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Abstract: The vertical profiles of temperature and water vapour from the Atmospheric InfraRed
Sounder (AIRS) have been validated across various regions of the globe as an effort to provide
a substitute for radiosonde observations. However, there is a paucity of inter-comparisons over
West Africa where local convective processes dominate and radiosonde observations (RAOBs) are
limited. This study validates AIRS temperature and relative humidity profiles for selected radiosonde
stations in West Africa. Radiosonde data were obtained from the AMMA and DACCIWA campaigns
which spanned 2006–2008 and June–July 2016 respectively and offered a period of prolonged
radiosonde observations in West Africa. AIRS performance was evaluated with the bias and root
mean square difference (RMSD) at seven RAOB stations which were grouped into coastal and inland.
Evaluation was performed on diurnal and seasonal timescales, cloud screening conditions and
derived thunderstorm instability indices. At all timescales, the temperature RMSD was higher than
the AIRS accuracy mission goal of ±1 K. Relative humidity RMSD was satisfactory with deviations
<20% and <50% for both lower and upper troposphere respectively. AIRS retrieval of water vapour
under cloudy and cloud-free conditions had no significant difference whereas cloud-free temperature
was found to be more accurate. The seasonal evolution of some thunderstorm convective indices
were also found to be comparable for AIRS and RAOB. The ability of AIRS to capture the evolution
of these indices imply it will be a useful dataset for the African Science for Weather Information and
Forecasting Techniques (SWIFT) high impact weather studies.

Keywords: atmospheric infrared sounder (AIRS); radiosonde; validation; temperature and relative
humidity profiles

1. Introduction

Quantification of atmospheric temperature and water vapour are critical for assessing and
improvement of numerical weather and climate prediction models ([1,2] and references therein).
The initialization process for these models demand the use of denser and homogeneous satellite
radiance which must be corrected for cloud contamination. This radiance correction allows for the
effective and efficient retrieval of atmospheric profiles such as water vapour, temperature, ozone and
other trace gases. Retrieval skill is dependent on sensor accuracy, the atmospheric transmittance
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functions, cloud clearing and inversion algorithms [2]. The availability and accuracy of observational
calibration/validation data, especially observations from radiosondes is critical to the development of
robust atmospheric profile retrieval algorithms and products. Water vapour is a particularly important
because its presence in the form of clouds can induce either a positive or negative temperature feedback
in the climate system based on height of occurrence (e.g., Mears et al. [3]). Therefore, understanding
and modeling the spatiotemporal variability of atmospheric moisture is essential to weather and
climate prediction.

Radiosonde observations (RAOB) offer an adequate platform for the monitoring of the vertical
profile of water vapour, temperature, wind, and geopotential height. When assimilated into weather
forecast models, RAOBs can enhance the prediction of convective storm evolution in terms of initiation,
propagation and decay [4,5]. However the spatial distribution of radiosondes are limited with few
launches in the equatorial tropical region that is characterized by strong convective activities [6–8].
The radiosonde has the advantage of being highly accurate with high vertical resolution [9], but the
frequency of sonde launches in time and space is low due to the large operational cost [9,10].
The African Monsoon Multidisciplinary Analysis (AMMA) [11] and Dynamics-aerosol-chemistry-cloud
interactions in West Africa (DACCIWA) [12] campaigns in 2006 and 2016 respectively mark years in
which RAOBs are available for West Africa.

With advances in remote sensing, sounders aboard satellites offer alternate sources for the
acquisition of RAOB-like vertical profiles. The majority of these validation studies have focused on
inter-comparing the retrievals from satellite-based platforms with corresponding collocated radiosonde
measurements. A well-known sensor is the Atmospheric Infrared Sounder (AIRS) aboard NASA’s
Earth Observing System (EOS) Aqua satellite [13]. AIRS was constructed to provide atmospheric
temperature profiles to a root mean square difference (RMSD) of 1 K for every 1 km tropospheric layer
and 1 K for every 4 km stratospheric layer up to an altitude of 40 km [14]. The corresponding humidity
RMSD of the sensor is of order 20% in 2 km layers in the lower troposphere and approximately 50% in
the upper troposphere [15,16]. These error estimates are considered to be applicable for scenes of up to
80% effective cloud cover [17]. According to McMillin et al. [18] (and see references therein), the AIRS
instrument has provided a set of unique datasets by which to validate climate and weather models and
analyse the global distribution of water vapour and ice supersaturation. AIRS temperature and water
vapour datasets have also been evaluated to improve parameterisation of sub-grid scale models [19]
and to understand regional climatology, including land-atmosphere coupling [20,21].

Currently, there is a rigorous ongoing AIRS validation efforts using various ground truths across
the world, Iran [10], India [22,23], Antarctica [24] and continental United States [18,20]. The studies
also provide information on performance improvements of recent AIRS version releases over earlier
releases [25]. Most of these studies observed a good agreement between AIRS and RAOB profiles
with an overall accuracy within mission-specified accuracy bounds [22,25,26]. Bayat and Maleki [10]
validated AIRS derived precipitable water vapour profiles with a ground-based sun photometer
measurements and obtained an acceptable agreement with a 93% coefficient of determination.
Seasonal analysis over Iran showed higher dry biases of the precipitable water vapour during
spring with lower values in the winter. Over India, Singh et al. [23] found that AIRS and the
Indian National Satellite (INSAT-3D) agree comparatively well with RAOB observations at the
lower and upper troposphere but quickly degrades in the middle troposphere probably due to
improper bias correction coefficients used for brightness temperature. Their findings observed the
influence of surface emissivity on the AIRS profile retrievals which resulted in larger errors over
land and in dry atmosphere. Divakarla et al. [2] also observed a decreased performance of AIRS
temperature and water vapour profiles relative to the Advanced TIROS Operational Vertical Sounder
(ATOVS) [27] retrievals and the National Center for Environmental Prediction Global Forecasting
System (NCEP_GFS) and European Center for Medium Range Forecast (ECMWF) forecast profiles
over land measurements which exhibited a seasonal and annual variability that correlates with changes
in CO2 concentrations. However, the overall agreement was satisfactory for both land and sea surface
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categories. Furthermore, AIRS was merged with the Microwave Limb Sounder (MLS) temperature
and water vapour records to successfully study the inter-annual variability of these parameters over
tropical Pacific [28]. Their findings revealed the spatial and seasonal distribution of temperature
and humidity to be located over the deep convection zone of the tropical western Pacific whereas
subsidence dominates at the tropical central Pacific. Based on these datasets, the authors [28] were able
to observe and link the inter-annual variability of major tele-connections such as the El Nino Southern
Oscillation (ENSO), Quasi-Biennial Oscillation (QBO). To date, there have been no dedicated analyses
of AIRS retrieval performance over West Africa. For example, Ferguson and Wood [21] could only
utilise four radiosonde observations stations from the AMMA project into the validation section (AIRS
versus radiosonde) of their land-atmosphere coupling study.

