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Abstract: The automated 3D modeling of indoor spaces is a rapidly advancing field, in which recent
developments have made the modeling process more accessible to consumers by lowering the cost
of instruments and offering a highly automated service for 3D model creation. We compared the
performance of three low-cost sensor systems; one RGB-D camera, one low-end terrestrial laser
scanner (TLS), and one panoramic camera, using a cloud-based processing service to automatically
create mesh models and point clouds, evaluating the accuracy of the results against a reference point
cloud from a higher-end TLS. While adequately accurate results could be obtained with all three
sensor systems, the TLS performed the best both in terms of reconstructing the overall room geometry
and smaller details, with the panoramic camera clearly trailing the other systems and the RGB-D
offering a middle ground in terms of both cost and quality. The results demonstrate the attractiveness
of fully automatic cloud-based indoor 3D modeling for low-cost sensor systems, with the latter
providing better model accuracy and completeness, and with all systems offering a rapid rate of data
acquisition through an easy-to-use interface.

Keywords: 3D modeling; indoor modeling; 3D reconstruction; multi-sensor; laser scanning; RGB-D
camera; panoramic camera

1. Introduction

Indoor 3D modeling has a large number of uses, including the planning of construction [1],
the preservation of cultural heritage [2,3], and providing a basis for a virtual reality applications [4].
While a model can of course be constructed manually, efficient measurement can be utilized for
reality-based modeling [5]. Terrestrial laser scanners (TLSs) provide dense and accurate geometric
information, though they are expensive [6], require the careful planning of scan locations, and can be
time-consuming to use [7]. In recent years, an increasing number of low-cost sensor systems for 3D
modeling using different operating systems have entered the market [8,9]. Easy-to-use laser scanners
for projects with moderate requirements for accuracy are available, including the Leica BLK360 [3].

Panoramic multi-camera systems are widely available as a lightweight, low-cost option [10]. A
number of low-cost consumer-grade panoramic cameras have entered the market, allowing the user to
capture a 360-degree view at once, thus reducing the number of images required to cover a scene [11].
Panoramic cameras have also been used for the photogrammetric modeling of indoor spaces, with 3D
models being possible to obtain through automatic processing, with camera calibration and the use of
an optimized projection improving the model quality [12].
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RGB-D cameras provide a more affordable and lightweight type of range sensor compared to a
TLS, and provide reasonably accurate results in comparison to them, though their range is shorter [13].
Depth information can be collected using active stereo, projecting an infrared pattern on the scene to
calculate depth [14], or, less commonly, using a time-of-flight approach [8], which can further be divided
into phase-shift [14] and pulse-based sensing [15]. RGB-D cameras, combining images with depth
information, add textures to the geometry without a need for key points as in photogrammetry [16].
While active stereo and time-of-flight are commonly used for the collection of depth information,
pulse-based sensing has only recently seen use in RGB-D cameras [15]. RGB-D cameras see indoor use
for positioning [17], as well as for mapping and modeling [9,18]. The integration of TLS data with
RGB-D camera data can improve the results of the modeling process, with the RGB-D camera offering
access to places the TLS does not [13].

While the ease of data collection and diminishing cost grow the potential user base of 3D
modeling equipment, additional processing is required to obtain a finished model. Traditionally,
manual modeling techniques have been necessary to produce models with sufficient accuracy and
completeness [19]. Manual modeling requires significant time and labor resources, particularly if using
data from multiple sources [20], and the automatic modeling of the built environment has been widely
explored as an alternative approach [9,12,21,22]. Approaches for the automatic generation of indoor
models include surface-based methods [23], primarily for visualization purposes, fitting volumetric
primitives to the measurement data, or constructing the room based on a shape grammar [24].

The extraction of geometric information from images has been conducted with a multitude of
methods, including a combination of spatial layout estimation and pose tracking [25] and the use of
textural-based features [26]. A recent increase in studies concerning 3D depth estimation from a single
image has been noted [27], where neural networks are used for determining the presence and position
of planes based on known ground truth, both for rectangular [28] and panoramic images [29]. The
automation of image-based reconstruction has advanced in recent years, with automated modeling
providing an efficient, low-cost alternative and results of good accuracy [22]. With personal cameras
being ubiquitous, image-based modeling is a widely accessible method for indoor modeling [30],
though the geometric information obtainable with TLSs or RGB-D cameras aids reconstruction, and
areas with sparse features remain an issue [31].

In automated reconstruction from laser-scanned point clouds, key issues are the presence of objects
within the space, causing occlusions [32], a lack of semantic information [33], and varying point density,
as well as artefacts from sensor errors [34]. Occlusions in the point cloud pose a challenge for automatic
modeling, though the reduction of their negative impact on the model quality through detecting
regularities in point clouds with significant occlusions has been explored [35]. The segmentation of
floors and walls can be done under the assumption that floors are horizontal planes and walls vertical
planes [30,33], though in more complex architectures, the division of a building into floors based solely
on height is unfeasible due to slanted roofs and walls, and spaces that span multiple levels of the
building [32]. A combination of region growing and planar segmentation has been explored as an
alternative for reconstructing spaces with no a priori assumptions about their geometry [36].

