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Abstract: Speckle reduction is a longstanding topic in synthetic aperture radar (SAR) images.
Many different schemes have been proposed for the restoration of intensity SAR images. Among the
different possible approaches, methods based on convolutional neural networks (CNNs) have recently
shown to reach state-of-the-art performance for SAR image restoration. CNN training requires
good training data: many pairs of speckle-free/speckle-corrupted images. This is an issue in SAR
applications, given the inherent scarcity of speckle-free images. To handle this problem, this paper
analyzes different strategies one can adopt, depending on the speckle removal task one wishes to
perform and the availability of multitemporal stacks of SAR data. The first strategy applies a CNN
model, trained to remove additive white Gaussian noise from natural images, to a recently proposed
SAR speckle removal framework: MuLoG (MUlti-channel LOgarithm with Gaussian denoising).
No training on SAR images is performed, the network is readily applied to speckle reduction tasks.
The second strategy considers a novel approach to construct a reliable dataset of speckle-free SAR
images necessary to train a CNN model. Finally, a hybrid approach is also analyzed: the CNN used to
remove additive white Gaussian noise is trained on speckle-free SAR images. The proposed methods
are compared to other state-of-the-art speckle removal filters, to evaluate the quality of denoising
and to discuss the pros and cons of the different strategies. Along with the paper, we make available
the weights of the trained network to allow its usage by other researchers.

Keywords: SAR; image despeckling; convolutional neural networks

1. Introduction

Synthetic Aperture Radar (SAR) provides high-resolution, day-and-night and
weather-independent images. SAR technology is widely used for remote sensing in Earth
observation applications. With advanced techniques, like polarimetry, interferometry and differential
interferometry, SAR images have numerous applications, ranging from environmental system
monitoring, city sustainable development, disaster detection applications up to planetary
exploration [1]. SAR is an active system that makes measurements by illuminating a scene and
measuring the coherent sum of several backscattered echoes. As such, the measured signal suffers
from strong fluctuations, that appears in the images as a granular “salt and pepper” noise: the speckle
phenomenon. The presence of speckle in an image reduces the ability of a human observer to resolve
fine details within the image [2] and impacts automatic image analysis tools.
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It is well-known that the speckle phenomenon is caused by the presence of many elemental
scatterers within a resolution cell, each back-scattering an echo with a different phase shift. The coherent
summation of all these echoes produces strong fluctuations of the resulting intensity from one cell to
the next [3]. Speckle analysis and reduction is a longstanding topic in SAR imagery. The literature on
this topic is extensive and goes from single polarization data to fully polarimetric SAR images (see the
reviews [4,5]). Among the different possible strategies, we classify some commonly used despeckling
algorithms into the following three categories.

(i) Selection based methods. The simplest way to reduce SAR speckle is to average neighboring
pixels within a fixed window. This technique is called spatial multilooking. To reduce the degradation
of the spatial resolution when applied to edges, lines or point-link scatterers, both local [6–8] and
non-local approaches [9–12] have been proposed.

(ii) Variational methods. These methods formulate the restoration problem as an optimization
problem, to find the underlying image which best explains the observed speckle-corrupted image.
The objective function to be minimized is typically composed of two terms: a data-fitting term (that uses
a Gamma [13], Rayleigh [14] or Fisher–Tippett distribution [15] to model the distribution of SAR images)
and a regularization term (the total variation TV has been widely used in the literature [15–19]).

(iii) Transform based methods. Various scientific methods have considered the application of
a wavelet transform for despeckling [20–23], but the estimation of the parameters of the signal and noise
statistics is a difficult task. To apply the state-of-the-art methods designed for additive-noise removal in
a more straightforward fashion, a logarithmic transformation (a.k.a. a homomorphic transform) is often
applied to convert the multiplicative behavior of speckle into an additive component. Xie et al. [24]
have derived the statistical distribution of log-transformed speckle noise. Many despeckling methods
based on a homomorphic transform have been proposed [25–29]. Special care must be taken
because, after a log-transform, the speckle is stationary but not Gaussian and not even centered.
At least a debiasing step must be included to account for the expectation of log-transformed speckle,
as proposed in [30] and discussed in Section 3.2.2.

Deep learning allows computational models formed of multiple processing layers to learn
representations of data that include several levels of abstraction [31]. In recent years, these methods
have dramatically improved the state-of-the-art in many computer vision fields, such as object
detection [32], face recognition [33], and low-level image processing tasks [34]. Among them,
convolutional neural networks (CNNs) with very deep architecture [35], displaying a large capacity
and flexibility to represent image characteristics, are well-suited for image restoration. Dong et al. [36]
proposed an end-to-end CNN mapping between the low/high-resolution images for single image
super-resolution, which demonstrated state-of-the-art restoration quality, and achieved fast speed
for practical on-line usage. CNN networks have also been applied to the denoising of natural
images, but mostly in the context of additive white Gaussian noise (AWGN). Zhang et al. proposed
a feed-forward denoising convolutional neural networks (DnCNN) to embrace the progress in very
deep architecture. The advanced regularization and learning methods, including Rectifier Linear
Unit (ReLU), batch normalization and residual learning [37] are adopted, dramatically improving
the denoising performance. There are also some researches ongoing on non-AWGN denoising tasks,
such as salt-and-pepper noise [38], multiplicative noise [39], and blind inpainting [40]. For SAR image
despeckling, CNNs have been first used to learn an implicit model in [41]. More and more SAR
despeckling methods are now based on deep architectures [42–44].

