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Abstract: In recent years, with the improvement of synthetic aperture radar (SAR) imaging
resolution, it is urgent to develop methods with higher accuracy and faster speed for ship detection
in high-resolution SAR images. Among all kinds of methods, deep-learning-based algorithms
bring promising performance due to end-to-end detection and automated feature extraction.
However, several challenges still exist: (1) standard deep learning detectors based on anchors
have certain unsolved problems, such as tuning of anchor-related parameters, scale-variation and
high computational costs. (2) SAR data is huge but the labeled data is relatively small, which may
lead to overfitting in training. (3) To improve detection speed, deep learning detectors generally
detect targets based on low-resolution features, which may cause missed detections for small targets.
In order to address the above problems, an anchor-free convolutional network with dense attention
feature aggregation is proposed in this paper. Firstly, we use a lightweight feature extractor to extract
multiscale ship features. The inverted residual blocks with depth-wise separable convolution reduce
the network parameters and improve the detection speed. Secondly, a novel feature aggregation
scheme called dense attention feature aggregation (DAFA) is proposed to obtain a high-resolution
feature map with multiscale information. By combining the multiscale features through dense
connections and iterative fusions, DAFA improves the generalization performance of the network.
In addition, an attention block, namely spatial and channel squeeze and excitation (SCSE) block
is embedded in the upsampling process of DAFA to enhance the salient features of the target and
suppress the background clutters. Third, an anchor-free detector, which is a center-point-based
ship predictor (CSP), is adopted in this paper. CSP regresses the ship centers and ship sizes
simultaneously on the high-resolution feature map to implement anchor-free and nonmaximum
suppression (NMS)-free ship detection. The experiments on the AirSARShip-1.0 dataset demonstrate
the effectiveness of our method. The results show that the proposed method outperforms several
mainstream detection algorithms in both accuracy and speed.

Keywords: ship detection; convolutional neural networks (CNN); synthetic aperture radar (SAR);
anchor-free; feature aggregation; attention mechanism

1. Introduction

Ship detection in synthetic aperture radar (SAR) images plays a significant role in many
aspects, such as maritime management, information acquisition and so on. It has received much
attention in recent years. Traditional ship detection methods are usually composed of the following
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steps: (1) sea–land segmentation; (2) data preprocessing; (3) prescreening; and (4) false alarm
elimination [1–4]. On this basis, researchers have developed a variety of methods, mainly including
clutter modeling-based [2,5], multi-resolution-based [6,7], domain transformation-based [8,9],
handcraft feature-based [10,11] and polarimetric information-based methods [12]. These traditional
methods are suitable for detecting strong scattering targets in low-resolution SAR images. With the
improvement of SAR imaging resolution, the accuracy, robustness and efficiency of these methods are
difficult to be guaranteed due to their complex detection process [13–16]. Therefore, it is necessary to
develop methods with high accuracy and fast speed for ship detection in high-resolution SAR images.

Recently, deep-learning-based methods, especially deep convolutional neural networks (DCNNs),
have achieved better accuracy and faster speeds over traditional methods in computer vision, thanks to
the powerful automated feature extraction ability of DCNN. Due to the superior performance, they have
been widely studied by researchers [17–20]. For example, Ren et al. [21] put forward to use the region
proposal network (RPN) in Faster-RCNN to replace the selective search algorithm, which largely
improves the detection efficiency and accuracy. The single-shot multibox detector (SSD) by Liu et al. [22]
and you only look once (YOLO) by Redmon et al. [23] regress the location and the category of the targets
directly through the features by the feature extraction network without extracting candidate regions,
further improving the detection efficiency. In the task of ship detection in SAR images, DCNN-based
methods have also achieved good performance. In previous research, researchers tried to combine
DCNN into the four steps of traditional ship detection (sea–land segmentation, data preprocessing,
prescreening and false alarm elimination). For example, Liu et al. [24] proposed to conduct sea–land
segmentation and ship detection using pyramid features extracted by DCNN. Zhao et al. [25] proposed
coupled convolutional neural networks (CNN) to extract candidate ship targets. In recent studies,
to improve the detection efficiency and accuracy, researchers directly take origin SAR images as the
input of DCNN, without sea–land segmentation or data preprocessing. In this way, the automatic
feature extraction ability of DCNN can be fully utilized and ship detection can be accomplished
end-to-end. For example, Zhao et al. [26] presented a ship detection method based on Faster-RCNN.
They use DCNN to extract multiscale features directly from the original intensity map of SAR images,
achieving automatic candidate determination and discrimination. Kang et al. [27] fused shallow
and deep features of DCNN to combine contextual information from the origin SAR images for ship
detection. Cui et al. [28] put forward to enhance the feature extraction ability of Faster-RCNN through
dense connections and the attention mechanism. Gao et al. [29] combined spatial attention blocks and
split convolution blocks in RetinaNet for multiscale ship detection in SAR images. Chen et al. [30]
embedded an attention module into the feature extraction process of DCNN to conduct ship detection
in complex scenes of SAR images. Zhang et al. [31] proposed a DCNN based on depth-wise separable
convolution to realize high-speed SAR ship detection. Chang et al. [32] presented an improved YOLOv3
to conduct real-time SAR ship detection.

