysis
Technique Algorithm (ISODATA) to the input data. The ISODATA is an unsupervised clustering
algorithm that separates groups of objects in a scene. A typical scene consists of regular and/or irregular
regions arranged in a patchwork manner, each containing one class of surface cover type (e.g., burned
or flooded areas, croplands, forests, manmade structures, etc.). These homogeneous regions are the
objects in the scene. Objects within each cluster should be as close to each other as possible and
as far from other objects in other clusters as possible. The ISODATA begins with arbitrary cluster
means and then clusters the pixels according to the minimum spectral distance technique. It is an
iterative procedure, in which each iteration recalculates means and reclassifies pixels with respect to
the new means. The process ends when a maximum number of iterations has been performed, or a
maximum percentage of unchanged pixels between two iterations has been reached. The ISODATA
does not keep a fixed number of clusters. In particular, clusters having a very large number of members
are split, while if two cluster means are very close in terms of spectral distance (e.g., they represent
an unnecessary or an injudicious division of the data), they are merged [29]. Clusters that contain
so few points as to be meaningless (e.g., that they would not give acceptable statistics estimates if
used in training a maximum likelihood classifier) are discarded and their members are reassigned to
other clusters.

Since the ISODATA splits and merges clusters, it just requires specifying a range for the number of
clusters. The optimum number of clusters is not known, so it is generally chosen to be conservatively
high [29]. Hence, although here the goal is to distinguish changed pixels from unchanged ones,
a maximum number of 10 clusters has been chosen as done in [22]. In Section 4.3, the impact of this
choice on the BFCA-derived maps will be analyzed. A cluster can be considered as a sort of unknown
class of surface cover type, and it is the task of the user to label the classes after the application of the
clustering [29].

Let us assume that we are searching for positive values of the considered MTSI, that is, we are
searching for significant increases of the spectral index. In this case, the objects belonging to the cluster
presenting the highest median of the pixel values of the considered MTSI are selected and labelled as
the class of changed pixels. Median value is used instead of the mean value being less sensitive to
outliers. The reliability of the selection of the pixels belonging to the class of changed pixels can be
improved by adding some constraints, e.g., by removing pixels having negative values of the MTSI
(if present). If more than one MTSI is used as input data, the ISODATA clustering is sequentially
applied to each index and the corresponding selected clusters are then intersected (i.e., only pixels
included in overlapping clusters are maintained, thus basically applying a logical AND). The set of
pixels derived in this way will be denoted hereafter as clustering-derived changed area.

The second step of the BFCA aims at searching for a reliable threshold separating changed
and unchanged pixels. A buffer zone of buffering distance 50 pixels is initially created around the
clustering-derived changed area. The buffer zone likely contains unchanged pixels. Hence, it is
expected that, by merging the buffer zone with the clustering-derived changed area, the histogram of
the pixel values of the considered MTSI will tend to be bimodal. If the clustering-derived changed
area contains less than 30% of the pixels of the population formed by the union of the buffer zone and
the clustering-derived changed area itself, the buffering distance is halved (25 pixels). The opposite
(doubling) is done if the buffer zone contains less than 30% of the pixels of the total population.
The processes of halving (or doubling) the buffering distance continues until at least 30% of the total
population is included in each class. Note that, in [19,30], it is recommended that the smaller population
should represent at least 10% of the other one. Hence, 30% is a conservative value chosen to be sure
that the populations of changed and unchanged pixels are balanced. In Section 4.3, a discussion on the
choice of 50 pixels as initial buffering distance will be provided.
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2.1.2. Bimodality Check

Once the merging between the buffer zone and the clustering-derived changed area is carried
out, the BFCA checks the bimodality of the histogram of the pixel values by evaluating the bimodality
coefficient [31,32] and the Ashman’s D coefficient [33].

The former, used also in [22,34], is defined as:

BC =
γ2 + 1

k + 3(P−1)2

(P−2)(P−3)

(1)

where P is the population size, k is the kurtosis and γ is the skewness of the distribution. Values of BC
greater than 5/9 (∼0.555) indicate a bimodal distribution.

The Ashman’s D coefficient, used in [19], quantifies how well two Gaussian distributions are
separated, thus assuming a Gaussian mixture model (GMM) for the distribution of changed and
unchanged pixels. It is defined as [30]:

D =
√

2

∣∣∣µ1 − µ2
∣∣∣√

σ2
1 + σ

2
2

(2)

where µ1 and µ2 are the mean values of the distributions and σ1 and σ2 are the corresponding standard
deviations. A distribution has two peaks if D > 2. In order to carry out a reliable application of the
D coefficient, a non-linear least squares fit to a Gaussian function is computed for the histograms.
D is then determined based on the µi and σi (i = 1:2) parameters of the Gaussian functions fitting the
histograms [19].

For a MTSI, the bimodality check is passed if BC > 5/9 and D > 2. Otherwise, the buffering distance
is modified by halving or doubling it, as done in the previous step, depending on which population
(clustering-derived changed area, or buffer zone) has the major number of samples. Minimum and
maximum buffering distances of 3 and 150 pixels, respectively, have been assumed. When the buffering
distance reaches the aforementioned limit values, the bimodality check stops.