RGB-D cameras offer both geometric information and RGB images, though the low geometric
quality of the data can make the semantic segmentation of floors and walls challenging, and the
extraction of a point cloud from RGB-D data can be computationally expensive [37]. Alternatively, a
collection of range and color maps in a reference frame can be used as input for the reconstruction,
with the sensor’s positioning information aiding reconstruction [30]. For modeling RGB-D data,
deep learning approaches are common, with methods including the integration of the 2D semantic
segmentation of images with a 3D reconstruction [36], the 2D reconstruction of walls as polygonal
loops [37], and 3D volumetric segmentation [38].

The aim of this manuscript is to evaluate the quality of 3D point clouds and mesh models
produced with an automated, cloud-based modeling service, utilizing different low-cost sensor systems
(namely, an RGB-D camera-based system, a panoramic camera, and a TLS). With the emergence of
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cloud-based software services facilitating 3D mesh modeling from a variety of source data sets/sensor
systems, the question of how these differing sensor systems perform in the task of indoor modeling,
in combination with such automated processing systems, is raised. As these processing systems do
not allow user interaction in the processing phase, the final performance of the system consists of the
actual performance of the sensor system and the ability of the processing pipeline to operate with the
sensors [19].

2. Materials and Methods

2.1. Matterport Cloud

In this manuscript, the commercial indoor mapping system, Matterport, is utilized as an example
of automated indoor modeling. Matterport is an integrated system, offering an instrument for data
collection and cloud-based processing for model and point cloud creation. With the release of the
Matterport Cloud 3.0 update in January 2019, data from Matterport’s proprietary RGB-D cameras, the
Leica BLK360 laser scanner, and the Ricoh Theta V and Insta360 ONE X panoramic cameras can be
integrated into one project from which a model and point cloud can be produced automatically [39].
This expands the applicability of the automated modeling service beyond the proprietary instrument.
The system either uses depth information from a range-based sensor to obtain geometry to combine
with 2D panoramic images or derives depth data from 2D panoramic images using a neural network
to construct a model of the space [40]. If depth information is used, a panoramic image is also created
for each location, after which the pose of the camera is determined through bundle adjustment, aiding
the construction of a textured mesh [41]. In order to determine the space geometry, a library of 3D
space models with sensor and alignment data, as well as 2D image data, are used as the basis for the
neural network computations. For images, the relative positions and orientations of the images are
used to determine depth [40].

The ease of use and speed of model creation makes Matterport’s processing system a potentially
viable low-cost system for indoor modeling [9]. However, as a fully integrated system, no parameters
in the automatic processing can be altered to modify the result. Individual scans taken by the sensor
cannot be edited [42]. The resulting model can be viewed online in a web browser or in VR (virtual
reality) [7], with the user being able to transition from a view of the 3D model to a view of the panoramic
images taken from a single scan location [43]. The point cloud and mesh model of the space can be
downloaded for an additional fee [44].

2.2. Matterport Pro2 3D

The Matterport Pro2 3D RGB-D camera uses three RGB photo cameras and three active stereo
depth cameras, divided into three rows with one of each sensor. Two rows are inclined, one at an
upward and one at a downward angle, with the third row is set in a horizontal position. During a
scan, the system completes one full horizontal rotation, capturing images at six angles [9]. While the
manufacturer reports a range of 4.5 m [45], the recommended distances between scan locations are 1 m
for outdoor projects and 2.5 m for indoor projects [9]. While the Matterport camera has successfully
been used in an outdoor setting [46,47], the interference of sunlight at the wavelengths used by the
infrared camera may affect the 3D data acquisition and alignment of the scans [48,49]. In previous
studies, the Matterport camera has been shown to have low accuracy in comparison to laser scanners in
indoor modeling [7]. Furthermore, its use is limited by the low range, though the rapid data acquisition
and automatic processing offset these drawbacks to some extent [9].

2.3. Ricoh Theta V

The Ricoh Theta V is a dual lens 360-degree camera with a maximum still image resolution of
5376 x 2688 px. The 360-degree image is obtained with two fisheye lenses facing in opposite directions.
This results in a small zone of occlusion at the side of the device. Objects further than 10 cm from
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the lens are visible independent of their position with respect to the lenses [50]. The camera can be
controlled either by an on-camera user interface or through a mobile application [51], with the latter
being used for Matterport processing [38].

2.4. Leica BLK360

The Leica BLK360 terrestrial laser scanner operates with the time-of-flight principle (occasionally
also referred to as “pulse”-based laser scanning) [52] with a range of 60 m and the capability of
collecting 360,000 points per second. The manufacturer claims an accuracy of 6 mm at a distance of
10 m and 8 mm at a distance of 20 m [53], with the performance having been noted to adhere to the
specifications [3,54]. This makes the scanner appropriate for use in indoor spaces [55].

The data obtained with the BLK360 can be processed with Matterport’s processing system, in
the cloud, with the scanner being operated through Matterport’s Capture app [28]. Alternatively,
Leica’s proprietary Register360 software [56] or Autodesk ReCap Pro [57] applications can be utilized
to process the data further. Register360 can facilitate the automated co-registration of scans, or the
user can visually align the clouds and use the iterative closest point (ICP) algorithm to fine-tune the
alignment [56,58].

