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Abstract: Using numerical model outputs as a bridge, an indirect validation method for remote
sensing data was developed to increase the number of effective collocations between remote sensing
data to be validated and reference data. The underlying idea for this method is that the local
spatial-temporal variability of specific parameters provided by numerical models can compensate for
the representativeness error induced by differences of spatial-temporal locations of the collocated
data pair. Using this method, the spatial-temporal window for collocation can be enlarged for a given
error tolerance. To test the effectiveness of this indirect validation approach, significant wave height
(SWH) data from Envisat were indirectly compared against buoy and Jason-2 SWHs, using the SWH
gradient information from a numerical wave hindcast as a bridge. The results indicated that this
simple indirect validation method is superior to “direct” validation.
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1. Introduction

Since the launch of Seasat in 1978, satellites have become an important tool for observing the
global ocean and its overlying atmosphere. Different types of spaceborne remote sensing systems,
such as radiometers, altimeters, scatterometers, and synthetic aperture radars, provide information on
many ocean surface dynamic parameters, such as sea surface temperature, sea surface heights, sea
surface wind fields, and significant wave heights (SWHs). After a satellite is launched, the calibration
and validation of the sensors are necessary because (1) a quantitative evaluation of the errors is
required before the data products can be utilized; (2) systematic errors of the retrievals can be corrected
during calibration; (3) long-term drifts and degradations of sensors need to be monitored and their
impacts need to be corrected. The general way to validate ocean remote sensing data is to collocate the
satellite data with the reference data at the same time and location. The reference data are regarded as
the “ground truth”, and then the performance of the sensor is evaluated using some error metrics,
such as the bias, the root-mean-square-error (RMSE), and the correlation coefficient (CC). Data from
reliable in situ instruments or from well-calibrated remote sensing systems are usually selected as a
reference dataset.

However, the physical meaning of the geophysical parameters from remote sensing systems and
from in situ observations usually differ. Remote sensing systems typically obtain spatial averages
within a given resolution while most in situ data are either instantaneous values or temporal averages.
For example, both altimeters and buoys can measure SWHs. The SWHs from altimeters are derived
from the spatial variation of the water elevation over its footprint (~7×10 km2 at 1 Hz) while the SWHs
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from buoys are derived from the temporal variation of water elevation over ~20 min [1]. Even for two
remote sensing systems, it is difficult to obtain two observations at exactly the same time and location.
Therefore, a “bridge” is always needed to connect the remote sensing data to be validated with the
reference data. A widely used “bridge” is assuming that the geophysical parameter remains constant
within a small “spatial-temporal window” so that the data from different sources become comparable
(e.g., [2–5]). For example, in the validation of SWH data of altimeters, the altimeter data are usually
collocated with buoy data if they are within the same 50-km × 30-min window (e.g., [2–5]). There has
to be a compromise between the number of collocations (Ncol) and the representativeness error induced
by differences of spatial-temporal locations of the collocated data pair, because both of them increase
with increasing size of the spatial-temporal window. Validation based on this simplified assumption is
referred to as direct validation henceforth.

A larger Ncol, which provides better statistical significance, is almost always desired when
validating satellite data. However, although an increasing number of buoys and platforms have been
deployed in the recent decades, in situ observations in the open ocean are still very sparse. The generally
small size of the spatial-temporal window for direct validation further limits the accumulation rate
of collocations for data validation. An alternative method is to “directly” compare the data to be
validated with data obtained from other well-calibrated remote sensing systems. However, the Ncol
between two satellites is also often limited by the size of the spatial-temporal window [4,5]. The time
required for preliminary data calibration and validation after the launch of a satellite can be shorten if
a better method of connecting remote sensing and reference data can be proposed. A good validation
method should be able to increase the size of the spatial-temporal window without increasing errors,
which is the aim of this study.