If more than one MTSI is considered to perform the change detection through BFCA, it can be
assumed that, overall, the bimodality check is passed if it is passed for the majority of the MTSIs.
Otherwise, it can be deduced that changed pixels have not been found.

2.1.3. Thresholding and Region Growing

If, for a given MTSI, the bimodality check has been passed, the Otsu’s automatic thresholding
method [14] is applied to the corresponding histogram. If more than one MTSI is considered and
the bimodality check is passed only for the majority of the MTSIs, empirical thresholds found in the
literature can be used for the remaining indices (see Section 2.4).

Once a threshold (Th) has been determined, it is applied within the framework of a RGA, as done
in [22–24,26,34], in order to account for the spatial context that is not considered if changed pixels
are simply identified based on a threshold value, without any tolerance. To derive the seed region
and the tolerance from the analysis of the distributions of changed and unchanged pixels, Th and
µ2 − 2σ2 are used, where µ2 and σ2 are the mean value and the standard deviation of the Gaussian
distribution fitting the histogram of the clustering-derived changed area. The seed region is represented
by the pixels whose value is greater than the maximum between Th and µ2 − 2σ2. The tolerance is the
minimum between Th and µ2 − 2σ2. Note that, as done in Section 2.1.1, here it is assumed that increases
of the considered index are searched for. Otherwise, the seed region is represented by the pixels whose
value is less than the minimum between Th and µ2 + 2σ2, while the tolerance is the maximum between
Th and µ2 + 2σ2.
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The application of thresholding and RGA generates the thresholding-derived changed area.
If more than one MTSI is used, the corresponding thresholding-derived changed areas are intersected.

2.1.4. Final Classification

The final step of the BFCA consists of combining the clustering-derived and thresholding-derived
changed areas. The combination is based on the following scheme:

A. Pixels belonging to both clustering-derived and thresholding-derived changed areas are classified
as changed.

B. Pixels belonging only to the clustering-derived changed area are classified as changed if the
corresponding cluster includes seed pixels.

C. Pixels belonging only to the thresholding-derived changed area are classified as changed if they
are located in a buffer zone of buffering distance 50 pixels created around the changed area
determined according to points A and B.

2.2. Data

The Sentinel-2 multispectral instrument measures the reflectance (ρ) in 13 spectral bands with
spatial resolutions ranging from 10 to 60 m. For this study, Level-2A (L2A) S2 products, freely available
from the Copernicus Open Access Hub have been used. L2A surface reflectance products are corrected
for the atmospheric effects and include a Scene Classification (SCL) map, which is useful to mask clouds,
snow, and water bodies. Each Level-2A product is available as a 100 × 100 km2 tile in cartographic
geometry (UTM/WGS84 projection). Only ρ data at 10 and 20 m resolution have been processed to
generate the considered MTSIs. The 20-m grid has been chosen as reference, so that, before applying
the BFCA, the 10 m S2 bands have been resampled to 20 m (5490 × 5490 pixels for each L2 tile). A land
cover map derived from the most recent version (2018) of the CORINE land cover [35] has also been
used to mask targets where BAs mapping is unreliable, as urban areas.

CEMS-derived maps of BA and flood extent have been used for validation purposes. They have
been generated in the framework of the CEMS activations listed in Table 1 (flood mapping) and Table 2
(BA mapping). Note that since the use of multispectral data for flood mapping is often hampered by
the presence of clouds, only one test case concerns flood mapping. Nonetheless, a case of a big flood
mapped by CEMS by using also S2 data, namely the flood that hit Northern Queensland (Australia) in
February 2019, has been found. The area affected by the flood was so wide that four S2 tiles have been
processed (and the corresponding maps have been mosaicked) to generate a map to be compared to
the CEMS-derived one. They are listed in Table 3.

Table 1. Test case considered in this study for flood mapping.

CEMS Activation Code Time Period Country Location Flooded Area [km2]

EMSR342 February 2019 Australia South Normanton 1987.1

Most of the reference BA maps have been derived by CEMS by processing pre-fire and post
fire S2 data. In these cases, the same images used by CEMS have been processed to test the BFCA.
For the EMSR371, EMSR374, EMSR377 and EMSR443 case studies, CEMS produced the BA maps by
analyzing Pleiades and SPOT-6/7 images as post-fire data. For the EMSR371 and EMSR377 case studies,
S2 post-fire data acquired on the same days of the post-fire images used by CEMS have been selected
to apply the BFCA. For the EMSR374 test case, the S2 image was acquired one day later than the SPOT
one; for the EMSR443 test case, the S2 image was acquired two days later than the SPOT one. The S2
tiles used to generate the BFCA-derived BA maps are listed in Table 4.
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Table 2. Test cases considered in this study for BA mapping.