In this paper, we try to shed light on the advantages and disadvantages of making a significant
effort to create training sets and learning SAR-specific CNNs rather than readily applying generic
networks pre-trained for AWGN removal on natural images to SAR despeckling. We believe that
considering this question for intensity images is enlightening for the more difficult case of multi-channel
SAR despeckling that arises in SAR polarimetry, SAR interferometry or SAR tomography.

In order to discuss this matter, we consider two different SAR despeckling frameworks based
on CNNs. The first one consists of applying a CNN pre-trained on AWGN removal from natural
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images. Many CNNs have been proposed for AWGN suppression. The extension to SAR imagery
requires to account for the statistics of speckle noise. This can be performed by an iterative scheme
recently introduced for speckle reduction: MuLoG algorithm [30], which is based on the plug-in
ADMM strategy [45]. In the second approach, a network is trained specifically on SAR images. To that
end, we describe a new procedure to generate a high-quality training set. We consider a network
architecture similar to that used in the work of Chierchia et al. [41] and discuss the influence of the
number of layers and of the loss function on the despeckling performance of the CNN, trained and
tested on our datasets. The performance of despeckling methods based on deep neural networks
depends not only on the network architecture but also on the training set and on the optimization of the
network. Published results are then difficult to reprduce, unless the network architecture and weights
are released. To facilitate comparisons of future despeckling methods with our work, we provide an
open-source code that includes the network weights for Sentinel-1 image despeckling (see Section 5).
We have also experimented a hybrid approach, in the sense that the generated SAR dataset has been
used to train a CNN for AWGN removal on images whose content is the same as in the task that it
will perform.

The remainder of the paper is organized as follows. Section 2 provides a detailed survey of
related image denoising works using CNNs. Section 3 first introduces the statistics of SAR data,
and then presents the two different SAR despeckling strategies considered in the paper, plus the hybrid
approach. In Section 4, extensive experiments are conducted to evaluate restoration performance.
Finally, our concluding remarks are given in Sections 5 and 6.

2. Related Works

The goal of image denoising is to recover a clean image x from a noisy observation y which
follows a specific image degradation model. In this paper, we discuss two common degradation
models: additive noise (y = x + n) and multiplicative noise (y = x × n), where n is a random
component referred to as “the noise” (the terminology “noise” to describe fluctuations due to speckle
is sometimes considered misleading in the context of SAR imaging given that a pair of images acquired
under an interferometric configuration have correlated speckle components, which makes it possible
to extract meaningful information from the interferometric phase; we will, however, stick to the
terminology common in image processing by referring to the speckle as a noise term throughout the
paper since we focus on the restoration of intensity-only images).

2.1. Additive Gaussian Noise Eeduction by Deep Learning

In the additive model, one usual assumption is that the noise component n corresponds to an
additive white Gaussian noise (AWGN). To perform the estimation of x, a maximum a posteriori (MAP)
estimation is often considered, where the goal is to maximize the posterior probability:

x̂ = arg max
x

p(x|y)

= arg min
x

− log p(y|x)− log p(x) ,
(1)

with p(y|x) the likelihood defining the noise model, and p(x) the prior distribution corresponding to
the statistical model of clean images. Under an additive white Gaussian noise assumption, the term
− log p(y|x) takes the form of a sum of squares: − log p(y|x) = 1

2σ2 ‖y− x‖2
2, with σ the standard

deviation of the noise. The MAP estimator then corresponds to:

x̂ = arg min
x

1
2σ2 ‖y− x‖2

2 + g(x)

= proxσ2g(y) ,
(2)
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where g(x) = − log p(x) and the notation proxg defines the proximal operator associated to function
g [46,47]. Classical prior models g include the total variation, sparse analysis and sparse synthesis
priors [48]. While earlier models were handcrafted (`1 norm of the wavelet coefficients for a specifically
chosen transform, total variation), more recent models are learned from sets of natural images (field of
experts [49], higher-order Markov random fields [50]).

Beyond MAP estimators, several patch-based methods were designed to estimate the clean image
x, such as BM3D [51], LSSC [52] or WNNM [53]. These methods exploit the self-similarity observed in
most natural images (repetition of similar structures/textures at the scale of a patch of size typically
8× 8 within extended neighborhoods).

In order to learn richer patterns of natural images, deep neural networks have been considered
for denoising purposes. After the training step, the estimation step is very fast, especially on graphical
processing units (GPUs). The first network architectures designed for denoising were trained to learn
a mapping from noisy images y to clean ones x by making use of a CNN with feature maps [54],
a multi-layer perceptron (MLP) [55], a stacked denoising autoencoder (SDA) network [56], a stacked
sparse denoising auto-encoder architecture [40], among all.

More recent networks are trained to estimate the noise component n, i.e., to output the residual
y− x. This strategy, called “residual learning” [37], has shown to be more efficient when the neural
network contains many layers (i.e., for deep networks). In [57], this residual learning formulation for
model learning is adopted and 17 layers are used with the `2 loss function. Wang et al. [58] replaced
the convolution layer by dilated convolution. In [59,60], an exponential linear unit or soft shrinkage
function are used as activation function (i.e., the non-linear step that follows the convolution), instead
of the Rectified Linear Unit (ReLU). Liu et al. [61] discuss the relation between the width and the
depth of the network. They introduce wide inference networks with only 5 layers. In [62], a wavelet
transform is introduced into deep residual learning.

All these variations on a common structure are motivated by finding a trade-off between the
network expressivity (in particular, by increasing the size of the receptive field) and the generalization
potential (i.e., fighting against the over-fitting phenomenon that arises when the number of network
parameters increases).