In this paper, the BLK360 is operated with the Matterport Capture app, after which the processing
is carried out via two alternative methods: firstly, the automated processing the Matterport cloud is
performed to obtain a point cloud and a textured mesh model. The resulting point clouds and meshes
are hereafter referred to as Matterport point clouds (Mpc) and meshes (My). Secondly, the default
processing offered in Register360 is used to automatically obtain a point cloud, referred to as Leica
point clouds (Lpc). These point clouds are used to examine the impact of the Matterport processing on
the results that can be obtained from the BLK360.

2.5. Leica RTC360

The Leica RTC360 terrestrial laser scanner is applied for obtaining a reference point cloud. Like
the BLK360, its function is based on time-of-flight [52]. With a data collection rate of two million
points per second, a range of 130 m, and an accuracy of 2.9 mm at 20 m [59], it is a suitable choice for
obtaining a reference point cloud. The measurement data are processed with Leica Register360. In the
scanning process, no targets are used, requiring the point clouds to be combined using automated
cloud-to-cloud matching in Register360.

2.6. Test Sites and Data Acquisition

Two test sites, shown in Figure 1, with different characteristics were used for testing the described
instruments. The Tetra Conference Hall at the Hanaholmen Swedish-Finnish Cultural Centre in Espoo,
Finland is a 173.5 m? hall with an irregular hexagonal shape and a roof height of 3.20 m. The interior is
quite large, and the curtains along the walls give it an unorthodox shape for the Matterport processing.
Lecture hall 101 at the Aalto University Department of Mechanical Engineering in Espoo, Finland is
rectangular with solid walls and, at 69 m?, is significantly smaller than the Tetra hall. It also has a
lower roof height at 2.50 m.

The characteristics of the applied instruments are presented in Table 1, as well as their end
products. The applied instruments are the Matterport Pro2 3D (M), Ricoh Theta V (T), Leica BLK360
(BM for Matterport-processed data, BL for Leica-processed data), and Leica RTC360 (R), which produce
point clouds (PC) and meshes (M).
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Figure 1. The test sites used for the comparisons; the Tetra hall viewed from the entrance (left) and hall
101 viewed towards the entrance (right).

Table 1. Overview of the selected sensor systems used for indoor mapping and modeling.

Instrument Type Weight (kg) Range (m)  Processing Product
Matterport Pro2 3D RGB-D camera 34 4.5 Matterport Mpc My
Ricoh Theta V 360-degree camera 0.121 15 Matterport Tpc Tm
Leica BLK360 Laser scanner 1 60 Mattgrport BMec BMy
Leica BLpc
Leica RTC360 Laser scanner 5.35 130 Leica Rpc
(reference)

Data acquisition was performed with each sensor in immediate succession for the conditions
between the sensors to remain as close as possible. In order to minimize outliers, the RTC360 scans
measured all points twice. The sensor systems were used as is to evaluate their performance as
purchased, though the results could potentially have been improved by calibration [3,60-62].

Table 2 shows an overview of the scanning process of both test sites, with the total scanning time
comprising the full scanning process from the start of the first scan to the end of the last, including the
time spent moving the instrument. For the BLK360, a low resolution corresponds to a 15 X 15 mm
resolution at 7.5 m, while a medium resolution corresponds to 10 x 10 mm at 7.5 m. For the RTC360
data, the instrument’s medium resolution corresponding to 6 X 6 mm at 10 m was used, and all points
were scanned twice, denoted as 2x.

Table 2. Overview of the scanning process for the two test sites.

Test Site Instrument Settings Number of Scans Total Scanning Time
Matterport N/A 44 52 min
Tetra Theta V N/A 104 58 min
BLK360 Medium resolution HDR 3 18 110 min
RTC360 Medium resolution 2x 9 42 min
Matterport N/A 15 22 min
Hall 101 Theta V N/A 33 35 min
BLK360 Low resolution HDR 3 18 105 min
RTC360 Medium resolution 2x 7 30 min

2.7. Comparison Methods

The processed point clouds and meshes were compared to the reference point cloud in
CloudCompare 2.10.2 [63] using cloud-to-cloud (C2C) and cloud-to-mesh (C2M) distance analyses. For
the distance analysis, point clouds and meshes were co-registered using the ICP algorithm following
an approximate manual alignment. In order to ensure an optimal registration, points outside the
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examined area were removed, eliminating the possibility of stray points affecting the registration. The
algorithm was set to finish once the root mean square error (RMSE) difference between two iterations
was less than 1075 m, as subsequent iterations would provide negligible benefit. The meshes were
sampled, and subsequently aligned in the same manner as the point clouds.

CloudCompare offers four methods for calculating C2C distances; direct Euclidean distance,
distance calculation with a least squares best fitting plane, using a 2.5D Delaunay triangulation of the
projection of the points on the plane, or with a quadratic function [64]. In this paper, the quadratic
function is used for the C2C calculation, as it is capable of representing smooth and curvy surfaces in
addition to straight planes. For C2M calculations, CloudCompare only supports the calculation of
Euclidean distances from the point cloud to the closest point on the mesh.