CEMS
Activation Code Time Period Country Location Most Affected

Vegetation
Burned

Area [km2]

EMSR306 August 2018 Greece Evia Island Pine forest 4.4
EMSR316 September 2018 Italy Calci Forest, olive groves 10.8
EMSR331 October 2018 Greece Sithonia Pine forest 8.1

EMSR345 February 2019 Kenia Mount Kenia Moorland, bamboo
forest 141.4

EMSR368 June 2019 Spain Castile and
León Forest and shrubland 15.5

EMSR371 July 2019 Italy Tortolì Mediterranean scrub 6.9

EMSR374 July 2019 Italy Siniscola Mediterranean scrub,
agricultural areas 5.8

EMSR377 August 2019 Italy Dualchi Mediterranean scrub 3.4
EMSR401 October 2019 Italy Bosa Mediterranean scrub 1.2
EMSR426 February 2020 France Olmeta di Tuda Mediterranean scrub 3.2
EMSR428 February 2020 Spain Tasarte Pine forest 9.9

EMSR435 April 2020 Ukraine Chernobyl Pine forest,
agricultural areas 169.8

EMSR443 June 2020 Portugal Barao de Sao
Joao Pine and eucalyptus 23.0

Table 3. S2-L2A tiles used in this study for flood mapping.

CEMS
Activation Code Sentinel-2 Data

EMSR342

S2B_MSIL2A_20190105T004709_N0211_R102_T54KVE_20190105T024138 pre-flood
S2B_MSIL2A_20190105T004709_N0211_R102_T54KVF_20190105T024138 pre-flood
S2B_MSIL2A_20190105T004709_N0211_R102_T54KWE_20190105T024138 pre-flood
S2B_MSIL2A_20190105T004709_N0211_R102_T54KWF_20190105T024138 pre-flood
S2B_MSIL2A_20190214T004709_N0211_R102_T54KVE_20190214T024656 post-flood
S2B_MSIL2A_20190214T004709_N0211_R102_T54KVF_20190214T024656 post-flood
S2B_MSIL2A_20190214T004709_N0211_R102_T54KWE_20190214T024656 post-flood
S2B_MSIL2A_20190214T004709_N0211_R102_T54KWF_20190214T024656 post-flood

Table 4. S2-L2A tiles used in this study for BA mapping.

CEMS
Activation Code Sentinel-2 Data

EMSR306
S2A_MSIL2A_20180531T091031_N0208_R050_T34SGH_20180531T120702 pre-fire
S2B_MSIL2A_20180814T090549_N0208_R050_T34SGH_20180814T180143 post-fire

EMSR316
S2A_MSIL2A_20180926T101021_N0208_R022_T32TPP_20180926T191545 pre-fire
S2A_MSIL2A_20180926T101021_N0208_R022_T32TPP_20180926T191545 post-fire

EMSR331
S2A_MSIL2A_20181018T090951_N0209_R093_T35TKE_20181018T122725 pre-fire
S2B_MSIL2A_20181026T092049_N0209_R093_T35TKE_20181026T114842 post-fire

EMSR345
S2A_MSIL2A_20190218T073951_N0211_R092_T37MCV_20190218T102547 pre-fire
S2A_MSIL2A_20190228T073841_N0211_R092_T37MCV_20190228T102340 post-fire

EMSR368
S2A_MSIL2A_20190512T110621_N0212_R137_T30TUK_20190512T122956 pre-fire
S2A_MSIL2A_20190701T110621_N0212_R137_T30TUK_20190701T120906 post-fire

EMSR371
S2A_MSIL2A_20190713T101031_N0213_R022_T32TNK_20190713T135651 pre-fire
S2B_MSIL2A_20190718T101039_N0213_R022_T32TNK_20190718T144057 post-fire

EMSR374
S2A_MSIL2A_20190723T101031_N0213_R022_T32TNK_20190723T125722 pre-fire
S2A_MSIL2A_20190802T101031_N0213_R022_T32TNK_20190802T114341 post-fire

EMSR377
S2B_MSIL2A_20190731T102029_N0213_R065_T32TMK_20190731T145020 pre-fire
S2B_MSIL2A_20190810T102029_N0213_R065_T32TMK_20190810T134755 post-fire

EMSR401
S2B_MSIL2A_20190929T102029_N0213_R065_T32TMK_20190929T135206 pre-fire
S2B_MSIL2A_20191026T101029_N0213_R022_T32TMK_20191026T133255 post-fire
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Table 4. Cont.

CEMS
Activation Code Sentinel-2 Data

EMSR426
S2B_MSIL2A_20200206T102109_N0214_R065_T32TNN_20200206T140634 pre-fire
S2A_MSIL2A_20200211T102141_N0214_R065_T32TNN_20200211T115801 post-fire

EMSR428
S2B_MSIL2A_20200220T115219_N0214_R123_T28RDR_20200220T141320 pre-fire
S2A_MSIL2A_20200225T115211_N0214_R123_T28RDR_20200225T125637 post-fire

EMSR435
S2A_MSIL2A_20200407T085551_N0214_R007_T35UQS_20200407T115339 pre-fire
S2B_MSIL2A_20200412T085549_N0214_R007_T35UQS_20200412T120821 post-fire

EMSR443
S2A_MSIL2A_20200618T112121_N0214_R037_T29SNB_20200618T141236 pre-fire
S2B_MSIL2A_20200623T112119_N0214_R037_T29SNB_20200623T143258 post-fire

2.3. Selection of Fire Spectral Indices for the Buffer-From-Cluster Approach

The three spectral indices chosen to test the BFCA for the BA mapping application have been
selected by accounting for the results of the analysis of the separability parameter [36], similarly to
what was done in [37,38]. The separability between two thematic classes (burned/changed pixels and
unburned/unchanged pixels in this case) is defined as:

S =

∣∣∣µ1 − µ2
∣∣∣

σ1 + σ2
(3)

where µ1 and µ2 are the mean values of the samples belonging to the classes and σ1 and σ2 are the
corresponding standard deviations. By comparing Equations (2) and (3), it can be noted that the
definition of S is quite similar to that of the Ashman’s coefficient. The separability between two classes
is generally considered good if S > 1 and the higher S, the higher the separability [36–38].