Most networks generate an estimate x̂ of the clean image from a noisy image y by simple traversal
of the feedforward network (and possibly subtracting the residuals to the noisy image, in case of
residual learning): the proximal operator proxg is learned instead of the prior distribution p(x),
no explicit minimization is performed when estimating a denoised image. The plug-and-play ADMM
strategy [45] provides a means to apply implicit modeling of the prior distribution p(x) encoded
within the network in the form of the proximal operator proxg in order to address more general image
restoration problems than the mere AWGN removal.

2.2. Speckle Reduction by Deep Learning

In the past years, most of the SAR image denoising approaches are based on detailed statistical
models of signal and speckle. To avoid the problem of modeling the statistical distribution
of speckle-free SAR images, several authors recently resorted to machine learning approaches
implemented through CNNs.

The first paper that investigates the problem of SAR image despeckling through CNNs is [41].
Following the paradigm proposed in [57], the SAR-CNN implemented by Chierchia et al. is trained
in a residual fashion, where a homomorphic approach [30] is used in order to stabilize the variance
of speckle noise. The network comprises 17 convolutional layers with Batch Normalization [63] and
Rectifier Linear Units (ReLU) [35] activation function. Logarithm and hyperbolic cosine are combined
in a smoothed `1 loss function. The Image Despeckling Convolutional Neural Network (ID-CNN)
proposed by Wang et al. [64] comprises only 8 layers and is applied directly on the input image without
a log-transform. The novelty lies in the formulation of the loss function as a combination of an `2 loss
and of Total Variation (TV), preventing the apparition of artifacts while preserving important details
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such as edges. In [43], the proposed SAR-DRN makes use of dilated convolutions and skip connections
to increase the receptive field without increasing the complexity of the network and maintaining
the advantages of 3 × 3 filters. Wang et al. [42] tackle the image despeckling problem by resorting
to generative adversarial networks. In the proposed ID-GAN, the Generator is trained to directly
estimate the clean image from a noisy observation, while the discriminator serves to distinguish
the de-speckled image synthesized by the generator from the corresponding ground truth image.
To exploit the abundance of stacks of multitemporal data and avoid the problem of creating a clean
reference, in [44] a CNN is used as an auto-encoder through a formulation that does not use an explicit
expression of the noise model, thus allowing generalization.

3. SAR Despeckling Using CNNs

3.1. Statistics of SAR Images

After SAR focusing, the SAR image is formed by the collection of the complex amplitudes
back-scattered by each resolution cell. The squared modulus of this complex amplitude (the intensity
image) is informative of the total reflectivity of the scatterers in each resolution cell. Because of
the interference between echoes produced by elementary scatterers, the intensity fluctuates
(speckle phenomenon). These fluctuations depend on the 3-D spatial configuration of the scatterers
with respect to the SAR system and on the nature of the scatterers. They are generally modeled by
Goodman’s stochastic model (fully developed speckle): the measured intensity y is related to the
reflectivity x by the multiplicative model y = x× n where the noise component n ∈ R+ is a random
variable that follows a gamma distribution [3]:

p(n) =
LL

Γ(L)
nL−1 exp (−Ln) , (3)

with L ≥ 1 representing the number of looks, and Γ(·) the gamma function. It follows from E[n] = 1
and Var[n] = 1/L that E[y] = x: averaging the intensity leads to an unbiased estimator of the
reflectivity in stationary areas, and Var[y] = x2/L: the noise is signal-dependent in the sense that the
variance of the measured intensity increases like the square of the reflectivity.

Considering the log of the intensity ỹ instead of the intensity y transforms the noise into an additive
component: ỹ = x̃ + ñ where ñ ∈ R follows a Fisher-Tippett distribution [24]:

p(ñ) =
LL

Γ(L)
eLñ exp(−Leñ). (4)

The mean E[ñ] = ψ(L)− log(L) (ψ is digamma function) is non-zero, which indicates that averaging
log-transformed intensities ỹ leads to a biased estimate of the log-reflectivity x̃. The variance
Var[ñ] = ψ(1, L) (where ψ(1, L) is the polygamma function of order L [65]) does not depend on
the reflectivity: it is stationary over the image.

3.2. Despeckling Using Pre-Trained CNN Models

As discussed in Section 2, several approaches have been recently proposed in the literature to
apply CNNs to AWGN suppression. The residual learning method DnCNN introduced in [57] is
a reference method for which models pre-trained on natural images at various signal-to-noise ratios are
available (https://github.com/cszn/DnCNN). We consider two different ways to apply a pre-trained
CNN to speckle noise reduction: a homomorphic filter that processes log-transformed intensities
with DnCNN and the embedding of DnCNN within the iterative scheme MuLoG [30]. Note that our
approach is general and other pre-trained CNNs than the DnCNN could readily be applied.

https://github.com/cszn/DnCNN
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3.2.1. Architecture of the CNN

Figure 1 and Table 1 illustrate the architecture of the network DnCNN proposed by
Zhang et al. [57]. The network is a modified VGG network and is made of 17 fully convolutional layers
with no pooling. There are three types of layers: (i) Conv+ReLU: for the first layer, 64 filters of size
3 × 3 are used to generate 64 feature maps, and rectified linear units are then utilized for nonlinearity;
(ii) Conv+BN+ReLU: for layers 2∼16, 64 filters of size 3 × 3 × 64 are used, and batch normalization is
added between convolution and ReLU; (iii) Conv: for the last layer, a filter of size 3× 3× 64 is used
to reconstruct the output. The loss function that is minimized during the training step is the `2 loss
(i.e., the sum of squared errors, averaged over the whole training set). To train the DnCNN, 400 natural
images of size 180×180 pixels with gray levels in the range [0, 1] were used for training. Patches of
size 40× 40 pixels were extracted at random locations from these images. Different networks were
trained for simulated additive white Gaussian noise levels equal to σ = 10

255 , 15
255 , ..., 75

255 (14 different
networks each corresponding to a given noise standard deviation).