The analyses were conducted both on the room geometries with the furniture and all objects
between floor and roof level removed, and on a small, detailed segment of the room with furniture
present. In both cases, the segment consisted of a table with chairs, featuring small objects on the table.
This makes it possible to separately analyze the performance of the sensor systems in large spaces
with sparse features, as well as their capability to reconstruct detailed objects. In order to evaluate the
presence of outliers in the data, the 90th and 99th percentile deviations were calculated. Additionally,
the share of points below 1 cm was noted as a general, singular value of performance.

According to the ISPRS Benchmark on Indoor Modelling evaluation framework presented by [65],
the quality of indoor modeling can be assessed in terms of completeness (the extent of the reconstruction
of the reference), correctness (the extent of constructed elements present in the reference), and accuracy
(the geometric distance between the elements of the source and reference). While this framework
specifically concerns reconstructed mesh models, these principles can also be applied to point clouds,
though with differing calculations. The ISPRS benchmark defines accuracy as the median of the
unsigned distances between the reconstructed vertices of a geometric model and a reference surface.
The points of the compared point cloud can directly be used in place of mesh vertices, however, in this
papet, the closest point of the reference point cloud is used to measure C2C and C2M distances, rather
than measuring the distance to a reference surface.

For evaluating the accuracy of the tested sensor systems, we use the mean and standard deviation,
as the distribution of the errors between the point clouds and meshes displays the consistency of the
sensor systems’ performance throughout the data set better than the singular value of the median.

According to the benchmark, completeness is defined as the intersection between the source and
reference model, while the correctness is calculated as the area of intersection between the source and
reference summed over all surfaces. As point clouds do not contain surfaces, we used the 90th and 99th
percentile distances to measure completeness and correctness. As stray points outside the examined
space have been eliminated manually a priori, the 99th percentile distance is used to find any notable
inconsistencies, with a distance greater than a few centimeters (which could be explained by the limited
function of the sensor system) indicating an incomplete representation of elements in the compared
point cloud or mesh. The purpose of the 90th percentile value is twofold; an unexpectedly large value
points to significant inconsistencies in the elements, evaluating completeness and correctness, and
the value itself provides a measure of the accuracy. Finally, the share of points or vertices within 1
cm of any point in the reference point cloud is examined. This threshold was selected as it provides
a singular value of reference for evaluating the performance, with any deviations smaller than 1 cm
assumed to be located in an area with high correctness and completeness.

Additionally, the characteristics of the Matterport processing can be evaluated by examining the
point and triangle counts of the generated point clouds and meshes, with the numbers demonstrating
the impact of the system on the point cloud density.
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3. Results

From the Matterport processing system, a mesh and point cloud were obtained for each instrument.
The processing times required for Matterport (MP) and Leica processing are provided in Tables 3 and 4,
along with the point and triangle counts for each point cloud (PC) and mesh (M).

Table 3. Point and triangle counts for the obtained point clouds and meshes of the Tetra test site, and
the processing time required to obtain them.

Instrument Processing System Data Set Points/Triangles Processing Time
Matterport Matterport Mpc 8,165,597 170 min
Mm 395,035
Theta V Matterport Tpc 6,627,988 647 min
Tm 1,489,642
BLK360 Matterport BMpc 9,522,744 298 min
BMpm 301,355
BLK360 Leica BLpc 207,128,818 115 min

Table 4. Point and triangle counts for the obtained point clouds and meshes of the hall 101 test site,
and the processing time required to obtain them.

Instrument Processing System Data Set Points/Triangles Processing Time
Matterport Matterport Mpc 3,242,736 55 min
My 322,850
Theta V Matterport Tpc 2,835,404 118 min
Tm 1,119,757
BLK360 Matterport BMpc 3,210,683 55 min
BMpm 343,693
BLK360 Leica BLpc 23,826,220 70 min

In Tables 5 and 6, the results of the C2C and C2M analyses of the Tetra test site are shown, first for
the room geometry in Table 5 and followed by the detailed segment in Table 6. The results are further
divided into the analysis of point clouds and meshes in both cases.

Table 5. Results of the distance analysis of the Tetra room geometry.

Data Maximum Mean Standard 90th 99th Deviations

Set Deviation Deviation Deviation Percentile Percentile below 1 cm
(m) (m) (m) Deviation (m) Deviation (m) (%)
Mpc 0.414 0.008 0.010 0.014 0.044 75.72
Tpc 0.423 0.019 0.020 0.043 0.077 42.48
BMpc 0.547 0.010 0.026 0.014 0.139 79.41
BLpc 0.538 0.008 0.022 0.015 0.100 82.46
Mm 0.629 0.011 0.010 0.020 0.040 54.54
Tm 0.803 0.038 0.058 0.060 0.476 17.03

BMy 0.634 0.009 0.020 0.015 0.042 73.27
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Table 6. Results of the distance analysis of the Tetra segment.