A potential method is to use the numerical model data to validate the observations. Numerical
models can provide many ocean parameters at any time and location, which can then be collocated
with almost every remote sensing data record after interpolation. However, even after carefully
“tuning” against observational data, the accuracy of most numerical models (e.g., numerical weather,
ocean, and wave models) outputs themselves might not be sufficient to be regarded as the “ground
truth” in most conditions [4]. Meanwhile, numerical models can provide local spatial-temporal
gradients (derivative) of ocean dynamic parameters with a fairly good accuracy because they are
based on differential equations and the accumulated integration errors should be generally small
within a small spatial-temporal range. Therefore, a well-calibrated numerical model can better
represent local spatial-temporal variability than the simple assumption of zero variability within a
spatial-temporal window.

This study presents a validation method that uses a numerical model to connect the remote
sensing data to be validated and the reference data. Because a numerical model is used as a bridge to
compare two observations instead of “directly” comparing them, this validation method is referred
to as indirect validation henceforth. The effectiveness of such indirect validation is demonstrated by
an experiment, where SWH data from an altimeter (Envisat) are validated. The remainder of this
manuscript is organized as follows: Section 2 describes the data and the methods for different types
of validation (direction/indirect and in situ/cross) used in this study. Section 3 displays the results of
validation, which clearly indicate the advantage of this indirect validation, followed by a discussion
and a summary in Section 4.

2. Data and Methods

2.1. Data

2.1.1. Altimeter Data

Altimeters can measure nadir SWH, wind speed, and sea surface height with a very narrow swath
(~10 km), thus making them more difficult to collocate with in situ observations than wide-swath
sensors. Since the aim of this study is to demonstrate the effectiveness of indirect validation only
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instead of validating data from a specific satellite, the selection of altimeter data is arbitrary. The
data “to be validated” were the Envisat SWH data in 2011, and the altimeter used as reference for
intercomparison was Jason-1. These data are a subset of the inter-calibrated altimeter dataset provided
by [3] where more detailed information is available. The data from both satellites have been validated
against buoy measurements, showing good agreement. An entry is discarded if the distance to the
nearest coastline was less than 100 km.

2.1.2. Buoy Observations

Although not free of errors, the SWH data from buoys are regarded as a good reference because
of their high quality. The in situ data from the National Data Buoy Center (NDBC) were used for
validation. The data from 51 NDBC buoys, more than 50 km offshore (to avoid the seaward-sampling
problem for direct validation [6]) for the year of 2011 were used. The locations of these buoys are
shown in Figure 1 (with their numbers in Appendix A). Although the data of these NDBC buoys were
quality-controlled, a few erroneous values still exist. Therefore, additional quality control was applied
such that the data were discarded if SWH < 0.15 m or SWH > 12 m.

Figure 1. The locations of the 51 National Data Buoy Center (NDBC) buoys (red dots) used in the study.
The inner subplot shows the location of buoy 32012. A few buoys could be redeployed during the study
period. The color indicates the distance of an oceanic point to its nearest buoy. Distances exceeding
1000 km are not shown, and distances are also not shown if the great circle connecting two points is
blocked by land.

2.1.3. Numerical Wave Model Outputs

The numerical wave model used here was the Integrated Ocean Waves for Geophysical and
other Applications (IOWAGA) dataset, a hindcast of WAVEWATCH-III [7] using the physical
parameterizations of [8] forced by the global 10-m-wind data from the Climate Forecast System
Reanalysis. Without assimilating any wave measurements, the data showed good agreement with
observations from both buoys and altimeters with respect to SWH [9]. The SWH outputs from the
dataset with a space–time resolution of 0.5 ◦× 0.5 ◦× 1 h were used here. The data and more detailed
information are available from both ftp.ifremer.fr and [9].