Figure 1. The architecture of DnCNN proposed in [57].

Table 1. Configuration of a DnCNN with D layers.

Name Nout Configuration

Layer 1 64 3× 3 CONV, ReLU
Layer 2 to (D-1) 64 3× 3 CONV, Batch Norm., ReLU

Layer D 1 3× 3 CONV

3.2.2. Homomorphic Filtering with a Pre-Trained CNN

The simplest approach to applying a pre-trained CNN acting as a Gaussian denoiser is the
homomorphic filtering depicted at the top of Figure 2, and hereafter denoted homom.-CNN.
This approach consists of approximating the noise term ñ in log-transformed data as an additive
white Gaussian noise with non-zero mean. As recalled in Section 3.1, log-transformed speckle is not
Gaussian but follows a Fisher-Tippett distribution under Goodman’s fully developed speckle model.
Hence, the homomorphic approach is built on a rather coarse statistical approximation. Under this
approximation, the log-transformed SAR image can be restored by first applying the pre-trained CNN,
then correcting for the bias ψ(L)− log L due to the non-centered noise component.

In order to successfully apply a pre-trained CNN model, it is crucial to properly normalize
the data so that the range of input data matches the range of data used during the training
step (neural networks are highly non-linear). This paper maps the range [qm, qM] by an affine
transform to the [0, 1] range, with qm and qM corresponding to the 0.3% and 99.7% quantiles of
the log-transformed intensities. After this normalization, the standard deviation of the log-transformed
noise is σ =

√
ψ(1, L)/(qM − qm). This value can be used to select the network trained for the closest

noise standard deviation σtrain that is less or equal to σ. The normalized image is then multiplied by
σtrain/σ so that the noise standard deviation exactly matches that of the images in the training set of
the network.
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Figure 2. Illustration of the three speckle reduction approaches described in this paper: the first two
apply a CNN trained to remove AWGN from natural images, the last approach consists of training
a CNN specifically to the suppression of speckle in (log-transformed) SAR images.

3.2.3. Iterative Filtering with MuLoG and a Pre-Trained Model

The MuLoG framework [30] accounts for the Fisher-Tippett distribution of log-transformed
speckle (see Figure 3) with an iterative scheme that alternates the application of a Gaussian denoiser
(namely, a proximal operator) and of a non-linear correction. Figure 2, second row, illustrates that,
by embedding a CNN trained as a Gaussian denoiser within an iterative scheme, a Fisher-Tippett
denoiser is obtained. Throughout the iterations, the parameter of the Gaussian denoiser evolves,
which requires to apply the network selection and image normalization strategy described in the
previous paragraph.

0
Figure 3. Comparison of the Fisher-Tippett distribution (with different number of looks L, represented
by the continuous line) and the Gaussian distribution (dashed line) with the same mean and variance.

3.3. Despeckling with a CNN Specifically Trained on SAR Images

The architecture that we consider for our CNN trained on SAR images (SAR-CNN) is based on
the work of Chierchia et al. [41], who in turn was inspired by the DnCNN by Zhang et al. [57] that we
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described in Section 3.2.1. In this section, we describe in details a procedure for producing high-quality
ground-truth images for the training step of the network.

3.3.1. Training-Set Generation

Deep learning models need a lot of data to generalize well. This is an issue in deep learning-based
SAR image despeckling techniques, due to the lack of truly speckle-free SAR images. The reference
image has to be therefore created through an ad-hoc procedure, in order to produce images taking into
account the content of SAR data (strong backscattering scatterers, real radiometric contrasts of SAR
data). This is done by exploiting series of SAR images.

Speckle noise can be strongly reduced by multi-temporal multilooking (i.e., averaging the intensity
of images acquired at different dates, assuming that no changes occurred). Multi temporal stacks
have therefore been considered in this study. Due to the coherence of some regions, some speckle
fluctuations are remaining after this temporal multi-looking procedure. These images are further
improved by applying a MuLoG+BM3D denoising step [30] with an equivalent number of looks
estimated from selected homogeneous regions. The images obtained are then considered speckle-free
and serve as a ground truth. Synthetic speckle noise is simulated based on the statistical models
described in Section 3.1 in order to produce the noisy/clean image pairs necessary for the training of
the network. Although Goodman’s fully developed model is not verified everywhere in the images
(the Rician distribution [66–68] could instead be used for strong scatterers) and assumes spatially
uncorrelated speckle, it has been the funding model of most SAR despeckling methods developed these
last four decades [16]. Thus, we find it relevant to simulate 1-look speckle noise based on Goodman’s
model. In Section 4.3, its limitations are discussed.

A ground truth image is depicted in Figure 4, where we show the progress from the 1-look SAR
image to the clean reference used in our training step. The temporal average of large temporal stacks
of finely registered SAR images leads to images with limited speckle fluctuations and, after denoising,
these images retain the characteristics of SAR images (bright points, sharp edges, textures) with almost
no residual fluctuations due to speckle. Since the denoising operation is applied on an image already
temporally multilooked, only small fluctuations have to be suppressed by the denoising step (i.e.,
this denoising step helps but is not crucial). This method thus proposes a realistic way to create
speckle-free SAR images. A description of the training set is then given in Table 2.

Figure 4. (a) A 1-look SAR image acquired by Sentinel-1 c©ESA, (b) result of multitemporal averaging
of 45 dates, (c) virtually speckle-free image obtained by denoising image (b) with MuLoG+BM3D.