Data Maximum Mean Standard 90th 99th Deviations

Set Deviation Deviation Deviation Percentile Percentile below 1 cm
(m) (m) (m) Deviation (m) Deviation (m) (%)
Mpc 0.190 0.012 0.019 0.034 0.096 73.19
Tpc 0.222 0.027 0.034 0.075 0.159 44.52
BMpc 0.162 0.011 0.012 0.026 0.057 63.61
BLpc 0.309 0.004 0.008 0.009 0.035 91.00
My 0.307 0.004 0.013 0.008 0.050 91.74
TMm 0.337 0.018 0.023 0.037 0.116 42.46
BMyp 0.311 0.012 0.029 0.031 0.149 77.94

Figure 2a,b demonstrates the difference between the Matterport and Theta V point clouds of the
room geometry, with the Theta V exhibiting notable error propagation towards the left of the image.
Figure 2¢) highlights the inability of the BLK360 to obtain full coverage of the desk in the segment,
while the Matterport has captured the scene to a larger extent, with the exception of some parts of the
objects in the scene close to floor level. For C2M distances, the results are always shown as projected
onto the reference point cloud; the desk has been fully covered in the reference, but is colored red in
the C2M analysis of the BLK360 data due to holes in the mesh.

C2C/C2M absolute distances [m]

0.05000
0.04375
0.03750
0.03125
0.02500
0.01875
0.01250

0.00000

Figure 2. From the Tetra data, C2C (cloud-to-cloud)distances of the Matterport (a) and Theta V point
clouds (b); C2M (cloud-to-mesh) distances of the Matterport-processed BLK360 (c) and Matterport (d)
segment meshes.

The results of the distance analysis of the hall 101 test site room geometry are shown in Table 7,
and Table 8 displays the results of the segment.
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Table 7. Results from the distance analysis of the hall 101 room geometry.

Data Maximum Mean Standard 90th 99th Deviations

Set Deviation Deviation Deviation Percentile Percentile below 1 cm
(m) (m) (m) Deviation (m) Deviation (m) (%)
Mpc 0.231 0.006 0.008 0.010 0.038 88.74
Tpc 0.284 0.013 0.013 0.031 0.053 53.37
BMpc 0.237 0.004 0.008 0.010 0.033 90.20
BLpc 0.498 0.002 0.003 0.004 0.008 99.44
My 0.489 0.008 0.009 0.012 0.041 80.12
TMm 0.722 0.020 0.027 0.038 0.093 33.01
BMyp 0.496 0.009 0.013 0.016 0.032 65.10

Table 8. Results from the distance analysis of the hall 101 segment.

Data Maximum Mean Standard 90th 99th Deviations

Set Deviation Deviation Deviation Percentile Percentile below 1 cm
(m) (m) (m) Deviation (m) Deviation (m) (%)
Mpc 0.181 0.008 0.013 0.022 0.065 77.22
Tpc 0.229 0.032 0.045 0.087 0.177 56.83
BMpc 0.160 0.005 0.009 0.014 0.043 84.53
BLpc 0.201 0.004 0.007 0.009 0.028 92.06
My 0.400 0.007 0.012 0.018 0.050 82.93
Tm 0.411 0.040 0.068 0.111 0.358 35.85
BMyp 0.407 0.015 0.023 0.030 0.130 57.50

Similarly to what can be seen in the Tetra data, Figure 3a,b shows that the Theta V suffers from
error propagation, which is found to a lesser extent in the BLK360 data. Figure 3c,d displays the
difference between the ability of the Matterport and Theta V to accurately reconstruct small details,
with the Theta V only being able to capture the general shape of the table.

C2C/C2M absolute distances [m]
0.05000

0.04375
0.03750
0.03125
0.02500
0.01875
0.01250

0.00000

Figure 3. From the hall 101 data, C2M distances of the Matterport-processed BLK360 (a) and Theta V
(b) meshes; C2C distances of the Matterport (c) and Theta V (d) segment point clouds.
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4. Discussion

4.1. Analysis of Data Acquisition and Processing Times

In terms of data acquisition times, longer-range instruments, such as the BLK360, become
advantageous in larger open spaces, requiring fewer scans to cover the entire space. For the spaces
used in this study, however, this is offset by the shorter scan duration of the Theta V and Matterport,
which also enables them to cover occluded areas quicker than the BLK360. While the intention of the
comparison was to study the capabilities of the sensor systems as is, in the state they are delivered
to a user, the calibration of the sensor systems could potentially improve the results. The Matterport
can be calibrated using a set of TLS-scanned targets and a comparison of their coordinates, which
has been shown to improve performance and eliminate the possibility of systematic errors in the
sensor system [3]. As a dual fisheye lens camera, the calibration of the Theta V is challenging [60],
but the successful calibration of its predecessor Theta S has been conducted [61]. The self-calibration
of the TLS can be conducted using either point or planar targets to ensure adequate data quality,
though correlation between the calibration parameters, particularly the scanner rangefinder offset
and the position of the scanner, must be accounted for. The use of an asymmetric target field and
the measurement of tilt angle observations has been found to reduce correlation, thus improving the
calibration [62].