2.2. Methods

2.2.1. Direct/Indirect in Situ Validation

For direct validation against buoys, 1-Hz data from Envisat were collocated with their nearest
buoys with SWH measurements within a 30-min window. The distances of different oceanic points to
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the nearest buoy are shown in Figure 1. A number of buoys might not provide measurements during
specific periods because of redeployment or instrumental problems. In this case, satellite data were
collocated with the 2nd nearest buoy. Because Envisat SWHs used here have been calibrated against
buoys, the bias of the data should be small. Only the RMSE and CC were used to evaluate the results:

RMSE =

√√
1

Ncol

n∑
i=1

(yi − xi)
2 (1)

CC =
n∑

i=1

(yi − y)(xi − x)/

Ncol

√√ n∑
i=1

(yi − y)2

√√ n∑
i=1

(xi − x)2

 (2)

where x and y represent the observational and reference data, respectively; bars over them denote their
mean values. The RMSE, CC, and Ncol were computed for different spatial window sizes.

The idea of indirect validation, which is the methodology presented in this study, is simple:
Instead of directly comparing the remotely sensed observation (Ors) with the reference observation
(Oref), the Ors can be compared with:

Ors = Ore f −Mre f + Mrs (3)

where Mrs and Mref represent the values given by a model at the same spatial-temporal location with
Ors and Oref, respectively. The rationale for Equation (3) is that the numerical model can better represent
local spatial-temporal variability than the simple assumption of zero variability. The difference between
Mrs and Mref decreases with the decrease of the spatial-temporal distance between two observations.
Consequently, direct and indirection validations become equivalent when the spatial-temporal distance
is zero.

For indirect validation against buoys, SWHs from the IOWAGA were linearly interpolated into
the spatial-temporal locations of buoys. The IOWAGA SWH data were corrected by buoy data using
the following objective analysis method:

FCre f (φ,λ, t) = Fb(φ,λ, t) +
Nre f∑
i=1

wi·[Oi(t) − Fi(t)] (4)

wi = exp
[
−d2

i (φ,λ)/2R2
]
/

Nre f∑
i=1

exp
[
−d2

i (φ,λ)/2R2
]

(5)

R = min[di(φ,λ)]
(
i = 1, 2, 3, . . . , Nre f

)
(6)

where ϕ, λ, and t represent latitude, longitude, and time, respectively; Fb and FCref represent the model
data before and after correction, respectively; Nref represents the number of buoys with observations
(Nref = 52 if all buoys have good-quality measurements at a given time); Oi and Fi represent the values
of buoy and model SWHs; wi represents the weight factor; di represents the distance to buoy i; R
represents the distance to the nearest buoy with SWH measurement at a given time. A 3-point running
average was applied to the differences between buoy and model to generate a smoother analysis field
FCref. FCref is then regarded as the reference data and is interpolated into the spatial-temporal locations
of Envisat 1-Hz measurements for comparison. The RMSEs and CCs were computed for different
sizes of spatial windows. The reason for using this objective analysis instead of directly applying
Equation (3) is that the locations of many buoys are close (Figure 1). The spatial correlations among
these buoy data can be utilized to further correct the spatial gradient in the model data. For a point
near a buoy, but far away from other buoys (e.g., 32,012 in the subplot of Figure 1), the weights wi
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correspond to this and the other buoys are close to one and zeros, respectively. Then, Equation (4)
becomes equivalent to Equation (3).

2.2.2. Direct/Indirect Cross-validation

For direct cross-validation, the 1-Hz SWHs from Envisat were collocated with the 1-Hz Jason-1
record using the shortest spatial-temporal distance between them. The spatial-temporal distance is
defined as:

D =

√
(S/S1)

2 + (T/T1)
2 (7)

where S and T represent the spatial distance and the time difference between two observations,
respectively, and S1 and T1 represent coefficients that make S and T dimensionless. Because a
30-min-50-km window is often used in previous studies to collocate SWH measurements from different
altimeters, the S1 and T1 here were set to 50 km and 30 min, respectively. The RMSE, CC, and Ncol
between these were computed for different spatial-temporal windows.