Table 2. Description of the training-set of the proposed SAR-CNN. For each image, the number of
dates composing the multi-temporal stack and the number of patches extracted are given.

Images Number of Dates Number of Patches

Marais 1 45 40194
Limagne 53 40194
Saclay 69 7227
Lely 25 14850
Rambouillet 69 39168
Risoul 72 9648
Marais 2 45 40194
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3.3.2. Network Architecture and the Effect of the Loss Function

The network is easier to train on log-transformed data since the noise is then additive and white
(and coarsely Gaussian distributed, as it ca be seen from Figure 3). Compared to the suppression
of AWGN, the networks need to learn how to separate log-transformed SAR reflectivities from
log-transformed speckle, distributed according to the Fisher-Tippett distribution given in Equation (4).
In the follwing, a discussion about minor changes to the network architecture is carried out. It is worth
to point out that, given the impossibility to reproduce the work proposed in [41] (the weights are not
available and the datasets are not the same), we intend by no means to compare our results to those of
Chierchia et al. Instead, we have always followed our training strategy and drawn conclusions based
on visual inspection of our testing set.

In this study, it has been experimentally found that increasing the depth of the network compared
to the depth used by Zhang et al. and Chierchia et al. was improving the performance on the testing
set. We used 19 layers, each layer involving spatial convolutions with 3× 3 kernels (see Figure 5).
The receptive field of our network then corresponds to a patch of size 39× 39.

Figure 5. The proposed SAR-CNN for Sentinel-1 image despeckling.

To train the network, several loss functions have been considered. Experiments suggest the
`1 loss function to be preferable to the smoothed `1 loss function of Chierchia et al. and to `2 loss
function. This matches other studies that have shown a reduction of artifacts and an improvement of
the convergence when using the `1 loss [69]. We, therefore, used the following loss function:

N

∑
i=1
‖ fCNN(ỹi)− x̃i + (ψ(L)− log(L)) · 1‖1 (5)

where the sum is carried over all N images from (a batch sampled from) the training set, fCNN(·)
represents the action of the CNN on some log-transformed input data, the boldface is used to
denote images (the i-th noisy image yi and the corresponding speckle-free reference xi). The term
(ψ(L)− log(L)) · 1 is a constant image that corresponds to the bias correction. Its role is to center
Fisher-Tippett distribution. By making this term explicit, it is easier to perform transfer learning,
i.e., to re-train a network to a different number of looks L by warm-starting the optimization from the
values obtained for the previous number of looks.

3.3.3. The Training of the Network

The training set is formed by 7 Sentinel-1 speckle-free images produced by filtering 7 different
multi-temporal stacks of size between 1024× 1536 and 1024× 8192 pixels, as described in Section 3.3.1.
The images are selected so that to cover urban areas, forests, a coast with some water surfaces, fields
and mountainous areas. Patches of size 40× 40 are extracted from these images, with a stride of
10 pixels between patches. Mini-batches of 128 patches are used. In order to improve the network
generalization capability, standard data augmentation techniques are used: vertical, horizontal flipping
and ±90◦ and 180◦ rotations are applied on the patches. 11968 batches of 128 patches are processed
during an epoch. A total of 50 epochs were used with ADAM stochastic gradient optimization method,
with an initial learning rate of 0.001. The convergence of the learning and prevention for over-fitting



Remote Sens. 2020, 12, 2636 10 of 19

were checked by monitoring the decrease of the loss function throughout the epochs as well as the
performance over the test set. The deep learning framework used for the implementation is tensorflow
1.1.12. Training is carried out with an Intel Xeon CPUat 3.40 GHz and an Nvidia K80 GPU and took
approximately 7 h.

3.4. Hybrid Approach: MuLoG + Trained CNN

A hybrid approach is also considered. In this method, the dataset that we have constructed is used
to retrain the CNN described in Section 3.2.1 to remove Gaussian noise from SAR images. Account for
the Fisher-Tippett distribution is also made possible by embedding this network within the MuLoG
framework. By doing so, we aim at investigating the influence of the content of the training images on
the restoration performances.

4. Experimental Results

The following paragraphs provide a comparison of the different strategies for CNN-based
despeckling both on images with simulated speckle and on single-look Sentinel-1 images.
First, the impact of the loss function and of the number of layers on the performance of SAR-CNN
is illustrated. Network architecture is described in Sections 3.2.1 and 3.3.2 (and more in details in
the original article [57]). A graphic illustration is also provided in Figure 5. The network has been
trained in a supervised way using a dataset created as explained in Section 3.3.1. The three proposed
algorithms are summarized in Table 3.

Table 3. Description of the proposed algorithms.

Algorithm MuLoG+CNN MuLoG+CNN SAR-CNN(Pretrained on SAR)

Input Natural images SAR dataset SAR dataset
Noise type Gaussian Gaussian Speckle

Architecture DnCNN, D = 17 DnCNN, D = 17 DnCNN, D = 19
Loss function `2 `2 `1

4.1. Influence of the Loss Function and of the Network Depth

Figure 6 shows the impact of the loss function (`1 versus the smoothed `1 used by
Chierchia et al. [41]) and of the network depth in terms of despeckling artifacts on an image with
simulated speckle. The image corresponds to one of the speckle-free images of our testing set.
We magnify 6 regions in order to illustrate cases where the initial CNN architecture fails to recover
some structures (regions 1, 2, 3 and 6) that are present in the ground truth and at least partially
recovered applying the proposed modifications to the CNN, and cases were some spurious structures
appear (regions 4 and 5) with the first CNN architecture employed, but are not created with the
modifications of the CNN depth and loss function that we considered.

