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Abstract: Change detection is a very important technique for remote sensing data analysis.
Its mainstream solutions are either supervised or unsupervised. In supervised methods, most of
the existing change detection methods using deep learning are related to semantic segmentation.
However, these methods only use deep learning models to process the global information of an image
but do not carry out specific trainings on changed and unchanged areas. As a result, many details of
local changes could not be detected. In this work, a trilateral change detection network is proposed.
The proposed network has three branches (a main module and two auxiliary modules, all of them
are composed of convolutional neural networks (CNNs)), which focus on the overall information
of bitemporal Google Earth image pairs, the changed areas and the unchanged areas, respectively.
The proposed method is end-to-end trainable, and each component in the network does not need to
be trained separately.

Keywords: change detection; convolutional neural networks; deep learning

1. Introduction

Change detection is an important technique in remote sensing image analysis. It compares two
images at the same position but of different time periods to locate the changed areas. Change detection
has been widely used in urban sprawl tracking [1], resource exploration [2,3], land utilization
detection [4], and post-disaster monitoring [5]. The resolution of a remote sensing image is
extraordinarily large, whereas the proportion of the changed areas in the whole image is very small.
Therefore, it is often time-consuming and laborious to compare such large images manually [6]. In the
past few decades, people have proposed many methods for change detection.

A key problem of change detection is modeling temporal correlations between bitemporal
images. Different atmospheric scattering conditions and complicated light scattering mechanisms
make change detection problems highly nonlinear. Thus, a task-driven and learning-based approach
is required to solve detection problems [7]. According to whether the dataset has sufficient prior
knowledge, a detection problem can be divided into unsupervised [8,9] and supervised [10,11] methods.
Unsupervised learning methods do not need to obtain prior knowledge from labeled data, whereas
supervised learning methods have to infer the detection areas through labeled training data.

The unsupervised learning methods have been applied to change detection in many recent
studies [12,13]. Generally, these methods mainly focus on the generation and analysis of differential
images, extracting information from either original images or differential images to detect which
areas change. Common methods include principal component analysis (PCA) based on k-means

Remote Sens. 2020, 12, 2669; doi:10.3390/rs12172669 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-4681-9129
http://dx.doi.org/10.3390/rs12172669
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/17/2669?type=check_update&version=2


Remote Sens. 2020, 12, 2669 2 of 19

clustering [14], multivariate alteration detection (MAD), and the iteratively reweighted multivariate
alteration detection (IR-MAD) [15]. The PCA is one of the most famous subspace learning
algorithms [16]. As a linear transformation technique, this method performs decorrelation on images.
However, the PCA relies on statistical characteristics of images. If the data in the changed areas and
unchanged areas are unbalanced, the model performance will be seriously affected [17]. The MAD is
another unsupervised multitemporal image change analysis method. Its main mathematical essence
is canonical correlation analysis (CCA) and band math in multivariate statistical analysis. However,
this algorithm still cannot completely improve current multi-element remote sensing image methods.
Based on the MAD algorithm, the IR-MAD algorithm was studied and put forward in combination
with expectation-maximization (EM) algorithms [18]. The core idea of the algorithm is that the initial
weight of each pixel is 1, and each iteration gives a new weight to each pixel in the two images.
The unchanged pixels have larger weights through calculation, and the values of final weights are the
basis for determining whether a pixel changed. After several iterations, the weight of each pixel would
be stable when the change is less than a set threshold and the iteration will stop if it changes no more.
Another classic method is the change vector analysis (CVA) proposed by Malila [19]. It uses a simple
method to perform differential operation on image data of various wavebands in different periods,
in this way, it evaluates the change of each pixel, and then forms a change vector of various wavebands.
In addition, many algorithms were improved based on the CVA. Nevertheless, unsupervised learning
methods cannot make use of prior knowledge of marked data, and relay on the assumptions of some
models or similar rules to distinguish changed areas. Furthermore, unsupervised methods require
targeted tuning of models to adapt to different environments, which is very time-consuming and
laborious. Overall, unsupervised methods have certain limitations in change detection research.

Supervised learning methods use labeled training data to learn which areas changed. Traditional
supervised learning methods include random forests (RFs) [20], convolutional neural networks (CNNs),
etc. Because of the rapid development of graphics processing units (GPUs), deep learning methods
can be applied in various fields [21–23]. In the field of change detections, the general end-to-end 2-D
convolutional neural network [24] effectively learned distinguishing features from higher levels by a
2-D CNN and introduced a hybrid affinity matrix fused with subpixel representations to improve its
generalization ability. Yang [25] performed change detection and land cover mapping simultaneously
and used land cover information to help predict changed areas. Wang [26] proposed region-based
CNNs to extend object detection for image change detection tasks. Zhan [27] proposed a change
detection method based on deep Siamese convolution networks. This method obtained different
feature maps by inputting two images into the same CNN, and then the method processed data from
feature sets to detect changes between the images by the knowledge that the feature vectors of changed
pixel pairs were far apart from each other.

Because most of the change detection tasks were performed at the pixel level, which is naturally
associated with semantic segmentation tasks, a change detection task could be transformed into a
two-class semantic segmentation problem. Semantic segmentation tasks in deep learning were mostly
based on fully convolutional networks (FCNs) [28], which could classify each pixel in the image
independently and quickly. Zhang [29] and Arabi [30] proved that FCN methods could be well applied
to image change detection tasks. However, these works only optimized the structure of the original
model; features of image change detection were not improved. For example, images acquired in
different time periods might have some deviations in building angles, which would lead to a low
accuracy of the model in identifying changed areas.

