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Abstract: Deep Neural Networks (DNNs) have established themselves as a fundamental
tool in numerous computational modeling applications, overcoming the challenge of defining
use-case-specific feature extraction processing by incorporating this stage into unified end-to-end
trainable models. Despite their capabilities in modeling, training large-scale DNN models is a
very computation-intensive task that most single machines are often incapable of accomplishing.
To address this issue, different parallelization schemes were proposed. Nevertheless, network
overheads as well as optimal resource allocation pose as major challenges, since network
communication is generally slower than intra-machine communication while some layers are more
computationally expensive than others. In this work, we consider a novel multimodal DNN based
on the Convolutional Neural Network architecture and explore several different ways to optimize its
performance when training is executed on an Apache Spark Cluster. We evaluate the performance
of different architectures via the metrics of network traffic and processing power, considering the
case of land cover classification from remote sensing observations. Furthermore, we compare our
architectures with an identical DNN architecture modeled after a data parallelization approach by
using the metrics of classification accuracy and inference execution time. The experiments show that
the way a model is parallelized has tremendous effect on resource allocation and hyperparameter
tuning can reduce network overheads. Experimental results also demonstrate that proposed model
parallelization schemes achieve more efficient resource use and more accurate predictions compared
to data parallelization approaches.

Keywords: distributed deep learning; model parallelization; convolutional neural networks;
multi-modal observation classification; land cover classification

1. Introduction

With the proliferation of high-resolution platforms continuously acquiring massive amounts of
observations, extracting actionable knowledge from massive Earth Observation (EO) data is a crucial
issue spanning different disciplines within the exploding research area of Big Data analytics. In contrast
to typical Big Data scenarios in social media and web analytics, Big Earth Observation Data [1]
correspond to high volumes of complex measurements streaming from scientific EO observation
platforms, where each observation carries critical information. A representative example of such
challenges is the Copernicus EO platform which is producing more than 10 TB of observations per
day (velocity), leading to petascales of generated data (volume), from instruments ranging from radar
(Sentinel 1) to spectroscopy (Sentinel 2) and radiometry (Sentinel 3) (variety), each one associated
with different quality and observation characteristics (veracity). The driving force for addressing
these challenges is the added value for long-term EO monitoring applications, such as climate change
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monitoring, precision agriculture, and humanitarian aid among others, in a market expected to exceed
40B$ in the next decade. In the traditional paradigm, experts were tasked with investigating and
characterizing observations, but in the era of Big EO Data such labor-intensive approaches cannot
effectively scale-up. Hence, the development of large-scale distributed machine learning systems,
capable of extracting actionable information from diverse data sources is extremely urgent.

Machine learning models, and more specifically Deep Neural Networks (DNNs) with multiple
layers between the input and output layers, are becoming a pervasive tool in modern EO data
analysis applications due to their efficiency in learning appropriate data representations [2,3].
When trained with large amounts of data, DNNs provide extremely accurate solutions and as a
result, they have successfully been considered in a plethora of fields, including remote-sensing [4,5],
speech recognition [6] and computer vision [7] among others. Graphical Processing Units (GPUs) are
the ideal commodity hardware for training DNNs since they were developed to deal with parallel
computations and have large memory bandwidth. Even though significant advances have been
made in both GPU hardware and DNN architectures, the fact remains that as datasets increase in
size and network architectures increase in complexity, DNNs require even more resources in both
computational power and memory demand. As a result, both training and inference on large-scale
models to competitive accuracy, essentially require a cluster of multiple machines connected by a
network. Training under a distributed paradigm is also appropriate when dealing with Big Data,
such as the ones associated with Earth Observation [8]. In such cases, and especially when considering
scenarios involving multiple sources of observations, each stored at a different location, transferring
of all required data into a single location can be very challenging, even prohibiting for very large
volumes [9,10].

Subsequently, Distributed Deep Learning has received considerable attention, and many
approaches and frameworks have been proposed and implemented [11], making various distributed
and parallel computing schemes applicable to a variety of problems that have been previously
addressed by sequential approaches. The performance of those approaches is however highly
dependant not only on the connectivity structure and the computational needs of the model, but also on
the cluster’s characteristics. For example, DNN layers with local connectivity structures, such as the one
in Convolutional Neural Networks (CNNs), have generally low communication requirements, and tend
to be more compliant to distribution, than fully connected architectures such as Multi-Layer Perceptron.
Moreover, processing times between different machines tend to differ, causing bottlenecks when
transcending to different computation phases and leading to non-ideal speedups. Intercommunication
is also a major factor to take into consideration, since different network technologies provide different
performance [12].