S has been evaluated for the differences between the pre-fire and post-fire values of the following
indices: Normalized Difference Vegetation Index (NDVI) [39] and Normalized Burn Ratio (NBR) [40]
used in [22,41], and Normalized Burned Ratio 2 (NBR2) [42] and Mid-Infrared Burned Index (MIRBI) [43],
used in [23,38]. These indices are defined as:

NDVI =
ρNIR − ρRED

ρNIR + ρRED
(4)

NBR =
ρNIR − ρSWIR_L

ρNIR + ρSWIR_L
(5)

NBR2 =
ρSWIR_S − ρSWIR_L

ρSWIR_S + ρSWIR_L
(6)

MIRBI = 10·ρSWIR_L − 9.8·ρSWIR_S + 2 (7)

where NIR indicates the near infrared band, RED indicates the red band, and SWIR_L and SWIR_S
are the short wave infrared long reflectance and short wave infrared short reflectance, respectively.
The differences between the pre-fire and post-fire values of the aforementioned indices will be indicated
hereafter as dNDVI, dNBR2, dNBR, and dMIRBI.

Besides dNBR, even its relativized forms proposed in the literature, namely the relativized dNBR
(RdNBR) [44] and the relativized burn ratio (RBR) [45] have been considered in the separability analysis.
These variables are defined as:

RdNBR =
1000·dNBR√∣∣∣NBRpre− f ire

∣∣∣ =
1000·

(
NBRpre− f ire −NBRpost− f ire

)
√∣∣∣NBRpre− f ire

∣∣∣ (8)

RBR =
1000·dNBR

NBRpre− f ire + 1.001
(9)
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To perform the separability analysis, the S2 data listed in Table 2 have been used. For each case
study, the BA class has been derived by gathering the pixels labelled as burned by CEMS. The class
of unburned pixels has been generated by considering both a buffer zone around the BAs and by
randomly collecting pixels in areas labelled as unburned by CEMS. When building up the class of
unburned pixels, attention has been paid to include in each class at least 30% of the total sample pixels
and to exclude clouds, snow and water bodies. The result of the analysis is shown in Figure 2.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 21 
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Looking at Figure 2, it can be noted that the MTSIs that present the highest S between the classes
of burned and unburned pixels are dNBR2 and dNBR. These MTSIs provide different information
about a target, because NBR2 accounts for the SWIR bands while NBR considers SWIR_L and NIR
bands. Conversely, RdNBR and RBR basically provide the same information as dNBR. Even dMIRBI
presents a quite high value of S. Although MIRBI accounts for the SWIR bands like NBR2, it has been
demonstrated in [38] that the distributions of burned and unburned classes are different for dNBR2
and dMIRBI. Hence, dNBR2, dNBR and dMIRBI have been selected as the MTSIs used to generate the
maps of BA through the BFCA.

2.4. Application of the Buffer-From-Cluster Approach to Burned Area Mapping

The operations described in this section have been carried out for each test case. They have been
implemented using the IDL programing language, and the ENVI routines that can be launched by
means of specific IDL instructions. Firstly, the ISODATA clustering has been applied to the maps
of dNBR2, dNBR and dMIRBI (excluding masked pixels). For burned pixels, the post-fire values of
NBR and NBR2 tend to decrease with respect to the pre-fire ones [37,38,44,46], while the opposite
occurs for MIRBI [23,38]. Hence, the clusters presenting the highest median value of dNBR and dNBR2
and the lowest median value of dMIRBI have been selected and then intersected, generating the
clustering-derived changed (burned) area. Moreover, pixels presenting a negative value of dNBR
or dNBR2, or a positive value of dMIRBI have been excluded from the clustering-derived changed
area. To further increase the reliability of the clustering-derived changed area, even pixels whose
NBR2post-fire values were greater than the tile mean value of NBR2post-fire or whose MIRBIpost-fire values
were less than the tile mean value of MIRBIpost-fire have been removed as suggested in [38].

Successively, for each MTSI, the bimodality check has been performed. It has been marked as
passed if it has been passed for at least two out of three MTSIs. It has been verified that this happened
for all the test cases listed in Table 2 and that, for most of the test cases, bimodal histograms were
obtained for all the MTSIs. For bimodal histograms, the Otsu’s method has been applied to determine
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the threshold Th, as described in Section 2.1.3. For the remaining non-bimodal histograms, the empirical
thresholds proposed by in [38] for dNBR2 (0.05) and dMIRBI (−0.25) and in [46] for dNBR (260) have
been used.