Most of the images studied by the above deep learning methods has low spatial resolution,
when the spatial resolution and the height of the object increase, those methods do not work well as
they have long calculation time and low accuracies, so this paper proposes a trilateral change detection
network (TCDNet). The proposed model is consisted of three branches: The main branch is responsible
for multiscale extraction of the overall information of the bitemporal Google Earth images to obtain
a raw change prediction map. The other two auxiliary branches are the difference module and the
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assimilation module, which carry out weight trainings on changed and unchanged areas, respectively.
The overall framework of the model is shown in Figure 1. Through the cooperation of the two auxiliary
modules, the main network improves its prediction accuracy. The main contributions of this work are
as follows. (1) The proposed network is end-to-end trainable, and each component in the network does
not need separate trainings, and (2) according to the characteristics of change detection tasks, targeted
optimization is carried out. A main module and two auxiliary modules are arranged to cooperate with
each other to promote information exchanges between the changed and unchanged areas and thus to
improve the accuracy of the prediction map. Two auxiliary modules are trained together with the main
module, and no additional separate training is required. (3) A new bitemporal Google Earth image
dataset was collected, including different categories of roads, railways, factories, buildings, farmland,
and so forth. There are enough change categories to ensure that the model can be trained to cope with
most changing environments. All ground truth of data is manually annotated to ensure the accuracy
of data. Experiments show that the established dataset is feasible for quantitative evaluation of change
detection tasks.

The rest of paper is as follows. Section 2 introduces the proposed model. Section 3 analyzes
the composition of the data set. Section 4 discusses the experimental results in details. Section 5
summarizes this paper and puts forward the future work.

Figure 1. Trilateral change detection network (TCDNet) framework. The model consists of four parts:
main module, difference module, assimilation module, and fusion module.

2. Methodology

In previous research, CNNs were proven to be effective for the remote sensing image
segmentation [31,32]. In many similar visual tasks, it is usually necessary to use an extractor to
extract feature information of diverse scales from images. CNNs’ structures are similar to pyramid
structures with multi-scales and multi-level characteristics. Thus, it was natural to use them in our
image change detection research. The network automatically learned multiscale features from rough
to fine through a series of convolutions from shallow to deep. CNNs directly use typical image
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classification as the backbone network of a model, which is helpful to improve the accuracy of the
algorithm. Furthermore, this paper is aimed at pixel-level classification; a single pixel depends on
its surrounding pixel information heavily, and pooling layers and convolution layers in CNNs can
handle this problem well. To sum up, we choose the neural network as the underlying framework of
our model.

The TCDNet proposed in this paper is consisted of three modules: one main network module and
two auxiliary modules. The main network module is responsible for systematic feature extraction of
bitemporal Google Earth images pairs, and it takes advantage of convolution networks to obtain rich
semantic information. The other two auxiliary modules are a difference module and an assimilation
module, which focus on changed and unchanged areas, respectively, assisting the main network
in carrying out change detections. To fuse the outputs of these three modules, a fusion module is
designed at the end of the model to complete the task. The overall framework of the model is shown
in Figure 1.

2.1. Main Module

This module is mainly used for detailed feature extraction of bitemporal Google Earth image pairs.
In selection of the backbone network, a mainstream strategy is to use the model that performs well in
image classification tasks (Large Scale Visual Recognition Challenge [33]), such as the Visual Geometry
Group Network (VGG) [34], Residual Network (ResNet) [35], Densely Connected Convolutional
Networks (DenseNet) [36], and so forth. Because of the particularity of change detection tasks,
where the depth of the neural network has an influence on the final result, the general idea is to design
a network as deep as possible. However, as the depth of the network increases, the phenomenon
of gradient disappearance manifests, and thus the training of the network will not be very effective,
and the accuracy will even decrease. Nevertheless, a shallower network cannot fully extract the feature
information of the image; therefore, the ResNet is chosen as the backbone network because it can well
solve the gradient disappearance problem by using residual modules.

The core of residual modules lies in constant mapping. These modules solve the degradation
problem in deep learning very well, with the increasement of network layers, the accuracy on the
training set is saturated or even decreased. It is relatively difficult to directly fit convolution layers
to a potential constant mapping function H(x) = x, but converting it to h(x) = f (x) + x will make it
easier. When F(x) = 0, an identity mapping h(x) = x will be obtained [31]. The main function of residual
networks is to remove the same parts and highlight minor changes in data.

It is well known that the most commonly used strategy is to combine low-level semantic features
with high-level semantic features [28] to improve final prediction results. Thus, the backbone network
uses 16 downsampling layers and 32 downsampling layersto extract features of different levels to
construct a feature pyramid structure.

In order to extract more complete feature information, operations are as follows. The module
uses global average pooling to get the global information of 16 times and 32 times of downsampling
layers, then it uses a 1 × 1 convolution network and the sigmoid function, finally it multiplies the
obtained feature vector with the original 16 times and 32 times of downsampling layers to achieve
feature learning [37]. This weight vector can adjust features, which is equivalent to feature selection
and combination. The sigmoid function can normalize the elements of the eigenvector to between 0
and 1. If the vector value is closer to 1, the channel would be more important. On the contrary, if the
vector value is closer to 0, it would be less important.

2.2. Auxiliary Module

The essence of the image change detection algorithm lies in determining changed areas through
bitemporal images. This task can be divided into two interrelated parts: one module to detect changed
areas, and another to detect unchanged areas. The outputs of the three branches are put together to
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improve the accuracy. To accomplish this task, two auxiliary modules are designed: the assimilation
and the difference modules.

Because some objects have certain deviations from different viewing angles of sensors, not all
pixels of the two images taken in different periods are one-to-one paired. Especially when the
observation distance is short, the height of the object is too high and the spatial resolution is very high
as well, this will become a problem. As shown in Figure 2, these areas were taken at different time
periods of the same place. According to the figures, these parts (boxed in red on Google Earth images)
do not change, the visual differences are caused by viewing angles of sensors. Traditional methods
(such as PCA-means and IR-MAD) could not solve this problem well. However, deep learning
methods could help solve this issue. Deep learning methods convert area parameters into single
values for comparison. Taking the difference module as an example, two images pass through three
convolution layers, and the size of the obtained feature map is only one-eighth of the original image.
That is, the information corresponding to an 8 × 8 original image is mapped into a single value
after convolutions.

(a) (b)

(c) (d)

Figure 2. Bitemporal Google Earth images. (a) Taken in 2019 in Nanjing, China. (b) Taken in 2018 in
Nanjing, China. (c) Taken in 2019 in Shanghai, China. (d) Taken in 2018 in Shanghai, China.