Motivated by this, we explore the optimization of a distributed multi-modal CNN architecture and
evaluate its performance in multi-class land cover classification. We consider CNN models since these
models are proven to be highly effective on remote sensing observation classifications scenarios [13,14].
We explore scenarios of model parallelization as our distributed approach and consider different
parallelization architectures in order to understand which one is the most appropriate for model
distribution. Moreover, we compare our architecture with another popular distributed deep learning
approach called data parallelization [15,16], and provide experimental results on each approach’s
ability to make fast and accurate predictions. As a result, our study makes the following contributions:

• A detailed analysis on the trade-offs between different parallelization architectures, focusing on
the case of remote sensing data analysis.

• Formulation of a novel distributed processing model for the case of multi-modal remote sensing
observation classification.

• A detailed experimental investigation of the merits of the proposed scheme compared to
single-modality-based learning and non-deep learning methods.

• Comparison between model and data distributed DNN approaches for the problem of multi-modal
data classification.
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• Insights into model parallelization behavior, providing directions on better allocation of the
resources of computer clusters.

2. State of the Art

2.1. Distributed Deep Learning and Model Parallelization

Several methods have been proposed for parallelizing and distributing a DNN model [17,18] as it
is possible to partition both the forward evaluation and the backpropagation phases among parallel
processors and across different machines. In general, two main classes of distributed processing have
been considered, namely data parallelism, model parallelism and hybrid approached [19].

In model parallelization, each worker has a local copy of the entire network and is responsible for
a different part of the processing pipeline. In model parallelism, different machines are responsible for
the computations in different parts of the network. In this case, the weights are split equally among the
machines, and all of them train on the same mini batch. The general idea behind hybrid parallelism is
to combine different parallelization schemes in order to overcome the drawbacks of each other.

The DNN is not stored in a single device helps in memory conservation; however it also incurs
additional communication after every layer. Considering this, it suffices to say that the architecture of
a DNN plays an important role in the overall performance, since it creates layer inter-dependencies,
which, generate a significant amount of communication overhead. To resolve this issue, the authors
in [20] propose a method for partitioning a DNN in such a way that each machine will be responsible
for twice the number of its neurons. The authors in [21] propose an alternative method, in which
they use Cannon’s matrix multiplication algorithm in order to reduce communication between fully
connected layers, but it only produces better efficiency and speedups over simple partitioning on
small-scale fully connected networks.

In contrast of model parallelism, in data parallelization every worker receives a complete copy
of the model and its parameters. The dataset is distributed among the machines through different
partitions, which train the copies locally. Each copy must use the same weights but trains on different
batches, which means that in the weight update phase the results of the partitions have to be averaged
to obtain the global gradient. The most straightforward strategy for data parallelism is to partition
the work of the dataset samples among multiple computational resources, either cores or different
devices. Therefore, datasets too large to be stored on a single machine use this method to achieve faster
training [22].

Since data parallel approaches train a copy of the entire model on individual computer
systems, they require some method of combining results and synchronizing the model parameters
between machines. The prominent examples of parameter synchronization involve synchronous
and asynchronous training, while coordination is facilitated by a machine named Parameter
Server (PS) [23]. Synchronous methods [24] require all replicas to update their parameters at the
same timestamp. By doing so, the batch size is effectively multiplied by the number of replicas. Many
synchronous approaches for data parallelism were proposed in the literature. In ParallelSGD [25],
SGD is run k times in parallel, dividing the dataset among k processors. After the convergence of
every SGD instance, the resulting weights are aggregated to obtain a global averaged weight vector.
MapReduce [16] has also been used in many distributed deep learning implementations [26,27],
due to its easy to schedule parallel tasks. However, despite the overall successful first results,
it generality hindered DNN-specific optimizations. More recent implementations however, make use
of high-performance communication interfaces to implement parallelism features, such as reducing
latency via Asynchronous methods [28]. Asynchronous executions can potentially provide higher
throughput, since machines spend more time performing computations, instead of waiting for the
parameter averaging step to be completed [28].

Regarding hybrid parallelism, the general idea behind it is to combine different parallelization
schemes in order to overcome the drawbacks of each other. The authors in [29] perform a hybrid scheme
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on AlexNet [3], in which they apply data parallelism to convolutional layers, and model parallelization
to fully connected parts. The work presented in [28] proposed an asynchronous implementation
of DNN training on CPUs, which uses an intermediate representation to implement fine-grained
hybrid parallelism. Finally, in [30] distributed training is performed simultaneously on multiple model
replicas, while each replica is trained on different data samples.

An earlier version of this work was presented in [31]. That work differs from this one in that we
considered a different type of problem, namely spectroscopic redshift estimation from astrophysical
observations, and we considered the scenario of data-parallelism for training a CNN model.