For indirect cross-validation, the way of collocating data is completely identical. However,
Equation (3) is applied to the Jason-1 data before computing RMSEs and CCs: The SWHs from the
IOWAGA were interpolated into the locations of measurements of both satellites to obtain Mref (at the
location of the Jason-1 data) and Mrs (at the location of the Envisat data). Their difference was used to
correct the Jason-1 SWH.

3. Results

3.1. Direct/Indirect in Situ Validation

Figure 2a shows the Ncol, CC, and RMSE between SWHs from Envisat and the 52 NDBC buoys as
a function of the radius of the spatial window for direct in situ validation (the blue, red, and green
solid lines, respectively). The Ncol increases fast with the increasing radius of the spatial window. For
2011, ~8 × 103 collocations were available with a radius of 50 km, but the Ncol becomes ~3 × 104/~8 ×
104 when the radius increases to 100/150 km. However, the RMSE/CC also increases/decreases fast
with increasing radius. For example, the RMSE is 0.27 m with a radius of 50 km but becomes 0.37 m
when the radius is 150 km. The RMSE between Envisat and IOWAGA SWHs is only ~0.34 m (the green
dashed line in Figure 2a), indicating that using a 150-km spatial window for direct validation is even
worse than using the modeled SWH as reference. Therefore, the spatial window for direct validation
has to be small to limit the representativeness error.

The CC and RMSE for indirect validation are shown also in Figure 2a (the red and green dotted
lines). Although the CC/RMSE still decreases/increases with the radius, the rate of this decrease/increase
is much lower than the corresponding solid lines with the connection of a numerical wave model. At a
radius of 50 km, the RMSE of the indirect validation is 0.25 m, which is slightly less than the 0.27-m
RMSE of the direct validation with the same window. The RMSE is 0.27 m and the CC is 0.97 when
the radius is 100 km, which is generally equal to the result of direct validation for a 50-km window.
Even when the radius increases to 300 km, the RMSE still remains below 0.3 m and CC exceeds 0.96,
which is an acceptable accuracy that is much better than if the outputs from the numerical wave model
were used as reference. These results show that indirect validation can effectively increase the Ncol by
enlarging the spatial window while only slightly increasing the error, thus, is a better method than
direct validation.
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Figure 2. The Ncol, correlation coefficient (CC), and root-mean-square-error (RMSE) of Envisat significant
wave heights (SWHs) versus buoy SWHs as a function of the radius of the spatial window. In subplot
(a), each color represents a parameter and each type of line represents a type of validation: blue, green,
and red lines represent Ncol, RMSE, and CC, respectively; the solid, dotted, dot-dashed, and dashed lines
represent the results of direct validation, indirect validation without and with a quality control (QC) of
G < 0.6 m, and the direct comparison between IOWAGA and Envisat SWHs, respectively. In subplot (b),
each color represents a QC standard for indirect validation and each type of line represents a specific
type of validation: The solid, dashed, and dotted lines represent Ncol, RMSE, and CC, respectively; the
cyan, black, and other color lines represent the results of direct validation, indirect validation without
QC, and indirect validation after a QC with different values of G. Subplot (c) is the same as (a), but only
the data from buoy 32,012 was used.

The wave model output used as a bridge here is a global hindcast with a rather coarse resolution.
Such a coarse resolution is typically not good at modeling high spatial-temporal gradients of SWHs,
which is usually induced by extreme events (e.g., storms) and shapes of fine-scale coastlines (e.g.,
island shadowing). Using a regional model with higher resolution should enable a better comparison
for indirect validation. Meanwhile, a method was presented here to alleviate these problems by
introducing a simple quality control (QC) parameter:

G =
∣∣∣Mre f −Mrs

∣∣∣ (8)