In Figure 3, the 4 × 4 receptive field in the blue feature layer is mapped to the 2 × 2 parameter in
the orange feature layer through convolutions, and then it is mapped to the 1 × 1 parameter in the
green feature layer through convolution operations. After two convolution layers, the parameters of
a 4 × 4 area in the original image are finally mapped to a 1 × 1 parameter. This series of operations
enables a single parameter in the final output feature layer to represent a small 4 × 4 image in the
original image. This manipulation could extract global information from a small area, and convert the
area parameters into single values for comparison, it can well handle the position deviation problem
caused by different viewing angles of sensors.

Using deep learning methods to solve change detection problems is similar to image segmentation,
which generates pixel-wise output. In image segmentation, the image is normally input to the CNN and
FCN. A CNN first performs convolutions and poolings, reducing the size of the image and increasing
the receptive field at the same time; image segmentation is to predict the output at pixel-wise, so it
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is necessary to upsample a smaller image size after pooling to the original image size for prediction.
There are two key points in image segmentation: one is pooling to reduce the image size and to
increase the receptive field, and the other is upsampling to expand the image size. In the procedure
of reducing and increasing the size, some information is lost, so a new operation is needed to design
to get more information without pooling. Dilated convolution [38] meets all the above requirements,
and it is widely used in computer vision. The extended convolution can make the receptive field to
grow exponentially, and it will not increase the model parameters or computation while expanding
the receptive field. In general, image pooling and undersampling operations will lead to information
loss. The expanded convolution can replace pooling, and the expanded receptive field enables the
output of each convolution to contain a larger range of information. In addition, dilated convolution
used dilated factor (DF) to indicate the size of convolution expansion. Instead of filling blank pixels
between pixels, dilated convolution skips some pixels the input remains the same, by carrying out
zero-filling operation on the convolution kernel, a larger perception field is achieved.

Figure 3. Schematic diagram of feature shrinkage.

As shown in Figure 4, three images show the schematic diagrams of receptive fields represented
by different dilated factors, and all holes are filled with zeroes. When the factor is 3, the receptive field
can reach 121. A wider receptive field of vision can be obtained and is equivalent to using a 11 × 11
convolution kernel. It can be seen that the parameters of the convolution kernel remain unchanged,
and the size of the receptive field increases exponentially as the dilated factor increases. The growth
formula of the two-dimensional dilated convolution receptive field can be expressed as

Ri = (4× i− 1)2, (1)

where i denotes the dilated factor and Ri is the receptive field size of the convolution kernel.
The advantage of dilated convolution is that, without losing information due to poolings, the receptive
field of the convolution kernel can be enlarged so that the output after each convolution could contain
a larger range of information as far as possible.

Figure 5 illustrates how dilated convolutions increase the scope of the receptive field. Figure 5a
and Figure 5b, respectively, represent the receptive fields obtained by ordinary convolutions and
dilated convolutions after three convolution operations. It can be clearly seen from the figures that
by using dilated convolutions, the information contained in the same parameter (red circle) is about
3.8 times that of ordinary convolutions (blue circle) in the feature map. Thus, it can be seen that
by using dilated convolutions, the same parameter in the network can contain more surrounding
information, and the building deviation caused by different viewing angles of sensors can be solved
by a more friendly way.

Furthermore, the difference module and the assimilation module perform their respective
functions. The assimilation module focuses on comparing the same areas, and the difference module is
responsible for screening the characteristics of the changed areas. The three branches in the model
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constitute a whole network, and supervised training is carried out at the same time to update the
parameters in the network. The model judges whether a pixel is in a changed area by a pair of
surrounding environment information, and all the information is obtained by automatic learning of
the model. In the process of model training, we set up a loss function to assist the training. The outputs
of these two modules are visualized and attached to the original images for display to understand the
functions of auxiliary modules intuitively.

(a) (b) (c)

Figure 4. Schematic diagram of different dilated factors. (a) The original convolution kernel, with the
dilated factor set to 1. (b) A convolution kernel with dilated factor of 2. (c) A convolution kernel with
dilated factor of 3.

(a)

(b)

Figure 5. Receptive field of different convolution. (a) Ordinary convolution; (b) dilated convolution.
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The images in Figure 6a,b are taken at the same place at different times. The green and blue
areas in Figure 6c,d are areas with dense weights, indicating that these areas receive more attention.
Figure 6c is the heat map output by the difference module. It can be seen from the diagram that
the difference module focuses more on the changed areas in the bitemporal Google Earth images.
Figure 6d is the heat map output by the assimilation module. Comparing Figure 6d with Figure 6c,
it is seen that the assimilation module focuses on unchanged areas.

(a) (b)

(c) (d)

Figure 6. Heat maps of difference module and assimilation module. (a) Bitemporal Google Earth
image. (b) Bitemporal Google Earth image. (c) Differential module heat map. (d) Assimilation module
heat map.

2.3. Fusion Module

The proposed algorithm consists of three branches: a main network and two auxiliary networks;
if they are fused directly, the data information will inevitably affect each other. To solve this problem,
a fusion module is added at the end of the network to process these three information flows.

As shown in Figure 7, w and h represent the width and height of the feature map, respectively,
and the information of different branches is first stacked to obtain a feature layer U. Its equation can
be written as

U′ = ζ(B( f 3×3(U))). (2)

U′ is obtained by convolutions. f 3×3 denotes the convolution kernel of 3 × 3, B means batch
normalization and the calculation process can be described as

µβ=
1
m ∑m

i=1 xi, (3)

σ2 =
1
m ∑m

i=1 (xi − µβ)
2, (4)

x̄i =
xi + µβ√

σ2 + ε
, (5)

yi = γx̄i + β. (6)
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µβ in Equation (3) denotes the average of the output data in the previous layer; xi and m denote
the parameters and the number of parameters in previous feature maps, respectively. The standard
deviation σ2 of the output data of previous layers can be acquired in Equation (4). In Equation (5), x̄i is
a normalized value and ε is a very small value in order to avoid zero in the denominator. Finally, yi is
batch normalized value in Equation (6). To make the normal distribution of each output data different,
γ and β are introduced. ζ in Equation (2) denotes the function of ReLU, it can be written as

f (x) = max(0, x). (7)

Figure 7. Fusion module.