2.2. Deep Learning in Land Cover Classification

In the last few years the number of Earth observation satellites has significantly increased,
providing continuous streams of high resolution imagery of the Earth’s surface [32]. Analyzing the
massive volumes of Earth observations can provide valuable insights into the state of the planet,
including the ability to monitor and track changes in land cover and land use and among others.
Regarding land cover classification, different approaches have been proposed, which mostly exploit
user-defined features, such as the Scale Invariant Feature Transform (SIFT), extracted from remote
sensing images [33,34]. However, it is difficult for user-defined features to capture the complexity
of real data, especially when considering multiple source and modalities. As a result, such feature
extraction processes are unable to achieve an optimal balance between discriminability between
different classes and robustness to class variation.

With DNNs on the other hand, with its ability to automatically learn hierarchical intermediate
representations [3,35], has been established as the next trend in the remote sensing classification [36].
As a result, a considerable amount of studies related to deep learning for remote sensing image analysis
have been published in recent years, with many of them focusing on unsupervised generative graphical
models, such as Deep Belief Networks (DBNs) or Sparse AutoEncoders (SAEs). The authors in [37]
tested a DBN on urban land use, using polarimetric SAR (polSAR) data. Meanwhile, the authors in [38]
applied a stacked SAE to PolSAR image classification and those in [39] applied adaptive boosting of
restricted Boltzmann machines to PolSAR image classification. CNNs are also extremely popular in
the literature for land cover classification approaches. The authors in [40] applied CNNs to PolSAR
image classification. In [41], the authors replace pooling layers in their CNN with wavelet-constrained
pooling layers. The Neural Network is then used in conjunction with superpixels and a Markov
random field to produce the final segmentation map.

One important thing to note is that remote sensing data are often provided in different modalities,
spectrally, spatially and temporally inhomogeneous. As a result, data fusion is becoming of significant
importance in remote sensing classification. Data fusion is based on the exploitation of complementary
information of data originating from different sources. Current works of remote sensing dealing with
DNNs and data fusion mostly revolve around two strategies: early fusion and late fusion. Early fusion
uses multiple modalities simultaneously in a Neural Network, usually by concatenating extracted
features of each data source into a single data cube. The authors in [42] extract different types of spatial
filters and concatenate them in a single tensor, which is then used to learn a supervised stack of AEs.
Furthermore, the authors in [43] train a two-stream CNN that process PolSAR and hyperspectral data
in parallel while fusing the resulting information at a later convolutional layer.

On the other hand, late fusion approaches train a separate classifier for each modality present
in a dataset. Afterwards, the individual classification scores are fused into a final classification score.
Moreover, these approaches are able to fuse predictions from different models, producing more robust
and accurate results. For example, the authors in [44] fuse predictions obtained by a CNN with ones
obtained by a random forest classifier, trained using user-defined features. However, the authors
in [45] propose a different approach in late fusion, in which they fuse two decision maps obtained by
pre-trained models by learning a fusion network based on residual learning.
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For the case of remote sensing observations, fusion of observations from different modalities for
land use and land cover classification was introduced very recently, due to the lack of appropriate
datasets that could be used for training machine learning models. One such case is the dataset
provided in the context of the data IEEE GRSS 2018 Data Fusion Contest which provided RGB,
HSI and LiDAR measurements, as well as land cover/use annotation [46]. Unlike the proposed work,
the authors in [46] do not consider distributed training of deep learning models. Furthermore, in the
proposed CNN, the fusion amounts to majority voting of modality-specific classifier and not a unified
end-to-end trainable network as it is in this work, while leads to lower classification accuracy.

Last, we note a very recent work which explores in great detail the benefits of distributed
deep learning for remote sensing applications [8]. In that work the authors explore the potential of
typical (data parallelism) distributed deep learning training on remote sensing scene classification.
This framework is significantly different to this work where we explore the potential of optimizing
the training processing in distributed processing environment for the case of multi-modal land
cover classification.

3. Proposed Methodology

3.1. Overall CNN Architecture

In this work, we consider a CNN architecture that efficiently combines features from multiple
modalities by employing a two-stream CNN architecture for assigning each pixel to a specific class.
In order to capture spatial characteristics from neighboring pixel, instead of selecting a single pixel as
the input, a spatial neighborhood is selected, centered on the query pixel, is used.

In general, a state-of-the-art CNN architecture is composed of a sequence of layers performing
specific operations. Representative types of layers, which are also considered in this work are:

• Convolution layer:
• Activation layer. Activation layers introduce non-linear operations which enable the networks to

act a universal function approximates. Representative examples are ReLU activation, which applies
a non-negative thresholding operator, and Sigmoid, which constraints the output to the range [0, 1]
and is typically used in the last layer as the predictor.