After having applied the RGA, the thresholding-derived BA has been combined with the
clustering-derived one as described in Section 2.1.4 to produce, for each test case, a map of BAs. All the
burned pixels grouped in patches of ground smaller than 10,000 m2 (25 pixels) have not been labelled
as burned, thus assuming 1 ha as minimum mapping unit for BA mapping from S2.

2.5. Water Index and Application of the Buffer-From-Cluster Approach to Flood Mapping

Two water indices are commonly used to map floodwater using multispectral data. They are the
Normalized Difference Water Index (NDWI) [47] and the Modified Normalized Difference Water Index
(MNDWI) [48]. Positive values of NDWI and MNDWI correspond to the presence of water. In this case,
we have decided to test the BFCA using only one MTSI. The MNDWI has been selected and increases
of MNDWI are searched for by BFCA to map flooded areas. Hence, in this case dMNDWI is computed
as the difference between post-flood and pre-flood values of the MNDWI. The latter is defined as:

MNDWI =
ρGREEN − ρSWIR_S

ρGREEN + ρSWIR_S
(10)

After having applied the ISODATA clustering, the clusters presenting the highest median
value of dMNDWI have been selected to represent the clustering-derived changed (flooded) area.
Pixels presenting a negative value of dMNDWI have been excluded from the clustering-derived
changed area. The flood maps have been generated by combining the clustering-derived changed area
with the thresholding-derived one.

2.6. Validation

To quantitatively represent the results of the comparison between BFCA-derived and CEMS-
derived maps, a confusion matrix has been computed for each case study, assuming the CEMS-derived
maps as ground truth. A confusion matrix summarizes the performance of a classification algorithm.
From the confusion matrices, four accuracy metrics have been derived: overall accuracy (OA),
kappa coefficient (κ), errors of commission (εcomm), and omission (εom) for the class of changed areas.
It must be considered that, if the extension of the changed area is small, the class of changed pixels is
underrepresented compared to the other class (unchanged pixels). This implies that very high values
of OA are often obtained. To tackle this problem, limited geographic areas have been considered to
derive the confusion matrices. The boundaries of the geographic areas have been determined using
the “area of interest” shapefile included in the CEMS data (see [22] for more details).

3. Results

Figure 3 shows a full example of the results of the BFCA for the Calci test site (EMSR316, see Table 2).
It includes the intermediate results of the various steps of the BFCA and the final BA map. Looking at
Figure 3, it can be noted that, for each MTSI, the cluster presenting the highest median of the pixel
values (red color in the left panels) has been labelled as the class of changed pixels. The upper central
panel shows that with a buffer zone of buffering distance 50 pixels, the clustering-derived changed
area contains less than 30% of the pixels of the population formed by the union of the buffer zone
and the clustering-derived changed area itself. The same occurs with a buffering distance of 25 pixels.
Conversely, with a buffer zone of buffering distance 12 pixels (blue color in the upper central panel of
Figure 3) bimodal histograms have been obtained, as confirmed by Figure 4, where the histograms of
the pixel values of the population generated by merging the buffer zone with the clustering-derived
changed area are presented for dNBR2, dNBR, and dMIRBI. The Gaussian fitting functions are also
shown. It can be seen that, in this case, the GMM is suitable to describe the distribution of the pixel
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values. The following threshold values have been obtained: 0.19 for dNBR2, 0.35 for dNBR and −0.38
for dMIRBI.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 21 
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Looking at the upper right panel of Figure 3, it can be deduced that a very noisy map would
have been obtained by using only the ISODATA clustering. Conversely, an underestimation of the BA
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would have resulted from the simple application of the thresholding and region growing techniques.
This can be inferred by looking also at the lower central panel of Figure 3, which includes the boundary
of the CEMS-derived BA too.

Figure 5 shows, for the EMSR342 test case, the histograms of the pixel values of dMNDWI for the
clustering-derived changed area and the buffer zone (S2 tile T54KVE). The latter histogram has been
generated with a final value of the buffering distance equal to 25 pixels. A threshold value equal to
0.59 has been obtained. Even in this case the GMM properly describes the distribution of the pixel
values. Figure 6 presents the result of the mosaicking of the flood maps produced by applying the
BFCA to the four tiles listed in Table 3.
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The results of the comparison between BFCA-derived and CEMS-derived maps, expressed in
terms of the accuracy metrics introduced in Section 2.6 are synthetically presented in Figure 7 (OA and
κ) and Figure 8 (εcomm and εom) for the BA mapping application.
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The OA always exceeds 91% with an average value (over the 13 test cases considered here) of
97.5%, while κ is in the range [0.80–0.97] with an average value of 0.88. With respect to the errors, εcomm

ranges between 1.1% and 29.8% with an average value of 10.3%, while εom is in the range [0.2%–26.3%]
with an average value equal to 9.5%. We have also calculated the errors for all the pixels in the 13 tiles
together obtaining in this case εcomm = 4.3% and εom = 11.3%.

As for the flood mapping application, the following values of the values of the accuracy metrics
have been obtained: OA = 91.1%, κ = 0.80, εcomm = 12.1%, εom = 0.5%.