All the three architectures are trained for 50 epochs on the high-quality database of SAR images
we have created, and conclusions are drawn after qualitative evaluation of our testing images.
Indeed, as already claimed, a comparison with the work of Chierchia et al. is not applicatble.
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Figure 6. Illustration of the influence of the loss function and of the number of layers of the CNN on the
despeckling performance: (a) the ground truth image obtained by temporal+spatial filtering of a stack
of 45 Sentinel-1 images; (b) the same image corrupted by a synthetic speckle; (c) restoration obtained by
training the CNN architecture proposed by Chierchia et al. on our training set; (d) restoration obtained
when using an `1 loss instead of the loss used by Chierchia et al.; (e) restoration obtained with an `1

loss and two additional layers.

4.2. Quantitative Comparisons on Images with Simulated Speckle

Two common image quality criteria are used to evaluate the quality of despeckling obtained with
different methods: the Peak-signal-to-noise ratio (PSNR), related to the mean squared error, which is
relevant in terms of evaluation of the estimated reflectivities (bias and variance of the estimator),
and the structural similarity (SSIM) which better captures the perceived image quality. For each
speckle-free image from the testing set, several versions corrupted by synthetic single-look speckle are
generated, in order to report both the PSNR and SSIM mean values, and their standard deviations
over different noise realizations.

Seven different images are used in our testing set. We report the performance of the approaches
proposed in this paper as well as the performance of SAR-BM3D [25], NL-SAR [12] and MuLoG+BM3D
in Tables 4 and 5.

Table 4. Comparison of denoising quality in terms of PSNR on amplitude images. For each ground
truth image, 20 noisy instances are generated. 1σ confidence intervals are given. Per-method averages
are given at the bottom.

Images Noisy SAR-BM3D NL-SAR MuLoG+BM3D MuLoG+CNN MuLoG+CNN SAR-CNN(Pretrained on SAR)

Marais 1 10.05 ± 0.0141 23.56 ± 0.1335 21.71 ± 0.1258 23.46 ± 0.0794 23.39 ± 0.0608 23.63 ± 0.0678 24.65 ± 0.0860
Limagne 10.87 ± 0.0469 21.47 ± 0.3087 20.25 ± 0.1958 21.47 ± 0.2177 21.16 ± 0.0249 21.85 ± 0.1273 22.65 ± 0.2914
Saclay 15.57 ± 0.1342 21.49 ± 0.3679 20.40 ± 0.2696 21.67 ± 0.2445 21.88 ± 0.2195 22.77 ± 0.2403 23.47 ± 0.2276
Lely 11.45 ± 0.0048 21.66 ± 0.4452 20.54 ± 0.3303 22.25 ± 0.4365 22.17 ± 0.2702 22.97 ± 0.3671 23.79 ± 0.4908
Rambouillet 8.81 ± 0.0693 23.78 ± 0.1977 22.28 ± 0.1132 23.88 ± 0.1694 23.30 ± 0.1140 23.30 ± 0.1630 24.73 ± 0.0798
Risoul 17.59 ± 0.0361 29.98 ± 0.2638 28.69 ± 0.2011 30.99 ± 0.3760 30.85 ± 0.1844 31.03 ± 0.2008 31.69 ± 0.2830
Marais 2 9.70 ± 0.0927 20.31 ± 0.7833 20.07 ± 0.7553 21.59 ± 0.7573 21.00 ± 0.4886 22.12 ± 0.6792 23.36 ± 0.8068

Average 12.00 23.17 21.99 23.62 23.39 23.95 24.91
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Table 5. Comparison of denoising quality evaluated in terms of SSIM on amplitude images.
For each ground truth image, 20 noisy instances are generated. 1σ confidence intervals are given.
Per-method averages are given at the bottom.

Images Noisy SAR-BM3D NL-SAR MuLoG+BM3D MuLoG+CNN MuLoG+CNN SAR-CNN(Pretrained on SAR)

Marais 1 0.3571 ± 0.0015 0.8053 ± 0.0018 0.7471 ± 0.0029 0.8003 ± 0.0020 0.7955 ± 0.0027 0.8072 ± 0.0024 0.8333 ± 0.0016
Limagne 0.4060 ± 0.0021 0.8091 ± 0.0027 0.7493 ± 0.0033 0.8011 ± 0.0030 0.8055 ± 0.0027 0.8147 ± 0.0023 0.8327 ± 0.0029
Saclay 0.5235 ± 0.0019 0.8031 ± 0.0032 0.7478 ± 0.0040 0.7734 ± 0.0034 0.7956 ± 0.0033 0.8156 ± 0.0030 0.8314 ± 0.0024
Lely 0.3654 ± 0.0013 0.8473 ± 0.0023 0.8062 ± 0.0023 0.8552 ± 0.0025 0.8659 ± 0.0019 0.8703 ± 0.0018 0.8856 ± 0.0019
Rambouillet 0.2886 ± 0.0017 0.7831 ± 0.0028 0.7364 ± 0.0031 0.7798 ± 0.0029 0.7706 ± 0.0095 0.7821 ± 0.0073 0.8002 ± 0.0026
Risoul 0.4362 ± 0.0017 0.8306 ± 0.0024 0.7671 ± 0.0028 0.8345 ± 0.0030 0.8291 ± 0.0027 0.8341 ± 0.0024 0.8493 ± 0.0018
Marais 2 0.2628 ± 0.0017 0.8506 ± 0.0026 0.8222 ± 0.0022 0.8561 ± 0.0025 0.8594 ± 0.0111 0.8677 ± 0.0097 0.8866 ± 0.0025

Average 0.3771 0.8184 0.7680 0.8143 0.8173 0.8273 0.8460

To qualitatively evaluate the quality of denoising, we display in Figure 7 the results obtained
by the different methods on image “Marais 1”. To better analyze the results, the residual intensity
images (i.e., the ratio between the noisy and the restored images) are displayed below the restored
images. Almost no structure can be identified by visual analysis of the residual images, which means
that the compared methods preserve very well the geometrical content of the original images
(limited over-smoothing).