• Batch normalization layer. This layer add a normalization step to the network, which make the
inputs of each trainable layers comparable across features. By doing this, they ensure a high
learning rate while keeping the network learning.

• Pooling layer. A pooling layer’s objectives are firstly, to provide invariance to slightly different
inputs and secondly, to reduce the dimensionality of feature maps. Max Pooling is most frequent
choice, as it avoids cancellation of negative elements, and prevents blurring of activations and
gradients throughout the network.

• Dropout layer. Dropout is a most popular techniques for limiting the effects of overfitting by
temporarily reducing the total parameters of the network at each training epoch.

• Fully connected layer. A fully Connected layer is responsible for producing predictions,
while taking into account the input features.

The network architecture considered in this work consists of a sequence of convolutional and
pooling layers in order to extract features, and dropout and batch normalization layers to avoid
overfitting. These are followed by two fully connected layers and a final softmax scoring layer.
In order to construct a more memory efficient DNN, we adopted an early fusion approach, fusing the
features before the first fully connected layer. Specifically, the proposed multi-modal CNN consists of
three modules, one for processing HSI data, one for processing VHR-RGB data, and one for feature
fusion and classification. The first two modules apply 3D convolutional layers that operate on their
respective input patches to generate features. We decided on three dimensional convolution, since our
hyperspectral data also contain spatial information that 2D models fail to accurately encode.
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Due to the fact that CNNs require a considerable amount of data in order to ensure that sufficient
generalization is achieved during training, the following preprocessing steps are applied in our dataset
before going ahead with any learning or classification. Firstly, the four separate VHR-RGB tiles had
to be merged, as well as resized along with the HSI image, to match the spatial size of the ground
truth data. Then, image patches of size 25 × 25 pixels were cropped out by sliding through each
training image. The generated patches contain the same pixels from both images, in order to get
complementary information. Furthermore, for each class, we randomly chose 400 distinct patches
from each image with a selected pixel as a starting point, resulting in overall 8000 (8 K) patches.
The proposed processing pipeline is depicted in Figure 1 while the specific parameters of the network
are shown in Figure 2.

Figure 1. Processing pipeline for the proposed multimodal CNN. The overall network architecture is
composed of three parts, one for processing the RGB (top), and one for the HSI (bottom), are are fused
into a third part (right) in order to produce the classification results.

Figure 2. Parameters of the proposed multi-modal classification network. Conv3D corresponds to
a 3D convolution, with the provided number of filters, followed by a ReLU non-linear activation.
Dense indicates a fully connected layer with the provided number of filters, followed by a ReLU
activation function.
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3.2. Distributed CNN Architectures

Figure 3 presents a high level block diagram of the two different schemes, showcasing the access to
the same data by all workers for the case of data parallelism and different data for the proposed model
parallelism scheme. To quantify the performance gains associated with each methods, we explore the
differences in terms of both processing time and accuracy.

Figure 3. Data (left) and model (right) parallelization schemes. Wi indicate the network weights
associated with each worker i while W̄ indicates the process of averaging the weights collected by
all workers at the parameter server. For tee case of data parallelism, once the averaging is executed,
the same weights W are distributed to all workers. For the case of model parallelism, each worker
obtains the portion of weights Ŵi corresponding to its local section of the network.

In order to fully exploit our cluster resources, we consider two different distributed deep learning
architectures, based on the multimodal CNN described in Section 3.1. As a result our CNNs are
consisted of three branches, one for each modality and a final one for fusion and classification. For our
initial architecture, we adopted a baseline approach, in which we assign each branch to a different
worker, as illustrated in Figure 4.

Figure 4. The baseline architecture of proposed distributed multimodal CNN consists of three main
parts, each assigned to a different worker: The VHR-RGB part at the top branch, the HSI part at the
bottom branch and merging part that leads to classification output is shown on the right.
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For the second architecture, we took into consideration the traffic loads of our network. Thus, we
modified our previous model distribution into the one depicted in Figure 5. In this approach we
migrated the last convolutional-pooling block along with flatten and dense layers of both RGB and
HSI branches. The rest of the layers remained on the same machines as before.

Figure 5. The optimized architecture. The architecture is similar to the “baseline” case, however,
intermediate results from convolution layers are communicated amongs workers.