4. Discussion

This paper presents a new method to automatically perform binary change detection in MTSIs
conceived to map the extent of the area affected by a natural disaster like wildfire. Several approaches
dealing with unsupervised binary change detection in MTSIs are available in the literature (see the
Introduction for some references). Most of them are generally quite complex using complicated data
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modeling and parameter estimation. The proposed method represents a rapid approach that aims at
joining computational efficiency and good accuracy.

4.1. Computational Efficiency and Accuracy

As for the computational efficiency, although, before carrying out the automatic thresholding,
the BFCA uses ISODATA clustering, the latter is not significantly time consuming even if it is applied
sequentially to three MTSIs, as done for the BA mapping application, mainly because just an iteration
is used to cluster the pixels. Even the fitting of the histograms of changed and unchanged pixels with a
Gaussian function is not time consuming (a maximum of 20 iteration has been fixed). It takes about
10 min to process a S2 image tile (5490 × 5490 pixels) using an i7-7800X 3.5GHz processor with 128
GB RAM.

As for the accuracy, looking at Figures 7 and 8, it can be deduced that a fairly good agreement
between CEMS-derived and BFCA-derived BA maps has been obtained for the case studies considered
here. In the literature, using S2 data and fully automatic BA mapping algorithms, omission errors
equal to around 40% [49] and 26.5% [38] and commission errors of 19.3% [38] and 25% have been
obtained [49]. Hence, average values around 10% for both errors can be considered as an indication
that the BFCA works well in the identification of BAs from S2 data.

The case studies listed in the first five rows of Table 1 (EMSR306-368) were also analyzed in [22],
where a SBA was used in combination with clustering. A significant reduction of εom has been achieved
through the BFCA, although this implied a slight increase of εcomm. A significant improvement of
the results has been obtained in particular for the EMSR331 case study. The agreement with the
CEMS-derived BA maps has increased also for the EMSR345 and EMSR 368 test cases, while for the
EMSR306 and EMSR316 test cases, the decrease of εom has been compensated by an increase of εcomm.
It must be pointed out that the improvement of the performances of the BA mapping is due not only to
the use of the BFCA, but also to a more accurate choice of the MTSIs, performed through the analysis
of the separability between classes. To support this hypothesis, the algorithm proposed in [22] has
been applied to the MTSIs used for BA mapping. For some test cases, e.g., EMSR316, values of the
accuracy metrics very similar to those obtained using the BFCA have been achieved. For other test
cases, a worsening of the performances with respect to those achieved through the BFCA has been
observed. For instance, for the EMSR435 test case, εom has increased from 23.1% (BFCA) to 24.2%
and for the EMSR428 test case it has increased from 26.3% (BFCA) to 27.3%. The great importance of
selecting suitable variables to detect changes in any change detection problem is pointed out in [3].
The case studies listed in Table 2 include fires having very different extents from about 1 km2 (EMSR401
test case) to about 170 km2. The use of a medium-high resolution instrument like S2 contributed to the
quite low values of εom (e.g., 10.3% for the EMSR401 test case) achieved when fire burned few km2 of
surface. It can be expected that the BFCA might underestimate small-size fires using MTSIs derived
from coarser resolution data. In [27,38,50], missed detection of fires having a size less than 1 km2 has
been ascribed to the use of data having a coarse spatial resolution (250–500 m).

The highest value of εcomm (29.8%) has been obtained for the EMSR377 case study. However,
in this case the CEMS-derived maps have been produced using the data from a different satellite
(SPOT-6/7). This may have an impact on the agreement between the BA maps especially if a small area
(3.4 km2 for EMSR377, see Table 2) is affected by fire, because in this case the fire likely had a quite low
intensity and an ambiguous spectral signature.

The highest value of εom (26.3%) has been obtained for the EMSR428 case study. Figure 9 shows
an RGB color composite of the pre-fire (red) and post-fire (green and blue) dNBR2 data used to map the
Tasarte fire (EMSR428). It can be noted that some areas classified as burned by CEMS appear in cyan
tone; this indicates that NBR2 increased rather than decrease, as expected in a BA, thus explaining
the large value of εom. Note that even a Pleaides post-fire image acquired on the same day as the S2
one has been analyzed by CEMS to produce the BA map. This could at least partially explain the
discrepancy, considering that Pleiades do not have SWIR bands.



Remote Sens. 2020, 12, 2681 15 of 20
Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 21 

 
 

 
Figure 9. RGB color composite of the S2 images of the Tasarte fire (EMSR428). Red: NBR2pre-fire; green 
and blue: NBR2post-fire. The magenta line represents the boundary of the CEMS-derived burned area. 

For what concerns flood mapping, it has been chosen to test the performances of the BFCA using 
just one MTSI, obtaining again a good agreement with reference data. The high OA (91.1%) is 
significant for the EMSR342 case study, because in this case the class of changed/flooded pixels is not 
underrepresented with respect to the other one. Using S2-derived dMNDWI data at a resolution of 20 
m, commission errors ranging from 2% to 7.6% (lower than the εcomm value obtained through the 
BFCA for the EMSR342 case study) and omission errors in the range [9–42.1%] (considerably higher 
than the εom value obtained through the BFCA for the EMSR342 case study) have been reported in 
[51], but analyzing a very different study area (the Venice coastland) and only very small portions of 
the images (2 × 2 km2). Even in this case, it is expected that combining more MTSIs could lead to the 
achievement of better accuracies, as discussed in [52], where quite high omission and commission 
errors (generally higher than those obtained through the BFCA for the EMSR342 case study) were 
reported by applying crisp thresholds to single MTSIs. 