Our study inter-compares AIRS vertical profiles of temperature and relative humidity with AMMA
and DACCIWA radiosonde observations at some selected West African stations for which there are
sufficient data matchups. For context, AIRS retrieval skill is compared against that of NCEP_R2 at the
same sites. Notably, NCEP-R2 does not assimilate AIRS, as do more modern atmospheric reanalyses,
but does assimilate RAOBs. Results from this study will give a first hand confidence in the use of the
AIRS datasets for the profiling of temperature and relative humidity that exist in a pre-convective
environment for thunderstorm initiation. It is also in accordance with the Global Challenges Research
Fund (GCRF) African Science for Weather Information and Forecasting Techniques (SWIFT) project
which seeks to develop a sustainable research capability in tropical weather forecasting. The remaining
part of the paper is structured into three sections which includes the methodology in Section 2,
results and discussions in Section 3 and finally the conclusion in Section 4.

2. Methodology

2.1. Radiosonde Observations over West Africa

RAOB of temperature and relative humidity profiles were obtained from AMMA and DACCIWA
databases for the period of 1 January 2006 to 31 December 2008 and 1 June to 31 July 2016, with locations
of RAOB locations are distributed between longitudes 4◦W to 2◦E and latitudes 5◦N to 13◦N
(see Figure 1). The stations Ougadougou (Burkina Faso), Abidjan (Ivory Coast), Parakou, Cotonou
(Benin) and Tamale (Ghana) fall within the AMMA project sites whiles Kumasi and Accra (Ghana) fall
under the DACCIWA jurisdiction. Under the SWIFT project, Ghana is a country of prime focus and
convective activities from neighbouring countries affect the country’s weather and hence, this formed
the basis for station selections. The Vaisala sondes RS92 were deployed at Abidjan, Tamale, Kumasi,
Accra and Parakou, whiles Cotonou and Ougadougou utilised the MODEM SR2K2 radiosondes.
Aside from the measured parameters, the radiosonde also provides other parameters such as dew-point
temperature, wind speed, wind direction, upward balloon velocity and altitude at standard pressure
levels. A limiting element of the Vaisala RS92 instruments is its negative humidity bias obtained
during daytime sounding (see Singh et al. [23] and references therein) resulting from the absorption of
gases by the capacitor in sites which otherwise should have been made available for the absorption of
water vapour molecules [18]. Nonetheless, data originating from these instruments have been bias
corrected and quality-controlled with appropriate algorithms by the source bodies before release for
research activities.
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Figure 1. Spatial locations of radiosonde soundings in blue filled circles. Kumasi and Accra are
DACCIWA sites while the remaining are AMMA sounding sites. Country of which station sounding
was launched is in red italised.

2.2. AIRS Temperature and Humidity Profiles

The AIRS sensor has been operational aboard the AQUA satellite since September 2002
with a nadir polar orbiting mode. It is a cross-track scanning sounder, hyper-spectral resolved,
sun-synchronous and a twice daily global scan with an equator overpass at 1:30 a.m. and 1:30 p.m.
for descending and ascending orbits respectively. The sounder provides comprehensive information
on the vertical thermodynamic structure of the atmosphere by viewing in 2378 channels along with
four visible and near-infrared channels [14,23]. It as well retrieves infrared and microwave surface
emissivity as a function of frequency, total ozone and cloud parameters [2]. The AIRS IR-Only level 3
standard retrieval (AIRS3STD) version 6 algorithm 0.9.0 profiles of temperature and relative humidity
has been used for the present study. These products were obtained at a 1◦ × 1◦ grid at twice daily
temporal resolution. The air temperature were extracted from 11 standard pressure levels (925 hPa–100
hPa) while the relative humidity was retrieved at 9 water pressure levels of 925 hPa to 200 hPa.
The dataset has been quality controlled with appropriate and improved cloud screening algorithms
and uncertainty measures as described in Susskind et al. [15], Susskind [16,17], Susskind et al. [29].
AIRS3STD is derived from Level-2 data products in which the quality control of every parameter field



Remote Sens. 2020, 12, 2631 5 of 20

has been flagged as best (0) or good (1) [30]. This ensures that all grids have the highest quality level
datasets for each field and pressure level. Since the analysis of the study depended on the correlation
between two parameters at different pressure levels, the combined parameter field (TqJoint grids)
for both ascending and descending passes as recommended by Olsen [30] was used. The TqJoint
field applies a single, unified quality control criterion for all parameter fields and has flags of either
0 (highest quality) or 1 (good quality).

2.3. NCEP_R2 Datasets

The NCEP-DOE Reanalysis 2 (herein NCEP_R2) is an improved version of the NCEP Reanalysis
1 project with an updated parameterisation scheme for physical processes such as new shortwave
radiation and changes in boundary layer and minor tuning of convective parameterisation [31].
The model uses analysis/forecast system to produce data assimilation from past datasets (1979) to
present. The Reanalysis data has been subset into four main categories of Pressure, Gaussian Grid,
Spectral Coefficient and Surface Data. Temperature and humidity profiles which are of interest to this
study was taken at a 4-times daily and 2.5◦ × 2.5◦ spatial resolutions. Observational data which are
obtained from NCEP_R2 global upper air Global Telecommunication System (GTS) by the National
Center for Atmospheric Research (NCAR) are combined with other datasets such as satellite, marine
and surface winds to obtain a desired output parameter [32].