4. Distributed Processing Framework

4.1. System Overview

The model parallel architecture considered in this work is based on TensorFlowOnSpak (https:
//github.com/yahoo/TensorFlowOnSpark) [47], for managing TensorFlow-based distributed DNN
workflows on Apache Spark clusters [15]. Apache Spark extends the MapReduce model [16] by the
use of an elastic persistence model, which provides the flexibility to persist data records, either in
memory, on disk, or both. Therefore, Spark favors the iterative processes met in machine learning
and optimization algorithms. Briefly, Spark organizes the underlying infrastructure into a hierarchical
cluster of computing elements, comprised of a Master and a set of N Workers. The Master is responsible
for the configuration of the cluster, while the workers perform the learning tasks submitted to them
through a driver program, along with an initial dataset.

TFoS exploits Spark’s native mechanisms for automatic cluster configuration while bypassing its
communication philosophy, thereby allowing for direct tensor communication between TF processes.
This framework also implements the concept of Parameter Server (PS) [23] for enabling the smooth
integration of TensorFlow code over Spark clusters, with minimum changes on the original TensorFlow
code. In a data parallelization approach, PS is responsible for providing a global average of network
parameters, while the rest of the nodes are responsible for training, whereas in a model parallelization
approach PS is responsible for distributing parts of a model to the nodes as well as acting as a training
coordinator between the nodes.

4.2. Cluster Setup

To benchmark our proposed distributed DNN architectures, the experiments were conducted on
an Apache Spark Standalone cluster of 5 PCs, featuring TensorFlow Core version 1.2.1, Apache Spark
version 2.1.1, Apache Hadoop version 2.6, and TensorFlowOnSpark version 1.0.0. The DNN
architectures were implemented using Keras (F. Chollet, Keras. https://github.com/fchollet/keras,
2015.) version 2.0.4, a high level neural network API written in Python. The Master of the cluster is
configured with an Intel Core i7-6700 3.40 GHz CPU, and has allocated 8 GB memory and 450 GB disk

https://github.com/yahoo/TensorFlowOnSpark
https://github.com/yahoo/TensorFlowOnSpark
https://github.com/fchollet/keras
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space. Meanwhile, the workers are configured with Intel Core i5-3470 3.20 GHz CPUs, have allocated
2 GB memory and 450 GB disk space.

Figure 6 presents our cluster setup. It depicts Spark nodes connected via Ethernet. The Master
configures the cluster through the driver, and Workers communicate through TFoS tensor
communication. All nodes run Ubuntu Linux 16.04. For the purpose of identifying our system’s
bottlenecks, Ganglia is used to monitor CPU, memory, and Network traffic on every node [48].

Figure 6. FoS Cluster Setup. The cluster consists of five machines, namely one master node responsible
to managing the cluster, one node acting as the parameter server (lower left) and three worker nodes.
Each worker node has access to a local version of the dataset, and a executer which implements the
training/inference of the DNN. The Parameters does not access data, and is tasked with organising the
training/inference process.

5. Experimental Analysis

5.1. Dataset

The dataset used for our experiments was collected by NCALM at the University of Houston on
16 February 2017, covering the University of Houston campus and its surrounding areas. The dataset
contains images of multi-source optical remote sensing data, containing (a) hyperspectral (HSI) and
(b) Very High Resolution RGB imagery (VHR-RGB).

Specifically, the HSI observations were acquired by a ITRES CASI 1500 sensor, covering a
380–1050 nm spectral range with 48 bands at a 1-m GSD. The observations were orthorectified and
radiometrically calibrated to units of spectral radiance. The VHR-RGB observations were acquired by
a DiMAC ULTRA-LIGHT+ camera with a 70-mm focal length and post-acquisition processed through
white balance, calibration with respect to plane instruments, and orthorectified. The entire image is
organized into four separate tiles, resulting in an image of size 12,020× 47,680 pixel, when concatenated.
A Ground truth image presented in Figure 7 was also provided as raster at a 0.5 m GSD, and it is
corresponding to 20 urban land use and land cover classes, listed in Table 1. This dataset was developed
in the context of the 2018 IEEE GRSS Data Fusion Contest “Advanced multi-sensor optical remote
sensing for urban land use and land cover classification” [49].
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Figure 7. Exemplary RGB (top) and land cover annotation (bottom).

Table 1. The original set of class and the corresponding description.

Class ID Corresponding Label

0 Healthy Grass
1 Stressed Grass
2 Artificial Turf
3 Evergreen Trees
4 Deciduous Trees
5 Bare Earth
6 Water
7 Residential Buildings
8 Non-Residential Buildings
9 Roads
10 Sidewalks
11 Crosswalks
12 Major thoroughfares
13 Highways
14 Railways
15 Paved Parking Lots
16 Unpaved Parking Lots
17 Cars
18 Trains
19 Stadium Seats

5.2. Result Evaluation

In this section, the results of our experiments are presented and discussed, in order to illustrate
the performance of the model parallelization schemes introduced in this paper. More specifically,
we first investigate the impact training under a distributed scenario in Section 5.2.2 and subsequently
investigate different parameters including the batch size in Section 5.2.3. In Section 5.2.4, we consider
the two different schemes for model-parallelism training of the proposed multi-modal CNN and
report the use of resources associated with each approach. Last, in Section 5.3, we consider the case of
model and data parallelism for the process of inference and compare these two approaches in terms of
achieved processing time and resource use.