In order to let the model better obtain global information and use vectors to guide feature learning,
an attention mechanism is added to reorganize the data in the feature maps:

t = M2(U′) = S( f 1×1(ζ( f 1×1(Fgp(U′))))), (8)

Fgp means global average pooling, it adds up all pixel values of the feature map to get average values,
and then it uses these average values to represent the corresponding feature map. Its main function is
to replace the fully connected layers, reducing the number of parameters and calculation, improving
the robustness of the model. S in Equation (8) denotes the function of Sigmoid, which can normalize
values between 0 and 1, and its function can be written as

S(x) =
1

1 + e−x , (9)

where x represents the input to Sigmoid. t ∈ R1×1×Cn in Equation (8), Cn denotes the number of
categories. In the change detection task, Cn is set to 2 because only the changed areas are different
from the unchanged. Finally, the number of corresponding channels in t is multiplied with U’ to
assign weight to the parameters, the obtained characteristic layer and U’ are added to obtain the final
output V:

V = tU′ + U′. (10)

2.4. Build Loss Function

Two auxiliary loss functions are added to the total output loss function of the model to improve
the network performance and train each component better in the model. These two auxiliary loss
functions enhance trainings of the assimilation module and difference module. The Softmax function
is selected as the loss function because the output of the model divides the image into two categories:
the changed and the unchanged areas, and its formula is shown in Equation (11). loss is the sum of the
lost values with the real data for two branches, pi is the output prediction of the network, qk is the real
value, and N is the number of samples.

loss =
1
N

N

∑
i
− log(

epi

∑k eqk
), (11)
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L =
2

∑
j=1

lossj + lossm. (12)

L is the joint loss function in the network. lossj denotes the corresponding loss output of the
assimilation module (j = 1) and the difference module (j = 2). lossm denotes the loss value output
from the end of main module’s network.

3. Dataset

A dataset was created to train and verify the validity of the proposed model. Compared with
other published datasets, the dataset used in this work contains more details of the objects and their
environments due to a lower view altitude. Therefore, the requirements for the algorithm are higher.
This dataset contains 3420 pairs of Google Earth images, the size of each image is 512 × 512, and the
corresponding area is approximately 3002 square meters. These images from Google Earth (GE) include
shots taken at different times from 2010 to 2019. GE is a virtual earth software developed by Google,
which allows users to browse high-definition images of different time periods around the world for
free. The satellite image of GE is not a single data source, but an integration of multiple satellite
images, mainly from DigitalGlobe’s QuickBird commercial satellite and EarthSat (images mostly from
landsat-7). GE has a resolution of at least 100 m, usually 30 m. The view altitude is ~15 km. However,
for big cities, famous scenic spots, or other hot spots, high-precision images with a resolution of 1 m
or 0.6 m will be provided, with the viewing altitude of approximately 500 m or 350 m, respectively.
The images of these places have been contained in the dataset. When collecting data, the bitemporal
Google Earth images have been registered. The dataset has the following characteristics. (1) The
proportion of positive to negative samples varies greatly. There are only small parts of changed areas
in a complete Google Earth image. (2) The buildings in the images have some positional deviations
due to different shooting angles. (3) Numerous scenes in changed areas, including farmland, roads,
high-speed rail, factories, buildings, and mining areas. (4) Seasonal factors have great influence.
For example, deciduous broad-leaved forests with seasonal changes have significant differences in
winter and summer. (5) In order to obtain the most accurate changed area information, all ground
truth were marked manually.

Some labeled images are shown in Figure 8, and these data contain changed areas of different
proportions. The dataset contains a small number of bitemporal Google Earth images with unchanged
areas, in order to evaluate the performance of the algorithm more thoroughly, as shown in Figure 8a.

Analyzing the proportion of the changed areas of each image in the dataset could have a better
overall understanding of it. The graph after statistics is shown in Figure 9, where the abscissa is
the proportion of the changed areas to the whole, and the ordinate is the number of images in this
proportion. From this figure, the proportion of changed areas of most data is between 5% and 50%.
There are 337 positive samples with the proportion of 0–2%, of which 242 0–1% and 95 1–2%. Increasing
the imbalance between samples can better distinguish good from bad models.

In order to make the model more robust, it is inevitable to increase the amount of dataset.
For example, the CNN is sensitive to translation, rotation flip, and so forth. Sometimes, the translation
of a pixel can even lead to wrong classification. Rotation and scaling are even more devastating for the
image position information. Therefore, data augmentation is very important and necessary. In order to
solve the above problems, the general method is data augmentation; appropriate translation; inversion
(horizontal, vertical); rotation; random shear; changing hue, saturation, and value (HSV) saturation;
and so forth. The essence of data augmentation is to increase the data by introducing prior knowledge
so as to improve the generalization ability of the model. These methods can effectively improve the
generalization performance of the model. The specific parameter settings are shown in Table 1 and
images after the data enhancement are shown in Figure 10. The translation distance does not exceed
20% of the length and width of the original image; HSV saturation and random rotation share similar
settings. Each image has a 50% probability of flipping horizontally and vertically, respectively.
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(a)

(b)

(c)

Figure 8. Display of some bitemporal Google Earth images in the dataset. In each line, from left to
right, the first two Google Earth images are at the same place of different times. The third image is the
ground truth, in which the black areas represent the unchanged, and the white represent the changed.
The red lines in the fourth image are the parts of the changed areas. Panels (a–c) represent areas of
changed in different proportions, respectively: (a) unchanged areas, (b) 9% of changed areas, and (c)
20% of changed areas.
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Figure 9. Dataset analysis. The ratio of the changed areas in each image in the data set to the whole.
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Table 1. The parameters of data augmentation.

Method Parameter

Translation ±20%
HSV Saturation ±50%

Random Rotation ±10◦

Random Horizontal Flip 50%
Random Vertical Flip 50%

(a) (b) (c)

(d) (e) (f)

Figure 10. Diagrams of different data augmentation methods. (a) The original image; (b) the original
image after being translated; panel (c) is the HSV transformed image; (d) the original image rotated by
10 degrees; panels (e) and (f) are images after horizontal and vertical rotation, respectively.