2.4. Data Collocation and Statistical Analysis

2.4.1. Data Sampling

To inter-compare the temperature and relative humidity profile datasets from RAOB, AIRS and
NCEP_R2, the datasets were first collocated in both space and time. A temporal sampling window of
±3 h within a spatial radius of 100 km as used by other AIRS validation studies [2,25] was applied to
extract the RAOB and NCEP_R2 daily profiles. For the present study, the temporal collocation was
satisfied with both ascending and descending overpasses obtaining mean and standard deviations of
2 h ± 30 min and 2 h ± 15 min respectively. Table 1 shows the number of retrieved samples from the
RAOB to AIRS that satisfied the collocation criteria. The NCEP_R2 profiles which passed this criterion
were obtained from synoptic times 00 h (to match with descending pass) and 12 h (to match with
the ascending pass). A total collocated days of profiles for RAOB and NCEP_R2 each for the AMMA
and DACCIWA field campaign sites were totaled at 278 (Abidjan), 176 (Cotonou), 43 (Ougadougou),
104 (Parakou), 27 (Tamale), 8 (Kumasi) and 30 (Accra) (see Table 1). It must be noted that, no temporal
interpolation was performed on the AIRS or NCEP_R2 data. Since the accurate retrieval of temperature
and water vapour profiles by satellites strongly depend on the land surface emissivity and skin
temperature [20,23], these stations have been grouped into “coast” (Abidjan, Accra and Cotonou) and
“inland” (Kumasi, Tamale, Ougadougou and Parakou) for analyses. All stations are situated below
925 hPa, therefore profile analyses was initialised at this level to 100 hPa for temperature and 200 hPa
for relative humidity.

Table 1. Number of samples retrieved from AIRS-RAOB collocations.

Station Ascending Overpass Descending Overpass Dry Season (December–February) Wet Season (March–November)

Abidjan 30 248 91 187
Accra 18 12 - 30

Cotonou 58 118 56 120
Kumasi 5 3 - 8
Parakou 18 86 7 97
Tamale 14 13 3 24

Ougadougou 12 31 5 38
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2.4.2. Temperature and Humidity Profile Statistics

Equations (1) and (2) with units of kelvin (K) were used to evaluate the temperature profiles at
each pressure level of AIRS and NCEP_R2:

Bias =
1
N

N

∑
i=1

(TDATA − TRAOB) (1)

RMSD =

√√√√ 1
N

N

∑
i=1

(TDATA − TRAOB)2 (2)

The bias and RMSD for calculating water vapour errors were normalised to account for the
vertical and temporal variability of water vapour in the atmosphere (Equations (3) and (4)) as
implemented in Singh et al. [23]. Units of the normalised bias and RMSD for relative humidity
is given in percentage (%).

Biasnorm =
1
N ∑N

i=1(RHDATA − RHRAOB)
1
N ∑N

i=1 RHRAOB
× 100 (3)

RMSDnorm =

√
1
N ∑N

i=1(RHDATA − RHRAOB)2

1
N ∑N

i=1 RHRAOB
× 100 (4)

where N is the number of collocated temperature or relative humidity profiles for each pressure
level, TDATA is the AIRS or NCEP_R2 temperature profile, TRAOB correspond to the radiosonde
temperature observations, RHDATA is the AIRS or NCEP_R2 relative humidity profile, RHRAOB imply
the radiosonde relative humidity retrievals, RMSD and RMSDnorm represent the root mean square
difference and normalised root mean square difference derived for the pressure levels respectively.

2.4.3. Thunderstorm Convective Indices

The AIRS and NCEP_R2 temperature and relative humidity profiles were used to derive three
stability indices that affect the evolution of severe and non-severe [33] thunderstorm occurrences.
The derived indices were then used to compare with derived indices of the radiosonde at these
observation stations on the seasonal timescale. The indices include the George’s K-Index, Total Totals
Index and the Humidity Index.

George’s K-Index [34], given by Equation (5) gives a measure of the thickness of low-level and
mid-level tropospheric moisture content [33]. Higher values usually >20 ◦C is indicative of higher
probabilities for the occurrence of showers and thunderstorms.

K = (T850 − T500) + Td850 − (T700 − Td700) (5)

The Total Totals (TT) Index [35] (Equation (6)) is a severe thunderstorm indicator which shows the
static stability between the 850 hPa and 500 hPa levels [33]. It is the sum of vertical totals (T850 − T500)
and cross totals (Td850 − T500) of temperature and dewpoint temperature. The likelihood of showers
and thunderstorms increase as TT index becomes ≥30 ◦C.

TT = T850 + Td850 − 2T500 (6)

The Humidity (H) Index given in Equation (7) assesses the extent of saturation at given pressure
levels ([36,37] and references therein). A significant threshold for thunderstorm occurrence should
usually be less or equal to 30 ◦C.

HI = (T − Td)850 + (T − Td)700 + (T − Td)500 (7)
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In all cases, where T and Td are the temperature and dewpoint temperatures in degree Celsius at
the reference pressure levels.

2.4.4. Cloud/Cloud-Free Analysis

To further check the strength of the AIRS temperature and relative humidity profiles over the
stations, the data were also extracted into days of cloudy conditions and cloud-free conditions. A day
is said to be cloud-free if the cloud-fraction is ≤0.4. The dataset of which cloud and cloud-free days
were extracted for the corresponding radiosonde observations was from the AIRS3STD cloud fraction.
Prior to this, lower thresholds less than the stipulated was used but it was observed that, either the
collocated criteria was not satisfied, or all radiosonde launch were on days of cloud fraction >0.4.