Figure 7. Restoration results and ratio images (noisy/denoised) on an image from the testing set.

It can be observed both on the quantitative results reported in the tables and in the qualitative
analysis that the CNN methods (the two versions of MuLoG+CNN and SAR-CNN) perform better than
MuLoG+BM3D which we use as reference algorithm in SAR despeckling before the introduction of
CNN methods. SAR-CNN removes speckle from the images while preserving the details, such as edges,
at the cost of introducing small but noticeable artifacts in homogeneous areas. Instead, MuLoG+BM3D
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and MuLoG+CNN generate blurry edges, over-smoothing some areas where the details are lost,
even when the CNN is pre-trained on SAR images. This can be observed comparing the denoised
images of Figure 7, where SAR-CNN preserves better the details of the urban area at the bottom of the
image compared to the three other denoising methods. The quality of the details can be attributed to
the richness of information captured by the network when learning on many SAR image patches.

4.3. Despeckling of Real Single-Look SAR Images: How to Handle Correlations

In this section, the denoising performance of SAR-CNN for Sentinel-1 image despeckling and
MuLoG+CNN are evaluated on real single-look SAR images acquired during Sentinel-1 mission.
To test our deep learning-based denoiser, we focused on some of the areas of the images analyzed in
the above tables, picking one of the multitemporal instances used to generate the ground truth images
for the training of SAR-CNN and making sure that these areas do not belong to the training set.

Unlike synthetically generated noisy SAR images, in real acquisitions, pixels are spatially
correlated. SAR images undergo an apodization (and over-sampling) process [70–72] aimed at
reducing the sidelobes of strong targets, by introducing some spectral weighting. Thus, we subsample
real SAR acquisitions by a factor of 2, as proposed in [73]. As already observed in the case of synthetic
SAR data, the images that are restored with the proposed methods show significant improvements on
the denoising performance over the reference despeckling algorithm MuLoG+BM3D, with SAR-CNN
being the one that provides the best visual result. Even when compared to SAR-BM3D and NL-SAR,
which do not require the image to undergo a downsampling step, our results are more good-looking,
with a better preservation of fine structures. NL-SAR, indeed, gives its best in polarimetric and
interferometric configurations.

Figure 8 shows the restoration results and the residual images (obtained by forming the
ratio noisy/denoised) obtained with the different methods. In contrast to the simulated case,
some structures can be visually identified in the residual images. These structures correspond to
thin roads. The downsampling operation necessary to remove the speckle correlations make the
preservation of these structures very difficult for all methods. SAR-CNN seems to be the most effective
at preserving those structures. Indeed, the residual image does not present clear textures nor constant
areas, meaning that no structures have been removed and that noise there is no noise left in the restored
image (the residual image represents what is suppressed from the noisy image). Visual analysis of the
restored images compared to the real image also seems to indicate fewer artifacts with SAR-CNN.

Figure 8. Despeckling results on a single-look Sentinel-1 image: (a) the single-look SAR image,
(b) a restoration result obtained by NL-SAR, (c) restoration obtained by SAR-BM3D, (d) restoration
obtained by MuLoG+BM3D, (e) restoration obtained with the pre-trained CNN and MuLoG framework,
(f) restoration obtained with a CNN trained on SAR images and MuLoG framework, (g) restoration
obtained with our network trained for speckle removal on Sentinel-1 images. Images at the bottom
row give the residuals of the restoration results. The red box indicates the area that has been used to
estimate the equivalent number of looks to evaluate the quality of denoising.
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Since the ground-truth reflectivity is not available, to measure the performance of the proposed
method the Equivalent Number of Looks is estimated on manually selected homogeneous areas.
The homogeneous regions chosen for the ENL estimation are shown with red boxes, and the ENL
values are given in Table 6.

Table 6. ENL estimation on denoised 1-look Sentinel-1 SAR acquisitions and on a TerraSAR-X image.

Images SAR-BM3D NL-SAR MuLoG+BM3D MuLoG+CNN MuLoG+CNN SAR-CNN(Pretrained on SAR)

Sentinel-1:
Marais 1 226.48 165.24 132.30 288.70 210.17 177.72
Lely 166.60 75.19 349.32 82.24 145.07 289.03
Rambouillet 262.47 171.42 139.62 413.09 383.81 295.30
Marais 2 119.99 213.45 84.67 146.33 182.44 206.93

TerraSAR-X:
Saint Gervais 40.01 39.70 39.37 45.18 129.66 59.21

Then, this analysis has been extended to a TerraSAR-X acquisition. In this case, the study aims at
assessing the generalization capabilities of the trained SAR-CNN on images from a different sensor and
a different spatial resolution. While MuLoG+CNN is not dedicated to a specific sensor (see Table 7),
SAR-CNN is sensor specific. As such, to give its best on TerraSAR-X images, it should be retrained
using images acquired from TerraSAR-X: a dataset can be constructed as described in Section 3.3.1.
As it can be seen from Figure 9, MuLoG+CNN seems the approach that provides visually the best
results. The estimated ENL indicate that all despeckling methods are very effective in homogeneous
regions. It seems that MuLoG+CNN produces an image with a slightly better perceived resolution,
which may indicate a better generalization property compared to SAR-CNN. While the latter would
benefit from a dedicated training on TerraSAR-X images, it achieves satisfying performance on this
data without any fine-tuning, which indicates that it could be readily applied to images from other
sensors in the absence of time series to build a ground truth for retraining. The analysis of the residual
images, like in Figure 8, indicates that thin linear structures are attenuated in restored images due to
the downsampling step.