The proposed multi-modal CNN architecture was trained to minimize the categorical
cross-entropy using the Adam optimization algorithm [50] with learning rate set to 10−3 and batch
size equal to 40. For both training and validation all available bands were used, namely 48 for the
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HSI and 3 for the VHR-RGB (see Figure 2). Furthermore, we also compare the proposed scheme
with state-of-the-art classification methods for the single machine case. Specifically we consider the
K-Nearest Neighbors, using 5 neighbor and Euclidean distance and Support Vector Machines (SVM)
using the radial basis function as the kernel and the one-versus-all strategy for multi-class classification.
We note that for the cases of the KNN and SVM, the two signals, namely the patch from the HSI and
the one from the VHR-RGB are vectorized and concatenated before introduced to the classifiers.

5.2.1. Performance of the Proposed Multi-Modal CNN Architecture

We begin the experimental analysis by first exploring the learning capabilities of the proposed
multi-modal CNN on land cover classification, on a single machine. Figure 8 present the accuracy and
the loss achieved as a function of training epoch using 8000 examples, equally representing each class,
as the training set. The results indicate that the proposed scheme is capable of achieving high accuracy,
even from a limited number of training epochs, without demonstrating signs of overfitting.

Figure 8. Training and validation set (left) loss function value, (right) overall accuracy.

In order to understand the impact of each modality on the final classification accuracy, Table 2
presents the accuracy achieved in both training and validation set for three scenarios, namely using
RGB only, HSI only and using both sources of observations. We observe that in both training and
validation cases, the best accuracy is achieved when both source of observations are simultaneously
exploiting, justifying the motivation of this work for multi-modal data analytics. With regards to the
individual data source, we observe that the RGB case exhibits very strong indications of overfitting,
a phenomenon not observed for the case of the HSI.

Table 2. Accuracy for training and validation set using individual and fused data sources.

Accuracy (%)

Training Validation

RGB 73.3 43.1

HSI 75.5 77.6

RGB + HSI 88.4 83.6

Table 3 provides a comparison between the proposed methods and non-deep learning classifiers,
specifically the SVM with the rbf kernel and the K-Nearest Neighbors. These results demonstrate that
the proposed Multi-Modal (MM) CNN achieves the best performance, closely followed by the KNN,
which however, is difficult to parallelize, which is the main objective of this work.
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Table 3. Validation set accuracy for state-of-the-art and proposed methods.

Accuracy (%)

SVM (rbf) 74.1

KNN (k = 5) 82.4

MM-CNN (proposed) 83.6

5.2.2. Effects of Distributed Environments on Training Time

In this section we compare the performance of the (baseline) distributed architecture with an
identical multimodal CNN architecture deployed on a single machine setup. Figure 9 illustrates the
performance of each architecture, when trained for the same amount of time.

Figure 9. Training Accuracy with respect to elapsed training time (left) and training epoch (right).

The results demonstrate the advantage of the distributed architecture in terms of training
accuracy, in contrast to the conventional single-processing-unit approach. Specifically, while both
implementations achieve comparable accuracy, the distributed training architecture attains higher
accuracy in less time as shown in Figure 9 right. Furthermore, for the same amount of time,
the distributed processing scheme achieves comparable accuracy to the conventional scheme from
a smaller number of epochs as shown in Figure 9 right. The reason while the distributed scheme
completes a smaller number of epochs compared to the single-processing-unit is that in addition
to processing, the distributed processing scheme must also accommodate communication transfer
delays.As a result, a large part of the gains achieved by the distributed allocation of resources are lost
due to communications overheads. We note that in both cases, the processing units are CPU which is
not optimized for CNN training and therefore, significantly higher gains could potentially be achieved
if GPUs were used.

5.2.3. Impact of Batch Size

The objective of this set of experiments was to examine if and how the hyperparameter of batch
size affects model parallelization, motivated by the fact that since batch size defines the number of
samples that will be propagated through the network, it will by extension affects the amount of data
transfer over the network between different machines.