3. Results and Discussion

3.1. Diurnal Analysis of AIRS Temperature and Relative Humidity

Figure 2 shows the diurnal bias and RMSD for the vertical profile of temperature and relative
humidity according to zonal classification. A total of 474 and 182 collocations were found for coast and
inland regions respectively. The temperature profile for all passes and locations observed pre-dominant
cold and low biases from the lower to upper troposphere. The biases (Figure 2a) were also found to be
increasing with altitude with a sharp inversion observed at the coast (ascending and descending) and
inland (ascending). An inversion at the inland for the descending pass is however observed at the
300 hPa pressure level. At the inland stations, the bias between AIRS and RAOB temperature profiles
was found to be reduced during daytime passes than the night with an overall pressure level difference
about 0.33 K. In addition this daytime performance inland is also lower than the coastal daytime biases.
There were no significant differences between the ascending and descending passes at the coast as was
observed inland. The temperature RMSD profile is shown in Figure 2b with the broken vertical line
denoting the AIRS mission temperature accuracy goal of ±1 K. It can be observed that all over-passes
were unable to meet this 1 K goal with the descending pass of the inland region obtained between a
4–5 K temperature RMSD. The low bias obtained at the inland ascending pass (Figure 2a) is reflected
in the corresponding low RMSD temperature profile (Figure 2b). However the ascending pass for
inland also reveals a higher RMSD at the near surface (925 hPa) level denoting the inability of AIRS to
retrieve the temperature at this level. On the other hand, at the coast, the 1 K RMSD is achieved only
at the 200 hPa and 300 hPa levels in the ascending pass. The diurnal coastal RMSD ranged between
1–4 K with better retrievals during the ascending than descending pass. Above 200 hPa, there is a
degradation in the RMSD for all locations and passes. In general, the daytime analyses show that AIRS
temperature profiles for the inland stations have a lower RMSD than the coastal stations, whereas the
opposite holds at night. This can be attributed to the diurnal effect of sea and night breezes which is
stronger at the coast than inland and invariable affect the temperature retrievals by AIRS.

The statistical analyses for the diurnal retrievals of relative humidity is shown in Figure 2c (bias)
and d (RMSD). The RH bias is observed to be warm and positive at the coast and inland for all
passes except the inland nighttime retrievals. Biases are also observed to be lower for the coastal
region with a near overlap at the surface (925 hPa) to mid-troposphere (500 hPa), above which there
exists a relatively small deviation in both day and night passes. AIRS over-estimates the RH for the
inland stations during the day and underestimates at night due to the poor retrieval of nighttime
temperatures as found in Figure 2a,b. The inland profile for the day increases steadily from 10 to 25%
at the lower to upper troposphere (925 hPa to 200 hPa) as compared to the decreasing trend (<−10%)
observed for the nighttime pass. The RH accuracy goal for AIRS is about ±15–20% [2,16] for the
lower to mid-troposphere and better than 50% [14] for the upper troposphere. Unlike the temperature,
the relative humidity RMSD (see Figure 2d) was found to be within the AIRS accuracy goal with a slight
exceedance (about 3%) at the 200 hPa level for the inland and coastal ascending pass. Although the
accuracy goal for the lower to middle troposphere was not satisfied for both locations in the ascending
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pass, nonetheless the RMSD is quite acceptable. The RMSD for the descending pass was observed to
lower than 15% with the upper troposphere ranging between 16 and 20%. Deviations between the
coastal and inland regions were highest below 400 hPa and 500 hPa for the descending and ascending
passes respectively. The general underestimation of temperature and over-estimation of relative
humidity show the effects of temperature retrievals on the RH by AIRS. Pfahl and Niedermann [38]
state that a strong anti-correlation exists between temperature and relative humidity, arising primarily
from convective precipitation that decrease local temperatures due to vertical mixing and insolation
reduction from clouds. The existence of an indirect relationship between temperature and relative
humidity mean that the relatively lower temperatures (dry bias profile) retrieved by the sensor is
translated into a warm bias in the corresponding RH profiles.
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Figure 2. Diurnal retrieval statistics of AIRS for temperature (a,b) and relative humidity (c,d) for coastal
and inland stations. Broken vertical lines in RMSD represent AIRS accuracy goal for temperature
(b) and relative humidity (d). The first and second vertical lines at 20 and 50% in the RH RMSD shows
the accuracy goal for lower and upper troposphere respectively. Recommended bias at broken vertical
line 0 K.

3.2. Seasonal Analysis of AIRS Temperature and Relative Humidity Profiles

Figure 3 shows the seasonal vertical temperature and relative humidity profiles for the coast
and inland regions. The seasonal analysis consists of a dry and wet with stations such as Abidjan,
Accra, Cotonou and Kumasi experience a bi-modal pattern of rainfall with the major rains occurring
between March to July and a minor wet season between September and early November [8,39,40].
The dry season at these stations also occurs from late November to February. Tamale, Parakou and
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Ougadougou have a uni-modal rainfall pattern occurring between April and October and a dry season
from November to March [8,39]. The locations which have bi-modal rain pattern observes annually a
temporal break in the month of August which is termed as the “little dry spell” [8].
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Figure 3. Seasonal statistics of AIRS for temperature (a,b) and relative humidity (c,d) for coastal and
inland stations. Broken vertical lines in RMSD represent AIRS accuracy goal for temperature (b) and
relative humidity (d). The first and second vertical lines at 20% and 50% in the RH RMSD shows the
accuracy goal for lower and upper troposphere respectively. Recommended bias at broken vertical line
0 K.