4. Experiment

To verify the effectiveness of the proposed algorithm, three experiments are designed.
The quantitative indexes in these three experiments are the pixel-accuracy (PA), the recall (RC),
the precision (PR), and the mean intersection over union (MIoU). PA is the simplest evaluation index,
indicating the proportion of correctly marked pixels to the total pixels. RC is the ratio of all correctly
predicted changed areas in the prediction map to the changed areas in the ground truth, and the PR is
the ratio of correctly predicted changed areas to all predicted changed areas in the prediction map.
MIoU is to calculate the ratios of intersection and union of two sets, and to represent the changed
and unchanged areas in a change detection task. A combination of different evaluation indicators can
better evaluate the comprehensive performance of the model.

4.1. Experimental Preparation and Super Parameter Setting

A very high learning rate may cause the loss function to miss the global optimum, but if the
learning rate is too slow, the loss function change slowly, which will greatly increases the convergence
complexity of the network, and will be be trapped in the local minimum or saddle point. Therefore,
the learning rate is generally set to 0.001 at the initial stage of training, and the learning rate decreases
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by 25% every 20 iterations. At the same time, setting up a warm-up can help slow down the overfitting
of minibatch in the initial stage of the model and keep the deep stability of the model. The learning
rate of each iteration is set as

ηrn =
n
5

ηr, (13)

where n is the n’th warm-up training. The batch size is set to four. Root mean square prop (RMSprop)
is chosen for the optimization algorithm; its advantage is that the AdaGrad is modified into an
exponential weighted moving average, making it more effective in a non-convex setting. The algorithm
optimization strategy can be expressed as{

E
[
g2]

t = αE
[
g2]

t−1 + (1− α)g2
t

Wt+1 = Wt − η0√
E[g2]t+ε

⊗ gt
, (14)

Wt denotes the parameters of the t-th iterative model and gt = ∆J(Wt) denotes the gradient under the
cost function after t iterations with respect to W. E[g2] is the squared mean of the gradient of the first
t times. α denotes the momentum (usually set to 0.9) and η0 is the global initial learning rate. ε is a
very small number (usually set to 10−8) in order to avoid a denominator of 0. The weighted average is
adopted to avoid the problem of lower and lower learning rate, and the learning rate can be adjusted
adaptively. The problem of the sharp decrease of AdaGrad gradient could be overcome and excellent
learning rate adaptability could be achieved. In particular, it performs better under nonstationary
target functions than stochastic gradient descent (SGD), Momentum, and AdaGrad.

4.2. Selection of Backbone Network

The purpose of the first experiment is to study the performance of CNNs with different depths
in the proposed algorithm. The experimental results are shown in Table 2 and the best results are
shown in bold. The network is consisted of three parts: a main module and two auxiliary modules.
All training parameters are set to be the same. The number following the method name indicates the
number of convolutional network layers. For example, TCDNet_18 indicates that ResNet18 is used in
the main network.

Table 2. Influence of convolutional neural networks (CNNs) with different depths on algorithm
performance (bold represents the best result).

Method PA (%) RC (%) PR (%) MIoU (%)

TCDNet_18 95.22 70.81 79.19 81.23
TCDNet_34 95.39 71.18 80.64 81.95
TCDNet_50 95.43 70.12 78.58 81.40

The indexes with the best performance are shown in bold. As seen in Table 2, TCDNet_34 has
the best comprehensive performance. For different tasks, more convolutional layers is not always
better, especially for change detection tasks. This task can be regarded as a two-category semantic
segmentation task, and the number of categories is relatively simple. As a result, as the network
deepened, the gradient disappeared, and the accuracy saturation even decreased. According to the
above analysis, ResNet34 is used as the backbone network in this work.

4.3. Ablation Experiment

The second experiment focuses on ablation research. Compared with complex CNNs, the whole
network can be better understood by deleting some modules. Understanding the causality of a system
is the most direct method to generate reliable knowledge and verify whether different modules can
effectively improve the model accuracy. The computation time of all algorithms is performed on the
CPU (AMD Ryzen 5 1600X).
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In Table 3, the main module (MM) uses the ResNet34 as the backbone network. The training
parameters of all models are set to be the same, and the indexes with the best performance are shown
in bold. According to the information in Table 3.The best results of different evaluation indexes are
shown in bold. The difference module (DM) and assimilation module (AM) can indeed help the
main network improve its performance. The RC index of the model with the main module was only
64.99%, while adding two auxiliary modules increase the index by 6.19%. There are also 0.76%, 0.82%,
and 3.08% increases in PA, PR, and MIoU, respectively, because these two auxiliary modules can make
up lost details of the main module. Through the cooperative detection of the changed and unchanged
areas by the difference and assimilation modules, some noise information is effectively removed, and
the odds of incorrect classification is reduced. In terms of calculation time, the two auxiliary modules
only slightly increase the detection time, but the accuracy is greatly improved.

Table 3. Ablation experiment of TCDNet (bold represents the best result).

Method PA (%) RC (%) PR (%) MIoU (%) Time (s)

MM 94.63 64.99 79.82 78.87 2.44
MM + AM 94.88 66.77 78.50 79.70 3.02
MM + DM 95.04 68.23 78.28 80.37 3.02

MM + AM + DM 95.39 71.18 80.64 81.95 3.57

4.4. Comparative Experiments of Different Algorithms

In this experiment, the algorithm proposed in this paper uses the ResNet34 as its main network
and two auxiliary modules to assist the main network in change detection. Because the proposed model
takes semantic segmentation as its core idea, semantic segmentation network (SegNet) [37], FCN8S [28],
High-Resolution Net (HRNet) [39], UNet [40], and UNet_att [41] are selected as comparison algorithms,
and IR-MAD [15] and PCA-means [17] are used as traditional comparison algorithms. All the dataset
used by the algorithms in Table 4 were introduced in Section 3. The experimental results are shown in
Table 4, and the best results of different evaluation indexes are shown in bold.

Table 4. Comparison between different algorithms (bold represents the best result).