It was assumed to usually be difficult for the model to accurately present the SWH gradient
between two spatial-temporal locations if G is large. A threshold for G can be used to exclude cases that
are badly modeled. The results of the indirect validation of Envisat SWHs with different restrictions
(from 0.2 m to 1.0 m with an interval of 0.2 m) of G are shown in Figure 2b. The Ncol and RMSE both
decrease with decreasing the threshold, which is within expectation. The CC also slightly decreases
with decreasing threshold. This is because more high-SWH cases in storm events were excluded by
a stricter QC, which decreased the scatter of the SWHs. A slightly lower CC does not mean worse
comparison. Because it was found that the restriction of G < 0.6 m (the yellow lines in Figure 2b)
can effectively decrease the RMSE without excluding many samples, it was used in the following
analysis. The Ncol, CC, and RMSE for indirect in situ validation after a QC of G < 0.6 m are also shown
in Figure 2a as dot-dashed lines. The change of the Ncol before and after the QC is negligible on a
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log-scale. The CC remains almost unchanged within a 150-km radius before and after the QC, while
the RMSE becomes significantly lower after the QC, and almost does not increase with the radius
after 200 km. This is because most collocations within 500 km are within the “buoy network” in the
Northern Hemisphere. In this region, the model output can be corrected by the observations from
several nearby buoys using Equation (4). Therefore, a larger spatial window can be used for indirect
validation after this simple QC.

Outside this buoy network, the error still increases with the increase of collocation radius. For
example, Figure 2c shows both the direct and indirect validation results of Envisat SWH using Stratus
Wave Station (32012) which is the only buoy in the Southern Hemisphere (SH) in Figure 1 (the inner
plot). In this case, the RMSE/CC increases/decreases with the radius for both direct and indirect
validations. However, the increasing rate is slower for indirect validation than for direct validation.
Indirect validation using a spatial window of 160 km has the same RMSE and a higher CC than direct
validation using a spatial window of 50 km, while the Ncol is increased by an order of magnitude
compared with direct validation. Because there are fewer wave observations in the SH than in the
Northern Hemisphere, there is a need to fully utilize the observations to validate the SWH retrievals
in the SH, and indirect validation is also useful for the conditions for which few reference data
are available.

Figure 2a shows that the RMSEs of 50-km-window direct validation, 100-km-window indirect
validation without QC, and 150-km indirect validation QC were all about 0.27 m. To compare the three
validation methods, Figure 3 shows the Ncol, bias, and RMSE of Envisat SWHs for the three conditions
as a function of reference SWH. The results clearly indicate that indirect validation with QC increases
the Ncol at all SWHs. In the SWH range of 0.5-3.5 m, all three methods give a similar error estimate.
However, when SWH becomes larger, direct validation cannot provide stable estimates of the bias and
RMSE using only 1-year data because of shortness of collocations. This problem can also be solved
by indirect validation with more collocations at high SWHs. Even when the SWH is higher than 5 m,
more than 100 collocations can still be obtained by indirect validation. The results of indirect validation
with only one-year data show that the bias varies slowly with SWH and the RMSE increases almost
linearly with SWH, which matches the error features of altimeter SWH derived from many years of
direct validation [10], thus corroborating the strength of indirect validation.

Figure 3. The Ncol, CCs, and RMSEs of Envisat SWHs as a function of reference SWH. Each type
of validation is represented by a different color. Red: direct validation; Green: indirect validation
without QC; Blue: indirect validation with a QC of G < 0.6 m. The overlaid histograms show the
number of collocations, dashed lines show RMSEs, and the dotted lines show the bias at each SWH bin
(0.5 m interval).
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3.2. Direct/Indirect Cross Validation

Figure 4 shows the Ncol, CC, and RMSE as a function of the size of the spatial-temporal window for
both direct and indirect cross comparison (with a QC of G < 0.6 m) between Envisat and Jason-1 SWHs
for 2011. For direct cross-validation, the results are similar to those shown in Figure 2a, indicating
that the CC/RMSE decreases/increases with window size. A 30-min-50-km window corresponds to an
Ncol of ~8 × 104, a CC of 0.980, and an RMSE of 0.284 m. However, the distributions of CC and RMSE
indicate that a 30-min-50-km window might not be the optimal option. A 90-min-37.5-km window
achieves the same RMSE and CC but Ncol is twice as large.