From Figure 3a, the temperature bias was found within a range of −2.5 to 0 K with a consistent
cold bias at all vertical levels. Inland dry season temperatures obtained the highest deviation occurring
at the surface to middle troposphere (925 hPa to 500 hPa). The dry season coastal bias was larger
above 200 hPa. From 600 hPa to about 200 hPa, both RAOB temperatures and AIRS retrievals were
observed to be similar and accurate for AIRS as the bias was found to be close to zero. Furthermore,
AIRS temperature bias and RMSD (see Figure 3a,b) for the dry season are observed to be more
accurate than the wet season possibly due to the effect of increasing cloud cover in the wet season
that lowers the accuracy of temperature retrievals. According to Ferguson and Wood [21] increasing
cloud cover attenuates the infrared waves for accurate retrievals of temperature by the AIRS sensor.
The deviation found at the 925 hPa to 500 hPa for the inland dry season bias is due to higher retrievals
from the radiosonde for the season. The coast also obtained smaller biases as compared to the inland
stations. The bias at the coast was found to sharply deviate at the 150 hPa level (≈−1.2 K) whereas
the inland region was quite consistent. The RMSD of the seasonal temperature (Figure 3b), similar to
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the diurnal temperature RMSD (Figure 2b), failed to meet the AIRS accuracy goal with a spread of
1.5–5 K. The retrieval pass with skill close to the targeted accuracy was observed in the coastal dry
seasonal sample. This can be observed at the 600 hPa to 200 hPa pressure levels where there was a
close agreement with the lowest bias between the AIRS and RAOB datasets. In addition, the lower
tropospheric (925 hPa to 700 hPa) temperature for the coastal dry season was found to be higher
between 2–3 K. For both coastal wet and dry seasons, higher RMSD existed at the upper atmospheric
levels with the coastal wet season obtaining a larger deviation. The inland dry season was also
observed to be more accurate than the wet season. In general, the dry season RMSD temperature
profiles was found to be lower than the wet season profiles with the coast out-performing the inland
stations at all temporal scales.

The bias and RMSD for the relative humidity is shown in Figure 3c,d. A warm bias (Figure 3c)
exists at the coast for both seasons and inland for the dry season only, suggesting an over-estimation of
water vapour profiles by the AIRS sensor. On the other hand, the inland wet season is observed to be
negatively (cold) biased which can be linked to the occurrence of convection during this season [22]
and the relatively longer distance traversed by the satellite to retrieve relative humidity inland [18].
This cold bias (about 6%) further declined at the upper troposphere. The positive bias was observed
between 0 and 5%, which is low and acceptable for a difference between AIRS and RAOB water vapour
profiles. At the coast, the wet season although positively biased has the best accuracy (about 1–1.5%)
as compared to the dry season and inland regions. The RMSD profile (Figure 3d) reveals a satisfactory
performance of the AIRS dataset. Tropospheric water vapour profiles at all pressure levels were mostly
within 20 and 50% at the coast and inland. Inland dry season AIRS retrievals were observed to be
superior with total vertical RMSD less than 10%. The RMSD performance for the inland dry season
imply the presence of clear sky conditions which is a major characteristic of the inland stations during
this season. Although the bias was observed for the inland wet season (see Figure 3c), the RMSD is
comparable to the coast wet season profile and both were found to be within an acceptable range.
The warm bias obtained for the coastal wet season was also translated into higher RMSD in Figure 3d.
In conclusion, from the diurnal and seasonal inter-comparisons, there is a possibility of using AIRS
temperature and relative humidity profiles for thunderstorm prediction based on the derivation of
instability indices.

3.3. Cloud Dependence of AIRS Temperature and Relative Humidity Retrieval Accuracy

To assess the impact of clouds on the retrieval of temperature and relative humidity by AIRS,
the data were separated into days of cloudy retrieval and days of cloud-free retrievals over all
overpasses. Only stations Accra, Abidjan, Cotonou and Ougadougou satisfied the cloud and cloud-free
(cloud fraction less than 0.4) criteria. The remaining stations, Parakou, Kumasi and Tamale either had
no cloud-free days or the collocation window was beyond that stipulated for in this study (±3 h and a
100 km radius).

The total bias and RMSD profile for the temperature and RH at these stations is shown in Figure 4.
The temperature bias (Figure 4a) shows lower bias on cloud days as compared to cloud free days.
The bias for both profiles was found to be mostly cold with a warm bias found at the 250 hPa level
on cloud free days. On cloudy days, a warm bias was observed at the middle (600 and 500 hPa) and
upper (300 to 200 hPa) troposphere. Temperature retrievals at the near surface (Figure 4a) by AIRS
was found to be drier on cloud-free days than cloudy days. The RMSD profile shows that the overall
performance of AIRS on cloud free days is closer to the mission goal than on cloudy days. There is
a higher deviation in both cases at the upper troposphere (150 to 100 hPa) with the largest RMSD
found during cloudy days. Upper tropospheric temperature errors on the cloudy days could reach
a maximum of 3 K with a 2–2.5 K on cloud-free occasions. Interestingly, although AIRS cloud-free
profile could not satisfy the accuracy goal at any level, RMSD for cloudy profiles was found to be
between 0.5 and 1.0 K at 300 hPa to 200 hPa. This corresponded to the upper tropospheric levels with
warm temperature bias (Figure 4a). The alternating RMSD profile also suggests that the accuracy of
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cloud-free retrievals is better at 700 hPa to 500 hPa and 100 hPa levels whereas cloud retrieval accuracy
is better at all other levels.

Figure 4c,d shows the AIRS bias and RMSD for relative humidity on cloud and cloud free days.
In general, cold to warm biases are observed to exist on both cloud and cloud free days. Bias in cloud
free days is minimal as compared to cloudy conditions. The lower to mid-tropospheric dry bias under
cloudy conditions was also observed by Ferguson and Wood [20] who found a maximum bias of −29%
in increasing cloud coverage and −15 to −40% by Wong et al. [41]. The cold bias present for both
cloud and cloud-free days occurred at the surface to about 500 hPa (Figure 4c). Beyond this level,
a warmer bias is observed to reflect an over-estimation of the AIRS profiles especially at the 150 hPa
and 100 hPa levels. The effect of clouds on retrievals at the 850 hPa and 500 hPa were found to be
negligible as there was an overlap for both scenarios. Overall bias range was within ±10%. On the
other hand, the RMSD profile (Figure 4d) shows more accurate retrievals under cloudy conditions than
non-cloudy condition. The AIRS accuracy mission goal is satisfied under all occasions for the lower
and upper troposphere. Upper tropospheric relative humidity RMSD was observed to be less than
30% for the cloud and cloud-free days with the cloud-free days slightly out-performing the cloudy
days. For the lower to middle troposphere, the RMSD for cloudy conditions was observed to be lower
than on cloud-free days.
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Figure 4. Cloud conditional analyses for all AIRS matchups (ascending and descending overpass) at
all stations (see Table 1) for temperature (a,b) and relative humidity (c,d).
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3.4. AIRS and NCEP_R2 Retrieval Skill Comparisons