Method PA (%) RC (%) PR (%) MIoU (%) Time (s)

IR-MAD 79.59 11.19 13.30 42.89 1.59
PCA-Means 86.00 10.74 33.11 47.32 9.35

SegNet 92.94 58.08 71.67 73.29 14.54
FCN8S 93.38 64.41 70.76 75.35 7.32
HRNet 94.17 65.17 75.84 77.55 4.53
UNet 94.26 65.30 76.31 78.04 12.41

UNet_att 94.66 68.18 78.82 79.69 24.29
TCDNet_34 95.39 71.18 80.64 81.95 3.57

As seen in Table 4, the quantitative indexes of the IR-MAD and the PCA-Means fall behind
those of deep learning algorithms. Because the buildings are photographed at different times with
angle deviations, they could not be matched well. Additionally, due to the influences of seasons
and illumination, the colors of object surfaces differed, which lead to the low precision of traditional
algorithms. In particular, there is a large gap between RC and PR. Furthermore, because a map only
has a small part of changed areas, most of the maps are unchanged areas. Although the result maps of
the two traditional algorithms are not satisfactory, the PA index is approximately 80. The proposed
algorithm optimizes the change detection task. The main module obtains the overall information of
the image pair, and the two auxiliary modules focus on the changed and unchanged areas to improve
the details of the prediction map. Its RC, PR, and MIoU reach 71.18%, 80.64%, and 81.95%, respectively.
In terms of calculation time, IR-MAD has the fastest calculation speed, but its accuracy is not good.
The TCDNet_34 only takes 3.57 s to detect a pair of images, which is similar to the traditional learning
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method, and it is the fastest in deep learning methods. UNet_att has a high accuracy, but its running
time is 6.8 times that of TCDNet_34.

Figure 11 is a change detection effect diagram of different algorithms. The images in Figure 11a,b
are taken at different times at the same location, and the image in Figure 11c is the ground truth;
in this picture, white indicates changed areas and black indicates unchanged areas, and the changed
areas are marked with red boxes in Figure 11d. Figure 11e–k displays the prediction maps of seven
different comparison algorithms, and Figure 11l is the result of the proposed method. From these eight
change detection maps, the two traditional algorithms can not deal with complex changed areas and
only compare image pairs on basic pixels. The texture information of objects and the surrounding
environment information of pixels are not fully utilized; therefore, their results are not satisfactory.
The other five deep learning comparison algorithms barely identify the changed areas, but there
are still some noise and some gaps compared with results in Figure 11l. The algorithm proposed
carries out multidimensional detection through three branches and relies on the main module to
determine locations of changed areas roughly. Then, it carries out special detections for the changed
and unchanged areas through two auxiliary modules. This cooperative method effectively reduces
noise and improves the accuracy of the model.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 11. Comparison of prediction maps for different algorithms. Panels (a,b) are Google Earth
images of the same place at different times; panel (c) is the ground truth, in which the black areas
represent the unchanged, and the white areas represent the changed. The changed areas are framed
by red lines in panel (d). Panels (e–l) are the prediction maps of different algorithms, which are,
respectively, (e) IR-MAD, (f) PCA-means, (g) SegNet, (h) FCN8S, (i) HRNet, (j) UNet, (k) UNet_att,
and (l) TCDNet_34.

Figure 12 is another set of comparison diagrams, from which we can better distinguish the
changed and unchanged areas in detail. From the three maps Figure 12a–c, it can be seen that there
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is an unchanged area between the factories. How to identify this part accurately will further test the
accuracy of the algorithm. Although Figure 12g can roughly detect the changed areas, its edges are
very rough; Figure 12h,k has some improvements on the edges, but they are not able to detect the
unchanged areas between different changed areas. Figure 12i,j shows great improvements in details,
but there are still interconnections between areas and the details are not accurate enough. Figure 12l
is the TCDNet model. The algorithm firstly locates the changed areas roughly through the main
module, and then repairs the details through the difference and assimilation modules. Compared with
other algorithms, the accuracy and robustness of the algorithm are greatly improved, it can accurately
identify the changed areas and reduce the occurrence of false detection.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 12. Comparison of prediction maps for different algorithms. Panels (a,b) are Google Earth
images of the same place at different times. Panel (c) is the ground truth, in which the black areas
represent the unchanged, and the white areas represent the changed. The changed areas are framed
by red lines in panel (d). Panels (e–l) are the prediction maps of different algorithms, which are,
respectively, (e) IR-MAD, (f) PCA-means, (g) SegNet, (h) FCN8S, (i) HRNet, (j) UNet, (k) UNet_att,
and (l) TCDNet_34.

5. Conclusions

In this paper, a general framework called the TCDNet is proposed. It consists of three parts:
one main module and two auxiliary modules, a difference module, and an assimilation module.
These three branches output the final change detection map through a fusion module. First, the main
module extracts different levels of information from bitemporal Google Earth image pairs, roughly
distinguishes the changed and unchanged areas, and then the method combines the outputs of
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these two auxiliary modules to refine the change detection map to remove redundant noise. Second,
an independent loss function is added to guide weight updates in the training phase to better update
auxiliary module weights. Compared with the other algorithms, the proposed method shows better
generalization and robustness, and it is superior to the other algorithms in various indexes. The deep
learning method depends on the number of categories in the dataset, the more categories, the better.
If the type of changed area is not included in the training data, it will have a certain influence on the
detection results. Plus, this paper only deals with changed areas of Google Earth images, future research
will focus on the identification of categories in changed areas. At the same time, due to the huge cost
of creating dataset, we will focus on the application of semisupervised and unsupervised methods in
change detection in the future.

Author Contributions: Conceptualization, M.X., J.Q., and Y.Z.; methodology, M.X. and J.Q.; software, J.Q.;
validation, J.Q. and Y.Z.; formal analysis, M.X., J.L., and Y.X.; investigation, Y.Z. and Y.X.; resources, M.X. and Y.Z.;
data curation, M.X. and Y.X.; writing—original draft preparation, J.Q.; writing—review and editing, M.X. and J.L.;
visualization, J.Q.; supervision, M.X. and Y.Z.; project administration, M.X.; funding acquisition, M.X. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of PR China of grant numbers
41875027, 61773219, and 41661144039.