It must be pointed out that, while the effect of a wildfire can be assessed even several days after 
the event (e.g., reforestation generally takes a long time), the temporal scale of flood events can be 
very fast. For instance, the possibility to map flash floods vanishes few hours after the occurrence of 
the event. Even if flood mapping using multispectral instruments like S2 can provide good 
performances, microwave instruments, capable to operate in almost all-weather conditions and 
during both day-time and night-time, are generally more suitable to map floods also because of the 
sensitivity of the microwave radiation to water [53]. Hence, flood mapping is more commonly carried 
out using synthetic aperture radar (SAR) (e.g., [54,55]), which joins the aforementioned characteristics 
of microwave sensors to a high spatial resolution (that ranges from hundreds of meters to less than 1 
m). 

4.2. Combination of Different Image Processing Techniques 

The combination of different image processing techniques is not new for what concerns BA 
mapping (e.g., [56]), flood mapping (e.g., [25,34]), and change detection in general (e.g., [7], where 
clustering was used in combination with principal components analysis). Here, clustering is basically 
used to estimate two distribution functions, one representing the class of changed pixels and the other 
one representing the background. Nonetheless, it has also a role in determining the final classification 
because objects belonging to the clustering-derived changed area are finally classified as changed if 
they include seeds of the RGA (see Section 2.1.4). Although, for BA mapping, the clustering-derived 

Figure 9. RGB color composite of the S2 images of the Tasarte fire (EMSR428). Red: NBR2pre-fire; green
and blue: NBR2post-fire. The magenta line represents the boundary of the CEMS-derived burned area.

For what concerns flood mapping, it has been chosen to test the performances of the BFCA
using just one MTSI, obtaining again a good agreement with reference data. The high OA (91.1%) is
significant for the EMSR342 case study, because in this case the class of changed/flooded pixels is not
underrepresented with respect to the other one. Using S2-derived dMNDWI data at a resolution of
20 m, commission errors ranging from 2% to 7.6% (lower than the εcomm value obtained through the
BFCA for the EMSR342 case study) and omission errors in the range [9–42.1%] (considerably higher
than the εom value obtained through the BFCA for the EMSR342 case study) have been reported in [51],
but analyzing a very different study area (the Venice coastland) and only very small portions of the
images (2 × 2 km2). Even in this case, it is expected that combining more MTSIs could lead to the
achievement of better accuracies, as discussed in [52], where quite high omission and commission
errors (generally higher than those obtained through the BFCA for the EMSR342 case study) were
reported by applying crisp thresholds to single MTSIs.

It must be pointed out that, while the effect of a wildfire can be assessed even several days
after the event (e.g., reforestation generally takes a long time), the temporal scale of flood events
can be very fast. For instance, the possibility to map flash floods vanishes few hours after the
occurrence of the event. Even if flood mapping using multispectral instruments like S2 can provide
good performances, microwave instruments, capable to operate in almost all-weather conditions and
during both day-time and night-time, are generally more suitable to map floods also because of the
sensitivity of the microwave radiation to water [53]. Hence, flood mapping is more commonly carried
out using synthetic aperture radar (SAR) (e.g., [54,55]), which joins the aforementioned characteristics
of microwave sensors to a high spatial resolution (that ranges from hundreds of meters to less than
1 m).

4.2. Combination of Different Image Processing Techniques

The combination of different image processing techniques is not new for what concerns BA mapping
(e.g., [56]), flood mapping (e.g., [25,34]), and change detection in general (e.g., [7], where clustering was
used in combination with principal components analysis). Here, clustering is basically used to estimate
two distribution functions, one representing the class of changed pixels and the other one representing
the background. Nonetheless, it has also a role in determining the final classification because objects
belonging to the clustering-derived changed area are finally classified as changed if they include seeds
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of the RGA (see Section 2.1.4). Although, for BA mapping, the clustering-derived changed area is
generated by the sequential application of the ISODATA to different MTSIs, the intra-class variability
in each MTSI can be high, so that ISODATA may not produce a very accurate classification. Looking at
the upper right panel of Figure 3, it can be seen that ISODATA is generally able to identify the BA,
but many false alarms may be raised. On the other hand, the application of the thresholding, even if
performed in the framework of an RGA, is very sensitive to uncertainties in the determination of the
seeds and the tolerances of the RGA. Since the BFCA fits the distributions of changed and unchanged
pixels by assuming a GMM, an imperfect fitting can imply imperfect estimations of the thresholds and
the tolerances.

To further underline the importance of combining different techniques, BA maps have also been
produced by using a thresholding algorithm with thresholds derived from the SBA and applied within
the framework of an RGA. The individual maps derived from the application of SBA, thresholding
and RGA to each MTSI have been combined through a logical AND (i.e., intersected) and through a
logical OR (i.e., merged). For the first case (map intersection) an increase of the omission error has been
generally observed. For instance, for the EMSR316 test case, εom has increased from 3.1% (BFCA) to
25.4% and for the EMSR428 test case it has exceeded 50%. As expected, for map merging, the opposite
occurs. For instance, for the EMSR316 test case, εcomm has increased from 15.2% (BFCA) to 24.3%.