Figure 5 shows the performance of AIRS and NCEP_R2 with RAOB temperature and relative
humidity profiles for the coastal and inland regions. To find the overall performance of both AIRS
and NCEP_R2, all overpasses of AIRS were merged and compared with the corresponding profiles
of NCEP_R2. Cold biases are observed to dominate the coastal AIRS temperature retrievals whereas
the inland AIRS temperature profile decreases from warm biases (below 600 hPa) to cold biases
(above 600 hPa) (see Figure 5a). NCEP_R2 for the coast alternates between cold bias at the surface to
mid-troposphere, beyond which a warm bias exists. The inland NCEP_R2 temperature bias profile
is also pre-dominantly cold except at the 925 hPa and 250–200 hPa pressure levels. Comparing the
location biases of AIRS and NCEP_R2 temperature, inland AIRS over-estimates NCEP_R2 profiles
at the surface to middle troposphere and under-estimates at the upper troposphere. Alternatively,
the coastal performance observes NCEP_R2 to over-estimate the AIRS temperature bias profile at the
upper troposphere. The temperature RMSD profile is shown in Figure 5b for AIRS and NCEP_R2.
Both AIRS and NCEP_R2 were unable to reach the AIRS accuracy goal except at the 600 hPa and
250 hPa for NCEP_R2 inland statistics. The performance for both datasets was observed to be better
for the inland region than the coast. The inland AIRS and NCEP_R2 showed temperature profiles with
decreasing RMSD from 3 K to about 1 K from the surface to 600 hPa and a significant increasing RMSD
from 250 hPa to 150 hPa. The RMSD at the coast was relatively higher with greater deviation within
the NCEP_R2 datasets. The highest difference between the coast and inland regions for AIRS and
NCEP_R2 occurred from the 850 hPa to 250 hPa levels. Regardless of station, there was a tendency
for higher RMSD in the upper troposphere with the maxima occurring in the NCEP_R2 coastal
temperature and the least in the AIRS inland temperature.

The bias and RMSD profile for the AIRS/NCEP_R2 relative humidity is observed in Figure 5c
and d. Bias (Figure 5c) was found to be in range of −6 to 10% for both datasets. AIRS and NCEP_R2
coastal water vapour is observed to be constantly under-estimated as compared to an over-estimation
for the inland. The coastal under-estimation is however observed to be smaller (≈−2 to −3%) than
the inland RH over-estimations (≈4 to 6%). Bias was also observed to be increasingly higher (inland)
and lower (coast) at the upper levels (above 500 hPa). In addition, the bias reveals lower values of
AIRS at the coast than inland with the reverse being observed in the NCEP_R2 relative humidity
profile. The RMSD (Figure 5d) reveal the datasets to achieve both lower and upper tropospheric water
vapour accuracy goal. As lower biases were obtained over the coast, this is reflected in the higher
satisfactory performance in the RMSD (<20%) for the upper and lower troposphere. Furthermore,
the NCEP_R2 is found to give relatively accurate estimates of the tropospheric water vapour content
than AIRS along the coast, probably due to the better representation of coastal RAOB information in
NCEP_R2 model run. Although the upper tropospheric RMSD was acceptable for both datasets inland,
the profile was observed to be sharper from the 500 hPa level as compared to the coast. AIRS is also
observed to outperform NCEP_R2 inland than at the coast. In general, the performance of AIRS and
NCEP_R2 for RH is acceptable and satisfactory. The satisfactory performance of NCEP_R2 is expected
as global RAOB information is incorporated in the estimation of temperature and relative humidity
profiles [2]. Table 2 is a summary of the AIRS performance at the various atmospheric pressure levels
for temperature and relative humidity.
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Figure 5. Diurnal uncertainty statistics of AIRS and NCEP_R2 for temperature (a,b) and relative
humidity (c,d) profiles for coastal and inland stations. Coastal and inland statistics are a merge between
the daytime and nighttime datasets. Broken vertical lines in RMSD represent AIRS accuracy goal for
temperature (b) and relative humidity (d). The first and second vertical lines at 20 and 50% in the RH
RMSD shows the accuracy goal for lower and upper troposphere respectively. Recommended bias at
broken vertical line 0 K.

Table 2. Summary of RMSD AIRS-RAOB accuracy for temperature and relative humidity.

Pressure Level (hPa) Temperature RMSD (%) RH RMSD (%)

Coast Inland Coast Inland

925 2.32 2.76 8.68 7.73
850 2.35 2.34 8.96 7.97
700 3.17 1.56 10.45 9.30
600 2.98 1.18 10.36 9.22
500 3.10 1.67 11.55 10.28
400 3.00 1.42 16.16 14.38
300 1.32 1.32 14.75 13.13
250 1.33 1.67 16.25 14.46
200 1.29 1.09 20.10 17.89
150 2.05 1.16
100 3.28 2.62
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3.5. Variation of Thunderstorm Convective Indices at the Stations