Figure 4. (a,d) Ncol, (b,e) CCs, and (c,f) RMSEs of Envisat SWHs versus Jason-1 SWHs as a function of
the size of the spatial-temporal window. The upper row shows the results of direct cross-validation
and the lower row shows the results of indirect cross-validation with a QC of G < 0.6 m. The color
scales of the contours are identical for the same parameters.

For indirect cross-validation, the impact of QC on the Ncol was small, as shown in Figure 4a,d,
and the CC/RMSE also decreases/increases with window size. However, the gradient of CC/RMSE is
smaller in Figure 4e,f than in Figure 4b,c. With an RMSE of 0.284 m, corresponding to the 30-min-50-km
window of direct validation, ~2.7 × 105 collocations can be obtained by indirect validation using a
120-min-50-km window. This enlarges the temporal window four times. Even if compared with the
90-min-37.5-km window, indirect validation can increase the Ncol for more than 50%. Therefore, this
idea of indirect validation is also helpful for cross-validation.

4. Discussion and Conclusions

After removing the systematical bias between remote sensing data and reference data, their
variance can be decomposed as:

σ2 = σ2
rs + σ2

re f + σ2
st (9)

where σrs and σref represent the random error (RMSE) of the two datasets, and σst represents the
representativeness error induced by the difference of spatial-temporal locations of the two datasets. If
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the reference dataset is regarded as the “ground truth”, σref = 0. In the direct validation, σst is also
assumed to be zero so that σst is considered a part of σrs. In the indirect validation, σst is compensated
by numerical models so that σst is reduced, which can be regarded as the theoretical basis to explain
why indirect validation has a better performance than direct validation.

An important assumption behind indirect validation in this study is that the numerical wave
hindcast is able to partly resolve the difference between the modeled values at the altimeter observation
and the reference data. If the model data are completely wrong, indirect validation cannot get a better
result than direct validation. After years of development, most contemporary numerical hindcasts
have reasonable performance and can, at least, partly resolve this difference (e.g., [11,12]). With the
improvement of numerical models, the estimated σst can become increasingly accurate, from which
indirect validation will also benefit. For example, buoys close to coastlines are usually not used in
the validation of altimeter SWH because of the seaward sampling problem (e.g.,[6]). Buoys close to
coastlines are also not used in this study because the 0.5◦×0.5◦-resolution IOWAGA dataset is not
sufficient for resolving coastal wave processes. However, if a high-resolution numerical wave hindcast
is used, the coastal gradient of SWH can be considered and then many coastal buoys can also be
adequately utilized by indirect validation. Applying the indirect validation method to a high-resolution
model will be particularly useful for the validation of altimeter measurements in the coastal area
(e.g., [13]). In [13], the numerical wave model was also involved in the validation of altimeter SWH.
They used it to evaluate the co-variation between modeled values at the buoy and altimeter locations
using linear regression. However, the pattern of co-variation between two points is usually complicated.
For example, in the open ocean, there can be a time lag between the wave conditions at two points
considering the propagation of waves, which can lead to a bad regression. However, it is known that
the correlation between two points in the wave model output after shifting with the propagation time
of swells can be high even if they are thousands of kilometers away from each other [14]. In coastal
regions, the modulation of water depth can also lead to nonlinear co-variation between two points,
which can also lead to bad linear regression. Therefore, these co-variations should be better described
by simply the difference between two points in a numerical wave model.