The processing times differed notably between the sensor systems, as shown in Tables 3 and 4.
The choice of sensor system may even be impacted by the processing time; for example, the processing
of the Theta V data of the Tetra hall initially failed after 36 h, and required more than ten hours to
complete on a second attempt. Processing times in excess of 12 h may already complicate the daily
operation of systems. The Theta V data also took the longest to process of the hall 101 data sets, but
the difference was significantly smaller, and at slightly under two hours, it is a comparatively quick
process. For smaller spaces, the Theta V can be a viable option in terms of the required time resources,
though the 173.5 m? Tetra hall proved difficult to process, to the point of limiting the feasibility of the
Theta V in large spaces.

The geometric accuracy of the tested sensor systems with automatic processing should be adequate
for measurements being conducted on the resulting point clouds and models. In addition, sufficiently
dense point clouds or mesh models are required for accurate reconstruction and detailed visualization,
though a high density does not necessarily reflect the quality of the point cloud or model.

4.2. Point Cloud Density and Mesh Triangle Counts

As seen in Tables 3 and 4, the point count difference between the Matterport-processed point
clouds is smaller than the difference between the Matterport- and Leica-processed BLK360 point clouds,
as the Matterport processing limits the point clouds to a 1-cm grid by default unless the algorithm
detects details smaller than 1 cm. This detection differs depending on the sensor system used, and can
also lead to false positives, where the processing has detected details in the Matterport point cloud that
do not exist in reality, as shown in Figure 4. Conversely, however, small objects may not be present in
the Theta V point cloud.

The Leica processing does not limit the point cloud to a perceivable grid, creating a significant
difference in the point counts of the BLK360 point clouds depending on the processing system. The
Leica processing produces a dense point cloud, containing 2175% and 742% of the points of the
Matterport-processed BLK360 data for Tetra and hall 101, respectively. The markedly lower density
of the Matterport-processed point clouds may impact their feasibility in applications requiring the
visualization of point clouds, as the textures of the space or small details may not be visible in a sparse
point cloud.
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C2C absolute distances [m]
0.05000
0.04375
0.03750
0.03125
0.02500

0.01875
0.01250

0.00000

Figure 4. A detail of C2C distances of a featureless floor area in the hall 101 Matterport point cloud
(left) and Theta V point cloud (right).

When comparing the mesh triangle counts to point cloud point counts, we can see that the mesh
triangle counts vary less by the room size. This is likely a result of decimation in the Matterport
processing. Most notably, the BLK360 triangle count is lower for the larger Tetra hall than for the
smaller hall 101, this being notable with the curtains lining the walls containing complex shapes to
reconstruct. The Theta V is an outlier in both cases, however, with a triangle count several times that of
the other systems despite the Theta V point clouds having a lower point count.

4.3. Distance Analysis of Indoor Space Geometries

As shown in Tables 5 and 7, the C2C distances of the Matterport and BLK360 point cloud of the
room geometries are similar, with an improvement in accuracy for the BLK360 when Leica processing
is used. Figure 2 shows the difference between the sensor systems’ capabilities in a large space, with
the Matterport point cloud showing moderate deviations in the roof and the curtain along the walls,
while the Theta V point cloud is increasingly skewed towards the left parts of the image, also having
areas with clearly higher deviations along the curtain. Figure 5 shows the deviation of the Theta V
point clouds along the walls, where the shape for hall 101 is skewed, though it follows the general
shape of the wall, while the shape of the curtain in the Tetra hall has not been taken into account.

C2C/C2M absolute distances [m]
0.05000
0.04375
0.03750
0.03125
0.02500

0.01875
0.01250

0.00000

Figure 5. Detail of the walls in the hall 101 (top) and Tetra (bottom) Theta V point clouds in comparison
to the reference point cloud, shown in original color.

The deviations of the Matterport point cloud are consistent with the findings of [4], where the
errors in an indoor setting generally fell within the one-percent deviation stated by the manufacturer.
While [9] present a TLS-Matterport comparison where the roof height forces the Matterport to exceed
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its recommended range, our test sites have a roof height well within the range of the Matterport, and
the deviations of the area within its range appear similar. In our results, the deviations of the area
within the range of the Matterport appear similar for both test sites. The Matterport-processed BLK360
point cloud and Matterport point cloud exhibit similar characteristics in all metrics, while the Theta V
point cloud has larger deviations with a broader spread. With 53 percent of points within 1 cm of the
hall 101 room geometry reference point cloud, as noted in Table 7, it falls well below the Matterport,
which has the worst performance of the remaining sensors. Figure 6 shows the distribution of points
in the hall 101 room geometry, displaying the difference between the points located below the 90th
and 99th percentile of deviations, as well as the mean deviations. The mean indicates the spread of
deviations when used in conjunction with the 90th and 99th percentile deviations, as a mean close to
the 90th percentile deviation may point to outliers skewing the mean upwards. For the meshes, the
deviation is calculated as the distance from a point in the reference point cloud to the closest point on
the mesh. Both distributions are a measure of the ability of the sensor system to reconstruct geometry;
a high 99th percent deviation indicates inconsistencies in the presence of elements in comparison to the
reference, affecting completeness and correctness, while the 90th percent deviation measures accuracy,
and in the case of a high value, also indicates severe deficiencies in completeness and correctness. The
Theta V shows such values, while the Matterport and BLK360 with Matterport processing provide
better, similar looking results for point clouds and meshes alike. In contrast, the Leica-processed
BLK360 point cloud is superior to all other data sets, including the Matterport-processed BLK360 data.