According to Ferguson and Wood [21], the AIRS sensor has the potential to be used for local
convective rainfall prediction based on thunderstorm convective indices. They derived the convective
triggering potential and humidity index (from 50 hPa to 150 hPa above ground level) from AIRS
temperature and relative humidity profiles and found these indices useful at geographical locations
where the predictive power was high. Therefore, our study also evaluated the AIRS and NCEP_R2
derived convective instability indices: K-index, TT index and HI for West Africa against RAOB derived
indices. We have evaluated the seasonal biases in AIRS and NCEP derived convective indices here,
which in the future, will need to be translated into terms of actual thunderstorm probability and
strength for the region. Figure 6 shows the three year (2006–2008) seasonal climatology of the indices
for both AIRS and NCEP_R2. The climatology of the indices for both datasets was observed to be
similar with NCEP_R2 overestimating slightly at all seasons. The dry season climatology reveals
a high probability of convective activities and rain over the southern part of West Africa especially
along the coast as compared to inland areas. The Sahelian region which is further northward of West
Africa observes low likelihood of rains. Low K-Index are found over the Sudano-Savanna belt with a
decreasingly lower negative probability. Furthermore the HI for the dry period elaborates on the effects
of sea breeze along the coastal areas which results in relatively high humidity and a corresponding low
humidity index. Inland low HI is a consequence of the deciduous and semi-deciduous forest which
characterises this zone. On the other hand, the dry harmattan winds which engulf the region with the
most affected being the Sudano-Savanna zone observes higher than usual humidity index; exceeding
two to three times the recommended threshold of ≤30 ◦C. This observation is captured in both AIRS
and NCEP_R2.

The migration of the inter-tropical discontinuity (ITD), evident in the increased convective
activities over West Africa can also be monitored with these thunderstorm convective indices in
the wet season. As can be observed, AIRS shows an under-estimation of K-Index and Total Totals (TT)
index probably due to the retrieved relative humidity being lower than the estimates of NCEP_R2
(Figure 6). The HI on the other hand has good correlation for both datasets except at the north-western
portion of West Africa which is closer to the Saharan desert. The TT index for NCEP_R2 shows the
wet season to have a higher probability of thunderstorm occurrence around latitudes 6◦N to 10◦N
while AIRS shows an isolated maximum concentration of these activities converging over Northern
Ivory Coast, North-Eastern Guinea, Southern Mali and Burkina Faso (Figure 6). In general, AIRS and
NCEP_R2 are able to show the seasonal likelihood of thunderstorm activities over West Africa.

Figure 7 presents the AIRS and NCEP_R2 differences (AIRS-NCEP_R2) for the thunderstorm
indices based on the seasonal climatology. Generally, NCEP_R2 is found to over-estimate the
occurrence of precipitation in the dry season based on the indices. However, this over-estimation
is also found to be lower and reduced during the wet season. Deviations were highest for the HI
in both dry and wet season as compared to the other indices. The dry season K-Index reveals an
over-estimation of NCEP_R2 over the entire West African sub-region with AIRS over-estimating off
the coast of Liberia and Senegal. This is likely due to the accuracy of AIRS in retrieving relative
humidity profiles over the sea than coast and inland [2], resulting in a direct effect on the calculation of
K-Index from AIRS datasets. The corresponding wet season climatology shows a high thunderstorm
probability from NCEP_R2 analysis situated over inland Liberia (<−7 ◦C). Few areas are found
to have no difference in thunderstorm prediction over West Africa in the wet season from the
K-Index (0 ◦C). A higher thunderstorm probability in AIRS is observed in the inland regions, in the
vicinity of the Sahel, with over-estimated values reaching about 7 ◦C. In the dry season (Figure 7),
the AIRS TT index over-estimates the rainfall activities by locating a hotspot (>1.2 ◦C difference) at the
Nigeria-Cameroonian border. This was also captured by the K-Index, however, at a difference of ≈3 ◦C.
It can be observed that the seasonal differences in AIRS and NCEP_R2 for the derivation of the TT
index is relatively lower than the other indices. The wet season TT index likewise the K-index is also
observed to have a higher rainfall likelihood (from AIRS) at the Sahelian region and no difference at
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the sudano-savanna region. In addition, the observation for the K and TT wet season indices show that
the AIRS over-estimations have a latitudinal increase from the coast to further inland regions of West
Africa (Figure 7). The intensity of over- and under-estimation of AIRS in the dry season HI is observed
to be in complete opposite to the K-index dry season climatology. On the other hand, inland areas
where AIRS obtained larger under-estimations in K-index corresponded to higher over-estimations
in the HI for the dry season. Nonetheless, the western regions of West Africa obtained relatively no
difference in thunderstorm prediction for AIRS and NCEP_R2 in the dry season. For the wet season,
HI differences although lower than the dry season, has AIRS over-predicting rainfall in most areas of
the West African sub-region (Figure 7).

Figure 6. Three year (2006–2008) dry and wet season index climatology from AIRS and NCEP_R2 for
the entire West Africa. Dry season include months December, January and February whereas the wet
season includes all other months.

The seasonal comparison of the indices derived from AIRS and NCEP_R2 collocations with
radiosonde calculated indices is given in Tables 3 and 4. A general observation was a better correlation
between AIRS and RAOB calculated indices at the stations. The slight overestimation found in
NCEP_R2 from Figure 5 is also observed in the extracted indices at the stations was also found to be
higher than RAOB calculated indices. In the dry season, the coastal stations Abidjan and Cotonou had a
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lower bias as compared to the RAOB, in the K-Index, TT index and the HI for both AIRS and NCEP_R2.
The HI however has a larger difference for NCEP_R2 with the RAOB over Cotonou to suggest the low
chance of thunderstorm formation at the coastal station. Over Ougadougou, the difference in K-Index
between AIRS and RAOB was found to be low (−7.59 ◦C) as compared to RAOB and NCEP_R2
(11.29 ◦C). The TT index and HI on the other hand obtained a higher bias between AIRS and RAOB
(Table 3). The capability of AIRS in measuring the very low dry season humidity conditions over
Ougadougou is observed to translate into the low TT and corresponding HI. The AIRS derived indices
suggest virtually no probability for thunderstorm occurrence which is to be expected over the station
during this period. Over Parakou there was a good agreement between RAOB and AIRS derived
indices although NCEP_R2 was also not highly biased. The K-Index at Tamale agreed only in the AIRS
(−0.66◦ C) and RAOB (−2.26◦ C) datasets with the NCEP_R2 over-estimating in both K-index and TT
and underestimating in the HI (Table 3). However, in general, the low probability of thunderstorm
occurrence at these stations were well observed by the indices for the dry season.