Conflicts of Interest: The authors declare no conflicts of interest.

Data Availability: The data and the code of this study are available from the corresponding author upon request.
(xiamin@nuist.edu.cn).

References

1. Tison, C.; Nicolas, J.M.; Tupin, F.; Maître, H. A new statistical model for Markovian classification of urban
areas in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2046–2057. [CrossRef].
[CrossRef]

2. Yokoya, N.; Chan, J.C.W.; Segl, K. Potential of resolution-enhanced hyperspectral data for mineral mapping
using simulated EnMAP and Sentinel-2 images. Remote Sens. 2016, 8, 172. [CrossRef]. [CrossRef]

3. Tian, B.; Wang, L.; Kashiwaya, K.; Koike, K. Combination of well-logging temperature and thermal remote
sensing for characterization of geothermal resources in Hokkaido, northern Japan. Remote Sens. 2015,
7, 2647–2667. [CrossRef]. [CrossRef]

4. Mucia, A.; Bonan, B.; Zheng, Y.; Albergel, C.; Calvet, J.C. From Monitoring to Forecasting Land Surface
Conditions Using a Land Data Assimilation System: Application over the Contiguous United States.
Remote Sens. 2020, 12, 2020. [CrossRef]. [CrossRef]

5. Wieland, M.; Martinis, S. A modular processing chain for automated flood monitoring from multi-spectral
satellite data. Remote Sens. 2019, 11, 2330. [CrossRef]. [CrossRef]

6. Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens.
1989, 10, 989–1003. [CrossRef]. [CrossRef]

7. Mou, L.; Bruzzone, L.; Zhu, X.X. Learning spectral-spatial-temporal features via a recurrent convolutional
neural network for change detection in multispectral imagery. IEEE Trans. Geosci. Remote Sens. 2018,
57, 924–935. [CrossRef]. [CrossRef]

8. Bovolo, F.; Bruzzone, L.; Solano-Correa, Y. Multitemporal Analysis of Remotely Sensed Image Data.
In Comprehensive Remote Sensing; Elsevier: Oxford, UK, 2017; pp. 156–185. [CrossRef].

9. Saha, S.; Solano-Correa, Y.T.; Bovolo, F.; Bruzzone, L. Unsupervised Deep Transfer Learning-Based Change
Detection for HR Multispectral Images. IEEE Geosci. Remote Sens. Lett. 2020. [CrossRef]. [CrossRef]

10. Peng, D.; Zhang, Y.; Guan, H. End-to-end change detection for high resolution satellite images using
improved unet++. Remote Sens. 2019, 11, 1382. [CrossRef]. [CrossRef]

11. Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories,
tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 042609. [CrossRef]. [CrossRef]

12. Liu, J.; Gong, M.; Qin, K.; Zhang, P. A deep convolutional coupling network for change detection based on
heterogeneous optical and radar images. IEEE Trans. Neural Netw. Learn. Syst. 2016, 29, 545–559. [CrossRef].
[CrossRef]

https://doi.org/10.1109/TGRS.2004.834630
http://dx.doi.org/10.1109/TGRS.2004.834630
https://doi.org/10.3390/rs8030172
http://dx.doi.org/10.3390/rs8030172
https://doi.org/10.3390/rs70302647
http://dx.doi.org/10.3390/rs70302647
https://doi.org/10.3390/rs12122020
http://dx.doi.org/10.3390/rs12122020
https://doi.org/10.3390/rs11192330
http://dx.doi.org/10.3390/rs11192330
https://doi.org/10.1080/01431168908903939
http://dx.doi.org/10.1080/01431168908903939
https://doi.org/10.1109/TGRS.2018.2863224
http://dx.doi.org/10.1109/TGRS.2018.2863224
http://hdl.handle.net/11582/312321
https://doi.org/10.1109/LGRS.2020.2990284
http://dx.doi.org/10.1109/LGRS.2020.2990284
https://doi.org/10.3390/rs11111382
http://dx.doi.org/10.3390/rs11111382
https://doi.org/10.1117/1.JRS.11.042609
http://dx.doi.org/10.1117/1.JRS.11.042609
https://doi.org/10.1109/tnnls.2016.2636227
http://dx.doi.org/10.1109/TNNLS.2016.2636227


Remote Sens. 2020, 12, 2669 18 of 19

13. Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images: From
pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 2013, 80, 91–106. [CrossRef].
[CrossRef]

14. Celik, T. Unsupervised change detection in satellite images using principal component analysis and k-means
clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [CrossRef]. [CrossRef]

15. Nielsen, A.A. The regularized iteratively reweighted MAD method for change detection in multi-and
hyperspectral data. IEEE Trans. Image Process. 2007, 16, 463–478. [CrossRef]. [CrossRef] [PubMed]

16. Zhang, H.; Gong, M.; Zhang, P.; Su, L.; Shi, J. Feature-level change detection using deep representation
and feature change analysis for multispectral imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1666–1670.
[CrossRef]. [CrossRef]

17. Deng, J.; Wang, K.; Deng, Y.; Qi, G. PCA-based land-use change detection and analysis using multitemporal
and multisensor satellite data. Int. J. Remote Sens. 2008, 29, 4823–4838. [CrossRef]. [CrossRef]

18. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm.
J. R. Stat. Soc. Ser. B 1977, 39, 1–22. [CrossRef].

19. Malila, W.A. Change Vector Analysis: An Approach for Detecting Forest Changes with Landsat.
In Proceedings of the 6th Annual Symposium on Machine Processing of Remotely Sensed Data, West
Lafayette, IN, USA, 3–6 June 1980; pp.326–335.