0.1
0.09
0.08
__0.07
é 0.06
c
2 0.05
R
q>) 0.04
A 0.03
0.02
0.01
0 I
MPC TPC BMPC BLPC MM ™ BMM
Data set

M Deviation of points below 99th percentile deviation
M Deviation of points below 90th percentile deviation

— Mean deviation

Figure 6. The deviations of the points within the 90th and 99th percentile deviations for the hall 101
room geometry, with mean deviations noted.

In the meshes, the Theta V was an even further outlier than in the point clouds, with only 17
percent of the points in the Tetra room geometry reference cloud at a distance below 1 cm from the
mesh. While the Theta V mesh contains more triangles than the other two meshes combined, this does
not reflect positively in the C2M distance analysis, as seen in Figures 2 and 3. Unlike for the point
clouds, the Matterport-processed BLK360 clearly outperforms the Matterport. Figure 7 displays the
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two point clouds, showing the relative consistency of the BLK360 between the point clouds and the
meshes in comparison to the Matterport.

C2C/C2M absolute distances [m]
0.05000
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Figure 7. From the Tetra room geometry, C2C distances of the Matterport (a) and Matterport-processed
BLK360 (b) point clouds; C2M distances of the Matterport (c) and BLK360 (d) meshes.

The mean deviations do not significantly differ, though the Matterport exhibited a higher variance.
The Theta V remains the outlier of the three tested sensor systems, showing larger C2M distances
than the BLK360 and Matterport in every metric. In [10], panoramic photogrammetry is used to
automatically generate a model from Samsung Gear360 images. With the default projection, the errors
are larger than those we obtained with the Theta V, though by using a custom projection, the authors
of [10] were able to achieve a higher degree of accuracy in photogrammetric modeling.

In a detailed segment, the results of Tables 6 and 8 show a clearer difference between the Matterport
and the Matterport-processed BLK360 data than is the case for the room geometry. As in the room
geometry, the Theta V remains the clearly worst-performing sensor system. The choice of processing
system for the BLK360 data clearly impacts the quality of the point cloud, with the Leica processing
providing more accurate results, though the Matterport-processed BLK360 point cloud remains superior
to the Matterport point cloud. Figure 8 displays the difference between the Matterport point cloud and
the two BLK360 point clouds of the hall 101 segment.

The authors of [9] show a TLS-Matterport comparison, where the Matterport cannot accurately
represent detailed areas. The choice of processing method makes a larger difference for the BLK360 in
the detailed segment than for the room geometry, as the Leica-processed BLK360 point cloud exhibits
the best results in every metric. A benefit of the Matterport processing for the BLK360, however, is the
possibility to use an online walkthrough, and the measurement data captured by operating the scanner
in Matterport’s Capture app can also be processed with Leica’s proprietary processing system.
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Figure 8. C2C distances of the Matterport (a), Matterport-processed BLK360 (b), and Leica-processed
BLK360 (c) point clouds in the hall 101 segment.

In the meshes of the segments, the Matterport outperforms the BLK360 in both spaces, having a
larger share of points within 1 cm of the reference point cloud. The Theta V still exhibits the largest
deviations, though it performs slightly better in the segment mesh than in the point cloud, as shown in
Figure 9. The chairs by the desk have not been reconstructed in either Theta V data set, while the other
sensor systems are capable of doing so.

b)
C2C/C2M absolute distances [m]
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Figure 9. C2C distances of the Theta V point cloud (a) and Matterport point cloud (b); C2M distances
of the Theta V mesh (c) in the Tetra segment.

The results of the hall 101 segment follow the ones of the Tetra segment, with similar differences
between the sensor systems. Among the segment point clouds, the BLK360 outperforms the Matterport
regardless of processing system, as shown in Figure 8. The opposite is true for the meshes, where
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the Matterport is ahead of the BLK360 in every metric. This may point to Matterport’s processing
system having the best compatibility with their proprietary sensor system, despite also supporting the
Leica BLK360, which optimally provides more accurate point clouds, particularly if processed through
Leica’s processing system. If a higher-quality mesh is desired, Leica-processed point clouds must be
processed with third-party software. The Theta V performs at a similar level to the Tetra segment in
the point cloud, but its accuracy drops further in the mesh processing. The meshes of the hall 101
segment are presented in Figure 10.

C2M absolute distances [m]
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Figure 10. C2M distances of the Matterport (a), Theta V (b), and BLK360 (c) meshes in the hall
101 segment.

In both segments, it can be noted that the Theta V performs poorly in reconstructing details,
and even larger objects, causing significant completeness deficiencies in the data. If comparing
the RGB-colored hall 101 segment point clouds of RTC360 and Theta V in Figure 11a,b, significant
differences can immediately be seen. The computer on the table is missing entirely, and the furniture
is poorly defined. Figure 11c shows the points on the RTC360 point cloud at a distance larger than
the 90th percentile deviation to the Theta V point cloud, as the RTC360 point cloud contains more
details, allowing the areas not captured by the Theta V to be easily distinguished. The points above the
99th percentile deviation in Figure 11d show the areas with the most significant completeness issues.
Figure 11e shows the points with a deviation of larger than 1 cm, which corresponds to 43 percent of all
points. These points are found throughout the point cloud, though less so on the surface of the table.