Figure 7. Difference in the index seasonal index climatology between AIRS and NCEP_R2
(AIRS-NCEP_R2). Dry season include months December, January and February whereas the wet
season includes all other months.

Table 3. Comparison of AIRS and NCEP_R2 derived stability indices in the dry season (December-February).
Units of all indices in degree Celsius (◦C).

Station K-Index TT Index HI

RAOB AIRS NCEP RAOB AIRS NCEP RAOB AIRS NCEP

Abidjan 23.86 25.13 25.80 38.43 40.64 40.65 29.73 29.55 28.80
Cotonou 23.18 25.47 20.58 37.30 40.47 38.78 29.58 22.33 40.34

Ougadougou −1.85 −9.37 9.44 21.81 13.50 27.78 77.31 95.89 63.57
Parakou 21.05 23.50 28.82 37.52 38.02 43.80 42.53 42.75 38.00
Tamale −2.26 −0.66 21.88 27.97 30.53 46.05 76.75 72.46 45.61
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Table 4. Comparison of AIRS and NCEP_R2 derived stability indices in the wet season (March-November).
Units of all indices in degree Celsius (◦C).

Station K-Index TT Index HI

RAOB AIRS NCEP RAOB AIRS NCEP RAOB AIRS NCEP

Abidjan 27.77 28.20 30.01 40.18 41.26 41.45 21.57 21.56 17.95
Accra 28.50 30.99 28.61 39.95 40.83 39.73 19.44 15.18 14.29

Cotonou 23.35 32.21 31.26 35.51 42.04 42.05 21.78 14.24 15.90
Kumasi 28.19 31.32 32.74 40.51 42.37 42.80 18.82 15.55 12.51

Ougadougou 22.72 31.80 33.57 37.45 45.27 46.36 28.90 22.78 23.74
Parakou 29.15 33.52 33.79 41.82 43.39 44.37 21.44 14.24 15.64
Tamale 29.78 32.48 32.36 42.76 45.40 46.99 23.97 23.21 17.24

The RAOB indices for the wet season at the stations is shown in Table 4. The derived indices for
RAOB, AIRS and NCEP_R2 were in agreement with low biases. The humidity index also observed
values which were below 30 ◦C and supports the increased chances of thunderstorm events as
moisture is advected by the south-westerly winds towards these stations. Close agreement was found
at the Accra station between ROAB and NCEP_R2 for George’s K and TT indices. In most instances,
AIRS and NCEP_R2 had a relatively perfect agreement for thunderstorm prediction. Furthermore,
AIRS and NCEP_R2 marginally over-estimate the indices (K and TT indices) compared to RAOB and
under-estimates the HI. However, there exists a good correspondence between AIRS and RAOB HI
over Accra and Kumasi.

4. Conclusions

Determination of a pre-convective environment for thunderstorm formation requires a long
time-series of sounding data. Radiosonde observation offer the most accurate vertical profiles of
temperature and relative humidity. However, these observations are scarce in West Africa and hence
there is the need to rely on suitable satellite products for convection assessment. The Atmospheric
InfraRed Sounder on-board the AQUA satellite provides atmospheric sounding information twice
daily, which may be used as a reliable substitute for RAOB in sparse regions upon rigorous validation.
The study assessed the performance of the AIRS IR-Only level 3 standard retrieval version 6 and for
context, NCEP_R2 vertical temperature and relative humidity profiles for some selected AMMA and
DACCIWA radiosonde observation stations in West Africa within spatio-temporal collocation radius
of 100 km and ±3 h for AIRS and NCEP_R2. The performance of AIRS vertical profiles for diurnal,
seasonal, cloud and cloud-free analyses as well as with collocated NCEP_R2 profiles were assessed.
Finally seasonal variation of three thunderstorm convective indices (K-Index, TT index and HI) for
each station was computed and compared for RAOB, AIRS and NCEP_R2.

The diurnal temperature profile reveals lower biases however with corresponding higher RMSD
above the AIRS mission goal of ±1 K. AIRS temperature RMSD show higher values at the coast as
compared to inland regions, possibly due to complications in surface emissivity, skin temperature
and the diurnal sea and land breeze effect which is strongest along the coast. The reverse of the
temperature RMSD however is observed to occur at night. The relative humidity on the other hand,
was found to be more accurate for the descending pass than ascending for all zones with the coastal
stations dominating in all passes. On the seasonal timescale, the temperature bias for the dry season is
pre-dominantly cold. The corresponding RMSD were also higher and deviated towards the inland wet
season profile. The coastal dry season was the least deviated, albeit, all zonal deviations were higher
(≈1.0–5 K). Inland wet season RH profile was the most biased (cold) whereas the RMSD showed
satisfactory performance at all tropospheric levels for all zones and seasons. Cloudy conditions were
found to have no significant effect on the RH retrievals by AIRS as the bias and RMSD between cloudy
and non-cloudy days were found to have marginal differences and both achieving the AIRS accuracy
goal of <20%, and 50% for lower and upper troposphere, respectively. The temperature retrievals
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however are better on cloud-free than cloudy days. Comparison of the temperature and RH retrievals
of AIRS with NCEP_R2 reveal AIRS to be a better substitute for RAOB vertical profiles at the coast
and inland. Finally, the seasonal derived thunderstorm indices for AIRS and NCEP_R2 showed that
both datasets can be utilised for the occurrence and non-occurrence of thunderstorms in the wet and
dry seasons though NCEP_R2 generally over-estimates the thunderstorm probability. Comparing the
derived indices of AIRS and NCEP_R2 with RAOB indices at the seven stations also show a higher
agreement for all seasons.

In general, the performance of AIRS at these West African stations has been satisfactory for the
temperature (although with slight over-estimations) and the RH. Based on the performance of AIRS
for the derivation of thunderstorm convective instability indices, it is proposed to be used further for
determining the probability of convection initiation over West Africa under the GCRF African SWIFT
project by focusing on the statistical analysis of thunderstorm convective indices over the region.
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