20. Sesnie, S.E.; Gessler, P.E.; Finegan, B.; Thessler, S. Integrating Landsat TM and SRTM-DEM derived variables
with decision trees for habitat classification and change detection in complex neotropical environments.
Remote Sens. Environ. 2008, 112, 2145–2159. [CrossRef]. [CrossRef]

21. Xia, M.; Xu, Y.; Wang, K.; Zhang, X. Dilated residual attention network for load disaggregation.
Neural Comput. Appl. 2019, 31, 8931–8953. [CrossRef]. [CrossRef]

22. Xia, M.; Wang, K.; Zhang, X.; Xu, Y. Non-intrusive load disaggregation based on deep dilated residual
network. Electr. Power Syst. Res. 2019, 170, 277–285. [CrossRef]. [CrossRef]

23. Xia, M.; Zhang, X.; Weng, L.; Xu, Y. Multi-Stage Feature Constraints Learning for Age Estimation. IEEE Trans.
Inf. Forensics Secur. 2020, 15, 2417–2428. [CrossRef]. [CrossRef]

24. Wang, Q.; Yuan, Z.; Du, Q.; Li, X. GETNET: A general end-to-end 2-D CNN framework for hyperspectral
image change detection. IEEE Trans. Geosci. Remote Sens. 2018, 57, 3–13. [CrossRef]. [CrossRef]

25. Yang, M.; Jiao, L.; Liu, F.; Hou, B.; Yang, S. Transferred Deep Learning-Based Change Detection in Remote
Sensing Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6960–6973. [CrossRef]. [CrossRef]

26. Wang, Q.; Zhang, X.; Chen, G.; Dai, F.; Gong, Y.; Zhu, K. Change detection based on Faster R-CNN for
high-resolution remote sensing images. Remote Sens. Lett. 2018, 9, 923–932. [CrossRef]. [CrossRef]

27. Zhan, Y.; Fu, K.; Yan, M.; Sun, X.; Wang, H.; Qiu, X. Change detection based on deep siamese convolutional
network for optical aerial images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1845–1849. [CrossRef]. [CrossRef]

28. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3431–3440. [CrossRef].

29. Zhang, C.; Wei, S.; Ji, S.; Lu, M. Detecting large-scale urban land cover changes from very high resolution
remote sensing images using CNN-based classification. ISPRS Int. J. Geo-Inf. 2019, 8, 189. [CrossRef].
[CrossRef]

30. Arabi, M.E.A.; Karoui, M.S.; Djerriri, K. Optical Remote Sensing Change Detection Through Deep Siamese
Network. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing
Symposium, Valencia, Spain, 22–27 July 2018; pp. 5041–5044. [CrossRef].

31. Xia, M.; Qian, J.; Zhang, X.; Liu, J.; Xu, Y. River segmentation based on separable attention residual network.
J. Appl. Remote Sens. 2019, 14, 032602. [CrossRef]. [CrossRef]

32. Zhang, M.; Xu, G.; Chen, K.; Yan, M.; Sun, X. Triplet-based semantic relation learning for aerial remote
sensing image change detection. IEEE Geosci. Remote Sens. Lett. 2018, 16, 266–270. [CrossRef]. [CrossRef]

33. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.
In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20–25 June 2009; pp. 248–255. [CrossRef].

34. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556 [CrossRef].

https://doi.org/10.1016/j.isprsjprs.2013.03.006
http://dx.doi.org/10.1016/j.isprsjprs.2013.03.006
https://doi.org/10.1109/LGRS.2009.2025059
http://dx.doi.org/10.1109/LGRS.2009.2025059
https://doi.org/10.1109/TIP.2006.888195
http://dx.doi.org/10.1109/TIP.2006.888195
http://www.ncbi.nlm.nih.gov/pubmed/17269639
https://doi.org/10.1109/LGRS.2016.2601930
http://dx.doi.org/10.1109/LGRS.2016.2601930
https://doi.org/10.1080/01431160801950162
http://dx.doi.org/10.1080/01431160801950162
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1016/j.rse.2007.08.025
http://dx.doi.org/10.1016/j.rse.2007.08.025
https://doi.org/10.1007/s00521-019-04414-3
http://dx.doi.org/10.1007/s00521-019-04414-3
https://doi.org/10.1016/j.epsr.2019.01.034
http://dx.doi.org/10.1016/j.epsr.2019.01.034
https://doi.org/10.1109/TIFS.2020.2969552
http://dx.doi.org/10.1109/TIFS.2020.2969552
https://doi.org/10.1109/TGRS.2018.2849692
http://dx.doi.org/10.1109/TGRS.2018.2849692
https://doi.org/10.1109/TGRS.2019.2909781
http://dx.doi.org/10.1109/TGRS.2019.2909781
https://doi.org/10.1080/2150704X.2018.1492172
http://dx.doi.org/10.1080/2150704X.2018.1492172
https://doi.org/10.1109/LGRS.2017.2738149
http://dx.doi.org/10.1109/LGRS.2017.2738149
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.3390/ijgi8040189
http://dx.doi.org/10.3390/ijgi8040189
https://doi.org/10.1109/IGARSS.2018.8518178
https://doi.org/10.1117/1.JRS.14.032602
http://dx.doi.org/10.1117/1.JRS.14.032602
https://doi.org/10.1109/LGRS.2018.2869608
http://dx.doi.org/10.1109/LGRS.2018.2869608
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1409.1556


Remote Sens. 2020, 12, 2669 19 of 19

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
[CrossRef].

36. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 4700–4708. [CrossRef].

37. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for
image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]. [CrossRef]

38. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122.
[CrossRef].

39. Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al.
Deep high-resolution representation learning for visual recognition. arXiv 2019, arXiv:1908.07919. [CrossRef].

40. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Cambridge, UK, 19–22 September 2015; pp. 234–241. [CrossRef].

41. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.;
Hammerla, N.Y.; Kainz, B.; et al. Attention u-net: Learning where to look for the pancreas. arXiv
2018, arXiv:1804.03999. [CrossRef].

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1109/TPAMI.2016.2644615
https://arxiv.org/abs/1511.07122v2
https://arxiv.org/abs/1908.07919
https://doi.org/10.1007/978-3-319-24574-4_28
https://arxiv.org/abs/1804.03999
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	Main Module
	Auxiliary Module
	Fusion Module
	Build Loss Function

	Dataset
	Experiment
	Experimental Preparation and Super Parameter Setting
	Selection of Backbone Network
	Ablation Experiment
	Comparative Experiments of Different Algorithms

	Conclusions
	References