Figure 10 depicts both the incoming (left) and outgoing (right) traffic of the cluster for different
batch sizes, during a time period of about 70 min, for the case of the ’baseline’ architecture. These plots
indicate that for a batch size of 10, network traffic can reach values as high as 120 MB/s compared to
the batch sizes of 50 and 200, which get values more than 5 times lower. As a result, high batch sizes
can greatly accelerate the training process.
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It should however be noted that by using a very large batch can lead to a significant degradation
in terms of the model capabilities, as measured by its ability to generalize. This occurs due to the fact
that large-batch methods tend to converge to local minima [51]. In conclusion, larger batch sizes can
be beneficial for model parallelism approaches since they greatly reduce network overheads, as long
as they do not negatively impact the model’s convergence.
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Figure 10. Incoming and Outgoing cluster traffic of the baseline architecture for different Batch Sizes.

5.2.4. Impact of Architectures on Resource Utilization

Even though batch size adjustments can significantly reduce communication overheads,
further improvements are feasible by considering different allocations of the processing pipeline
among workers, through different architectures. Figures 11 and 12, present the incoming and outgoing
network traffic for the two architectural scenarios considered in the work, namely the ‘baseline’,
and the ‘optimized’ respectively. In these plots, the horizontal axis corresponds to the individual
worker, the diagonal axis to the sample batch and the vertical to the traffic measured in MBytes per
second. From these plots, several observations can be made.

Figure 11. Communication traffic per worker for the ’baseline’ architecture.
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Figure 12. Communication traffic per worker for the ’optimized’ architecture.

The first observation one can make is that for the case of the baseline architecture, bulk of the
traffic is actually associated with two workers, worker 1 which acts as the PS, and worker 4 which
is responsible for the merging and classification part of our multimodal CNN. The high incoming
network traffic on the worker 4 is expected since it is responsible for the merging stage and thus
need to collect data from both workers 2 and 3. It also expected that PS (worker 1) will have the
highest incoming traffic, as it receives data form a branch consisted mostly of fully connected layers,
which have much more parameters than the convolutional ones. The cluster’s behavior also makes
sense for outgoing traffic. In this case, worker 4 has the highest traffic compared to other workers of
the cluster, since, as stated before, is responsible for the part of the model with the fully connected
layers, and therefore has more parameters to send. The PS also exhibits high outgoing traffic since it
communicates the parameters received from the fully connected layers to both workers 2 and 3.

Comparing the two architectures, we observe that the ‘optimized’ architecture is characterized
by significantly less incoming and outgoing traffic compared to the ‘baseline’ architecture.
More specifically, the outgoing traffic of the merging worker can be as low as 2.5 MB/s compared to
the baseline one, where it reaches about 10 MB/s. As a result, traffic on the PS is significantly reduced,
reaching about 2.5 MB/s for the incoming and 1.5 MB/s for the outgoing traffic. We also observe that
for the case of the outgoing traffic, worker 2 exhibits the highest amount of traffic compared to the
rest. In fact, the amount of outgoing traffic for the worker is approximately the same as the case of the
‘baseline’ architecture, but become significantly more pronounced due to the drop in traffic of the other
workers. Overall, for both incoming and outgoing traffic, we can clearly see the significant benefits
offered by the ‘optimized’ architecture compared to the ‘baseline’.

In addition to network traffic, we also consider the use of available computational resources,
measured in terms of CPU use. Figure 13 illustrates the performance of our cluster in terms of CPU
usage, when executing the ’baseline’ and ’optimized’ approach respectively. From this figure, we can
make the observation that both PS (worker 1) and the main classification machine (worker 4) do not
use significant amounts of CPU, since the former just redistributes parameters to the rest of the cluster,
and the latter is in charge of only a small number of layers. On the other hand, worker 3, which is
responsible for the HSI branch, requires significantly more computational resources, reaching around
70% of CPU of the ‘baseline’ and 50% for the ‘optimized’ on average.
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Figure 13. CPU Usage of the baseline (left) and Traffic Based (right) architectures. Red dots indicate
mean value, while pink dots indicate median. The continuous lines encode the standard deviation
around the mean.

5.3. Training Using Model and Data Parallelization Comparison

The experimental results reported in the previous sections demonstrated the impact that a carefully
designed architecture can have on the use of resources. In this section, we study and compare the
performance characteristics of the ’optimized’ model parallelism architecture with the more traditional
data parallelism approaches, during both training and inference stages. We compared the data and
model parallelism scheme with respect to two critical system variables, namely network traffic and
associated CPU load.

Regarding the network traffic, Figures 14 and 15 demonstrate that for the data parallelization
scheme, a significant amount of traffic is associated with PS since its is primarily responsible for
synchronizing the different workers, while all workers exhibit similar network traffic characteristics.
On the other hand, for the proposed model parallelization scheme, the traffic associated with PS
is significantly lower compared to the data parallelization scheme, at the same level as the other
workers. Furthermore, worker #3, the one associated with the fusion, and thus the majority of the fully
connected layers, has higher network traffic compared to the other workers, nevertheless, it is still less
compared to the traffic for the data parallelization scheme.