In more advanced methods of error analysis, such as triple collocation (e.g., [15,16]), σref is also
not regarded as zero and the error is jointly analyzed using another independent data source (e.g.,
a numerical model). Another merit of the indirect validation presented here is that it is compatible
with triple collocation. Although Section 3 used model data for indirect validation, the information
used is only the gradient of SWH (the difference between two locations) instead of SWH itself, and
SWH is generally independent of its gradient. In fact, the idea of indirect validation is very close
to that of data assimilation, but only the “re-analysis” results near the reference observations were
used to validate other observations. More advanced data assimilation methods, such as optimal
interpolation (e.g., [17]), can be used to better consider the error of the “ground truth” (σref) to obtain a
better comparison. However, the method used in this study is easier to handle (no need to run a model)
and can better guarantee the independence between the model output and the “assimilated” results.
Therefore, information from the model can still be employed as an independent data source for triple
collocation. In addition, because the indirect in situ validation can greatly enlarge the spatial window
for collocation, it is even possible to triply collocate the SWH data from two altimeters and the buoys.

The key strength of indirect validation is that it can obtain more collocations than direct validation
for a given error tolerance. Therefore, it can shorten the time required for preliminary data calibration
and validation after the launch of a satellite. Moreover, indirect validation is particularly useful for the
conditions for which few reference data are available. This study used SWHs from altimeters as an
example to demonstrate the effectiveness of indirect validation. However, the method itself can be
used for many different types of remote sensing systems because σst in Equation (9) almost always
exists. Moreover, artificial intelligence is developing fast and is becoming widely used for designing
empirical retrieving algorithms of ocean remote sensing. A large number of collocations are needed
to train these algorithms, which can also be obtained by indirect validation. This study has shown
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the feasibility of indirect validation, and future studies can be conducted for detailed calibration and
validation of different remote sensing systems using this method.
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Appendix A

Table A1. The locations of the buoys used in this study.

Buoy ID Latitude Longitude Buoy ID Latitude Longitude Buoy ID Latitude Longitude

32012 19.425◦S 85.078◦W 42019 27.907◦N 95.352◦W 46006 40.782◦N 137.397◦W
41001 34.625◦N 72.617◦W 42020 26.968◦N 96.694◦W 46047 32.398◦N 119.498◦W
41002 31.76◦N 74.84◦W 42036 28.501◦N 84.516◦W 46059 38.072◦N 129.966◦W
41004 32.501◦N 79.099◦W 42039 28.788◦N 86.008◦W 46066 52.785◦N 155.047◦W
41010 28.884◦N 78.45◦W 42040 29.208◦N 88.226◦W 46072 51.656◦N 172.058◦W
41013 33.436◦N 77.743◦W 42055 22.12◦N 93.96◦W 46073 55.031◦N 172.001◦W
41040 14.559◦N 53.073◦W 42056 19.918◦N 84.938◦W 46076 59.502◦N 147.99◦W
41041 14.329◦N 46.082◦W 42057 16.908◦N 81.422◦W 46078 55.556◦N 152.582◦W
41043 21.132◦N 64.856◦W 42059 15.252◦N 67.51◦W 46080 57.947◦N 150.042◦W
41044 21.575◦N 58.625◦W 44008 40.504◦N 69.248◦W 46086 32.491◦N 118.035◦W
41046 23.832◦N 68.417◦W 44014 36.611◦N 74.843◦W 46089 45.925◦N 125.771◦W
41047 27.52◦N 71.53◦W 44017 40.694◦N 72.048◦W 51000 23.538◦N 153.808◦W
41048 31.86◦N 69.59◦W 44018 42.119◦N 69.7◦W 51001 20.849◦N 168.798◦W
41049 27.537◦N 62.945◦W 44025 40.251◦N 73.164◦W 51002 17.037◦N 157.696◦W
42001 25.897◦N 89.668◦W 46001 56.232◦N 147.949◦W 51003 19.289◦N 160.569◦W
42002 26.091◦N 93.758◦W 46002 42.612◦N 130.537◦W 51004 17.602◦N 152.395◦W
42003 26.007◦N 85.648◦W 46005 46.14◦N 131.07◦W 51101 24.318◦N 162.231◦W
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