In all tested scenarios, the Matterport performs reasonably well, with the share of points below 1
cm falling within a maximum of eight percentage points in comparison to the BLK360 with Matterport
processing, and the Matterport performing better by 73 to 64 percent in the Tetra segment. While
the BLK360 mostly provided the best results for the Matterport-processed data, the Leica-processed
BLK360 point cloud showed the lowest C2C distances up to the 90th percentile in every case. The
room geometry mean deviations for of the Leica-processed BLK360 point cloud were 8 mm in the Tetra
conference hall and 2 mm in the hall 101 test site, supporting the accuracy described in [3,40], though
the deviations of the Matterport-processed point clouds and meshes were larger, and the difference
was more pronounced in the detailed segments. The BLK360 uses a unique tripod, and is incompatible
with most tripods used for other instruments, with the scanner base set to a height of 110 cm, which
barely enables the scanner to reach the surface of a table of average height. In the Matterport-processed
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mesh of the Tetra segment displayed in Figure 2d, the top of the desk is mostly absent, causing large
discrepancies between the mesh and the reference point cloud. Should the BLK360 be used from a
taller height than the proprietary tripod, the results would be expected to improve, given its high
accuracy in the areas in full view of the instrument. The other sensor systems can be set up on tripods
of multiple types, and can be used from any height.

Figure 11. The RGB-colored RTC360 (a) and Theta V (b) point clouds of the hall 101 segment, with the
clearest visual differences noted; the points on the RTC360 point cloud with a distance to the Theta

V point cloud larger than the 90th percentile deviations (c), 99th percentile deviations (d), and 1 cm
(e), with points exceeding the threshold shown in red. Significant completeness issues can be seen,
particularly in the 99th percentile deviations.

The Theta V is the clear outlier in every scenario, consistently showing the weakest performance
of the tested sensor systems. While featureless areas are difficult for image-based sensors to model due
to a lack of points to connect the images with, the processing has extracted sufficient geometry for
the Theta V to create a full model of the room geometries. The largest deviations can be found in the
details of the segment, as the Theta V is incapable of modeling small objects, with the objects on the
tables not being present in either model. While small objects are missing entirely, there are also issues
in modeling furniture, with objects being reduced to horizontal or vertical surfaces, e.g., the chairs
by the table in the hall 101 segment, as seen in Figure 3d. Thus, the Theta V is unsuited for projects
in which the shapes of objects within the space are to be reconstructed with a reasonable degree of
accuracy. It remains a feasible alternative for obtaining the general geometry of a space, however.

5. Conclusions

The increasing availability of cloud-based software systems for automatic 3D modeling of indoor
spaces and their compatibility with a number of differing sensor systems makes these systems an
increasingly attractive alternative for indoor modeling. In this study, the results of the automatic,
cloud-based processing of 3D point clouds and mesh models using data from different low-cost sensor
systems were evaluated.
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We have conducted a comparison between point clouds and meshes produced by the Matterport
processing system based on data from the Ricoh Theta V panoramic camera, the Matterport Pro2 3D
RGB-D camera, and the Leica BLK360 laser scanner, using a high-quality Leica RTC360 point cloud
as a reference. As a black-box system, the exact function of the Matterport processing system is not
publicly disclosed. Therefore, the results reflect both the performance of the sensors and the ability of
the processing system to utilize scan data with no user input. As the BLK360 is compatible with both
Matterport processing and Leica’s proprietary processing system, with the latter producing a point
cloud, the impact of the Matterport processing on the TLS data was also examined.

A full model of the room geometry could be obtained from the automatic processing in all tested
cases. Issues with error propagation, difficulty in finding sufficient features in the walls, and in the
case of the Tetra hall, the irregular structure of the walls, affected the results, though all results fell
well within the tolerances stated by the manufacturer. In a detailed segment, the ability of a laser
scanner to capture small details was highlighted, with the Leica-processed BLK360 cloud showing
the best accuracy. Using Matterport processing, the low scanning height and consequently low point
density of objects located on a similar height to the scanner affected the results, as the Matterport
outperformed the BLK360 with Matterport processing in both segments. As with the room geometry,
the accuracy of the modeled areas fell within the tolerance stated by the manufacturer, with larger
deviations stemming from the inability of the sensor system to capture data from particular areas, thus
producing a model with limited completeness.

While the results demonstrate issues both with the performance of the sensor systems and the
ability of the processing system to utilize the scan data, the tested processing system offers a low-cost
solution for modeling indoor environments, where centimeter-level precision is not required and a
visually pleasant model is desired. With the tested sensor systems ranging from a consumer-grade
panoramic camera to a professional-grade laser scanner, the sensor system should be selected depending
on the needs of the user. The automatic cloud-based processing of indoor scan data and panoramic
images provides a viable alternative for the rapid modeling of indoor spaces, with a high rate of data
acquisition and low time and resource requirements.
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