Figure 14. Incoming traffic per worker for the data parallelism scheme.
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Figure 15. Incoming traffic per worker for the model parallelism scheme.

Regarding the CPU load for the data and model parallelism schemes shown in Figures 16 and 17,
a first observation is that in both data and model parallelism scheme, the PS worker is associated
with the lowest CPU load, although based on the previous discussion, it is associated with the bulk of
the network traffic. As expected, for the case of data parallelism, all three workers exhibit the same
CPU load, which is in the order to 90% percent. On the other hand, the majority of processing for the
model parallelism scheme is associated with worker #3, the one responsible for the feature fusion and
classification using fully connected layers.

Figure 16. CPU load per worker for the data parallelism scheme.

Figure 17. CPU load per worker for the model parallelism scheme.
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5.4. Inference Using Model and Data Parallelization Comparison

In order to derive convincing conclusion, we consider the inference process of the trained networks
using 1000 (1 K) and 14,000 (14 K) testing examples. For both parallelization approaches, we trained
each model using an identical dataset of 8K patches and performed inference with the aforementioned
datasets. Table 4 presents the results of our experiments with regards execution time, while Table 5
illustrates inference accuracy for each parallelization scheme. We note that for the data parallelization
scheme, the entire testing dataset was split among the workers and executed in parallel.

Table 4. Evaluation time comparison between the model parallelization and the ‘baseline’ and
‘optimized’ data parallelization schemes.

# Examples Data Parallelization
Model Parallelization

Baseline Optimized

1 K 51.7 s 26.0 s 25.1s

14 K 787.2 s 500.1 s 364.5s

Table 5. Accuracy comparison between data parallelization and each one of our proposed model
parallelization architectures.

# Examples Data Parallelization
Model Parallelization

Baseline Optimized

1 K 0.86 0.86 0.86

14 K 0.83 0.83 0.84

The results in Tables 4 and 5 demonstrate the clear superiority of the model parallelism scheme
compared to the data parallelism scheme in terms of both time required for inference. In terms of the
processing speed, i.e., the execution time, we observe that both model parallelization schemes are able
to perform the inference at significantly less time compared to the data-splitting scheme employed
in data parallelization. Between the two model parallelization schemes, there is a clear benefit in
using the optimized scheme, especially when dealing with larger amounts of data, in which can the
optimized scheme is 27% faster.

Furthermore, Table 5 suggests that even though inference accuracy between both parallelization
approaches is similar for both datasets, model parallelization provides slightly better results. Moreover,
we observe that the optimized scheme can achieve superior performance for the more 14 K examples
case. These results clearly indicate that the optimized model parallelization scheme is the preferable
approach in the case of inference, since it can make faster and more reliable predictions.

6. Conclusions

In this paper, we proposed a multimodal CNN for land cover classification and performed
model parallelization architectures, in order to improve its performance on a distributed environment.
Moreover, we compared our most efficient architectures with the popular data parallelization approach.
We conducted experiments with patches extracted from RGB and HSI images, and our results provide
the following contributions:

• Migrating branches of multimodal CNNs to different machines does not affect the model’s learning
capacity, and a distributed deep learning system can show similar behavior to traditional setups.

• The number of samples that will be propagated through the network greatly affects communication
overheads between workers of a cluster. Model Parallelization approaches benefit from larger
batch sizes, since they significantly reduce network traffic. However, a very big number of samples
causes significant degradation in the quality of the model.
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• Through this study, we gave insight on model parallelization’s behavior, and as a result,
provide directions for better resource allocation on commodity clusters. For instance, since the PS
is the most memory consuming module of model parallelism, we can assign it to the machine with
the most memory available. Or because the merging part of a multimodal CNN accumulates a lot
of traffic, we can assign it to the machine with the most expensive networking cables.

• The way we parallelize our model has a tremendous impact on a cluster’s resource allocation.
Smart model split can reduce the load of heavy duty workers and put to use otherwise idle
resources, while a naive split can cause severe bottlenecks through heavy network traffic and
waiting learning tasks due to a lack of non-allocated resources.

• For land cover classification, model parallelization schemes tend to perform better than data
parallelization since they provide significantly faster and slightly more accurate predictions.

As a last point, we should note that although distributed training is highly recommend for training
a DNN, testing/inference may be more efficiently executed using more appropriate hardware platform.
For instance, platforms such as Field Programmable Gate Arrays (FPGAs) appear offer much more
favorable characteristics for inference compared to more typical GPU platforms [52].
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