Figure 9. Despeckling results on a single-look TerraSAR-X image: (a) a TerraSAR-X image in Stripmap
mode (1 m × 2 m spatial resolution), (b) a restoration result obtained by NL-SAR, (c) restoration
obtained by SAR-BM3D, (d) restoration obtained by MuLoG+BM3D, (e) restoration obtained with the
pre-trained CNN and MuLoG framework, (f) restoration obtained with a CNN trained on SAR images
and MuLoG framework, (g) restoration obtained with our network trained for speckle removal on
Sentinel-1 data. Images at the bottom row give the residuals of the restoration results. As in Figure 8,
the red box indicates the area used to estimate the equivalent number of looks.
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Table 7. Time for despeckling a 500× 500 clip. Experiments were carried out with an Intel Xeon CPU
at 3.40 GHz and an Nvidia K80 GPU. For NL-SAR, the radius of the smallest/largest search window
size is set to 1/20 and the half-width of the smallest/largest patches as 0/10.

SAR-BM3D NL-SAR MuLoG+BM3D MuLoG+CNN SAR-CNN

73.89 s 116.28 s 59.82 s 80.43 s 0.19 s

5. Discussion

A CNN trained to suppress additive white Gaussian noise encodes a very generic model of natural
images in the form of a proximal operator related to an implicit prior. Like other models of natural
images that were successfully applied to the problem of speckle reduction in SAR imaging (wavelets,
total variation), they are relevant to SAR imagery because they capture structures (points, edges,
corners) and textures. Yet, the specificities of SAR images make it beneficial to train a model specifically
on SAR images. This is done naturally by patch-based methods that use the content of the image
itself as a model (repeating patches). In this paper, we have shown a considerable improvement
with a CNN model trained on SAR images provided that a high-quality training set is built, enough
layers are used to capture large scale structures and an adequate loss function is selected. Moreover,
once trained, SAR-CNN exhibits the best runtime performance when using a GPU (see Table 7).
When considering the real-life case of partially correlated speckle or images from different sensors,
the plugging of a network trained on natural images in a SAR adapted framework like MuLoG presents
better generalization properties.

The extension to multi-channel SAR images represents a real challenge. Speckle reduction in
multi-channel images requires modeling the correlations between channels (the interferometric and
polarimetric information). In order to learn those correlations directly from the data, a dataset that
contains speckle-free images covering the whole diversity of polarimetric responses, interferometric
phase differences and the whole range of coherences for typical geometrical structures (points, lines,
corners, homogeneous regions, textured regions) must be formed. Needless to say, this is far more
challenging than collecting single-channel SAR images to cover only the diversity of geometric
structures. Failure to correctly include all cases in the training set implies that the network, instead of
performing a high-dimensional interpolation, performs a high-dimensional extrapolation, which puts
the user at high risk of experiencing large prediction errors.

This difficulty justifies the relevance of using pre-trained networks within MuLoG framework
which has been designed to apply single-channel restoration methods to multi-channel SAR images.
A summary of the advantages and drawbacks of the proposed methods are reported in Table 8.
Only a little gain in performance is observed when, considering MuLoG+CNN, the network is
pre-trained on SAR images. Thus, if creating a dataset is possible it is advisable to use it to train an
end-to-end model such as SAR-CNN.

To offer the possibility to use the presented SAR-CNN for testing and comparison, we release
an open-source code of the network trained on our dataset: https://gitlab.telecom-paris.fr/RING/
SAR-CNN. Indeed, replicating results of a published work is not an easy task and may represents up
to months of work. Therefore, by sharing our code, we hope to help other researchers and users of
SAR images to easily apply our CNN-based denoiser on single-look Sentinel-1 images, and possibly
compare the restoration performance with their own methods.

https://gitlab.telecom-paris.fr/RING/SAR-CNN
https://gitlab.telecom-paris.fr/RING/SAR-CNN
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Table 8. Advantages and disadvantages of the CNN-based despeckling strategies considered in
this paper.

MuLoG+CNN
Pros

• No specific training is needed
(improvement is small when the CNN is trained on SAR images)

• Straightforward adaptation to multiple looks
• Straightforward generalization to polarimetric and/or

interferometric SAR images
• Straightforward adaptation to different SAR sensors

Cons • High runtime due to its iterative procedure

SAR-CNN

Pros
• Provides the highest performances
• Fastest runtime performances once the network is trained
• Possible adaptation to multiple looks (requires re-training)
• Possible adaptation to different SAR sensors (requires re-training)

Cons

• Requires a training: formation of a dataset of speckle-free SAR
images

• Generalization to multi-channel SAR images (polarimetric and/or
interferometric) raises dimensionality issues: very large training set
to sample the diversity of radar images

6. Conclusions

With the new generation of sensors orbiting around Earth, access to long time-series of SAR
images is improving. Given the increasing interest towards the use of deep learning algorithms in
SAR despeckling, in this paper it is described a procedure to generate ground truth images that can be
applied in a systematic way to produce large training sets formed by pairs of high-quality speckle-free
images and simulated speckled images.

In a future work, it would be interesting to train the networks on actual single-look SAR images
in order to account for spatial correlations of the speckle. This, however, would require a method to
produce a high quality ground-truth image for each single-look observation. Restoration methods that
exploit long time-series of SAR images [74] may pave the way to producing such training sets.
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