The values of the accuracy metrics shown in Figures 7 and 8 suggest that the combination of
clustering and thresholding succeeds in compensating the errors related to the application of each
technique alone.

4.3. Maximum Number of Clusters and Initail Buffering Distance

Figure 10 shows, for one MTSI (dNBR2), the ISODATA outputs obtained by selecting different
values for the maximum number of classes: 5, 10, and 15. The EMSR316 test case has been used to carry
out the exercise (hence the central panel of Figure 10 is the same as the upper left panel of Figure 3).
The pixels belonging to the class having the highest median of the dNBR2 pixel values (red color in
Figure 10) are almost the same in the three maps. For the BFCA, it is fundamental that the majority of
changed pixels are identified by the ISODATA because it is basically used to estimate the distribution
of this population. Hence, if among the classes of unchanged pixels discriminated by the ISODATA,
which can for instance represent different types of land cover, oversegmentation or undersegmentation
occur, this does not represent a problem for the accuracy of the BFCA.
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the maximum number of clusters. The EMSR316 test case is considered.

Besides the selection of the maximum number of classes, another arbitrary choice done to
implement the BFCA is the initial value of the buffering distance (50 pixels). Looking at the upper
central panel of Figure 3, it can be noted that the initial buffer zone (grey color) covers a large part
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of the spatial subset around the area affected by the fire shown in the figure. This is due to the quite
large number of small objects belonging to the class of changed pixels. In principle, for each object
belonging to the class of changed pixels, a different dimension of the buffering distance, proportional
to the size of the object, should be used. However, this would imply a significant decrease of the
computational efficiency, especially if many objects belong to the class of interest. In the BFCA the
buffer is mainly used to derive a bimodal histogram for the population formed by the selected changed
and unchanged pixels. The adaptive modification of the buffering distance is an efficient way to
mitigate this problem. Its increase/decrease ensures that two distinguishable modes are present in the
histograms as confirmed by Figure 4 (and Figure 5 for flood mapping). Hence, it is not worthwhile to
decrease the computational efficiency of the BFCA if this goal is achieved without generating different
buffer sizes for objects of different sizes.

In [27], unburned pixels around burned ones are searched for within a strip whose length has
been empirically set between 10 and 20 km in order to determine a suitable threshold to identify BA.
This strip is placed around a buffer having a distance of 1875 m. In [27], no adaptive modification of the
strip and the buffer size is performed. It is worth noting that, for a pixel size of 20m, a buffering distance
of 50 pixels corresponds to 1 km. Using 250-m resolution data, like the MODIS highest resolution ones
from which BA maps are produced in [27], a range between 10 and 20 km corresponds to a buffering
distance of 40–80 pixels. Hence, using the BFCA for coarse spatial resolution data (250–500 m), an initial
buffering distance greater than that chosen for S2 (e.g., 80 pixels) can be used.

5. Conclusions and Perspectives

The new Buffer-From-Cluster Approach (BFCA) to automatically perform binary change detection
in multitemporal spectral indices has been presented. It has been conceived to map the extent of areas
affected by a natural hazard like wildfire. The BFCA combines different image processing techniques
such as clustering and thresholding, which are applied within the framework of a region growing
algorithm. Nonetheless, it is quite simple in terms of computation and effective in identifying changes
caused by the occurrence of a disaster. It is therefore suitable for real-time applications, especially if a
large amount of multispectral data has to be processed, for instance for routinely producing maps of
areas affected by disasters.

The effectivity of the BFCA in the identification of changes caused by the occurrence of a disaster
has been verified by comparing BFCA-derived burned area maps, generated using Sentinel-2 data,
with maps produced by the CEMS. Values around 10% for omission and commission errors have been
obtained considering the average over all the case studies. They never exceeded 30%, while the overall
accuracy always exceeded 91%.

The values of the accuracy metrics seem to indicate that the BFCA provides results better than
those found in the literature for automatic burned areas mapping using Sentinel-2 data and fully
automatic algorithms. However, more tests are necessary to confirm this indication. For this purpose,
it is planned to make available the BA mapping algorithm derived from the BFCA in the WASDI
platform (www.wasdi.net), where registered users will be able to test it on their own Sentinel-2 data.
In addition, starting from summer 2020, this algorithm will update a previous version implemented to
provide, for the Italian territory, a daily service of burned areas mapping based on Sentinel-2 data [22].

Although burned areas mapping has been chosen as the main application of the BFCA, the latter
has been conceived to be applied also to other disasters like floods. A test for this kind of application
gave encouraging results (omission error of 0.5%, commission error of 12%). Even the algorithm for
flood mapping using Sentinel-2 data based on the BFCA will be made available through the WASDI
platform. However, it must be pointed out that the inability of multispectral instruments to provide
data when cloud cover is present or during night-time strongly limits their effectivity for flood mapping.
Therefore, future work will evaluate the possibility to adapt the BFCA to flood mapping from SAR,
which is the most suitable sensor for this application.

www.wasdi.net
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