The above DCNN-based methods all adopt an anchor-based mechanism for ship detection,
where they have to manually set different sizes and aspect ratios of anchors before training and testing.
The detection is accomplished by predicting the category of the anchors and the errors between anchors
and real bounding boxes. Some disadvantages exist in these anchor-based methods: (1) The sizes and
aspect ratios of the anchors need to be carefully configured in advance. Nevertheless, it is difficult to
make this optimal, leading to performance degradation. For example, in [33], the average precision
of the detection results drops 4% because of the defective anchor settings. (2) The anchors are fixed
once they have been configured, which makes it difficult for the detector to deal with the situation
that the target scales change greatly. For different data sets, it is also necessary to readjust the anchor
settings. (3) The densely distributed anchors lead to massive computational costs in the training
process, and the nonmaximum suppression (NMS) postprocessing algorithm [34] is required to screen
out duplicate detections.

To overcome the above problems, researchers develop alternative detection methods.
These methods conduct detection by regressing the key points of targets, and hence anchors are
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not necessary. For instance, Law et al. [35] proposed to predict the bounding box of the targets by
regressing the upper left corner and the lower right corner of the target. Tian et al. [36] encode the
target position by predicting 4D vectors pixel by pixel to achieve anchor-free detection. Yang et al. [37]
use deformable convolution to predict a group of key points for each target. The location of the
target is acquired according to the minimum bounding box of the key points. In recent studies,
for anchor-free SAR ship detection, researchers used fully convolutional networks to segment the ship
targets from the SAR images. For example, Fan et al. [38] propose to use an improved U-net architecture
to conduct pixel-wise segmentation of the ship targets in polarimetric SAR images. Mao et al. [39]
perform efficient ship detection by using a simplified U-net. However, anchor-free ship detection by
segmentation requires pixel-wise labeling of the SAR data, which is very time-consuming. In this paper,
to overcome the drawbacks of anchor-based methods, we introduce an anchor-free detector in our
method, namely center-point-based ship predictor (CSP). CSP achieves anchor-free ship detection by
predicting the center-point of the target and regressing the size of the target at the same time. There is no
pre-set anchor or massive anchor-related calculation. In addition, the detection results can be obtained
without using an NMS postprocessing algorithm, thus further improving the computational efficiency.

In addition, a large number of parameters leads to high computational costs for most of the
DCNN-based detection algorithms. In order to improve the detection efficiency, they usually detect
targets on the feature maps with the lowest resolution and the strongest semantic information.
However, this may cause missed detections for small targets. A large number of parameters also
leads to the overfitting problem when the system is trained on the SAR data set with limited labeled
samples. To alleviate this problem, researchers train the DCNN models by fine-tuning the models
pretrained on the ImageNet [40] dataset. However, the pretrained models and the models for SAR
ship detection have great differences in the training objective functions and target distributions,
which may bring the learning bias. Therefore, in this paper, we adopt a lightweight feature extractor
based on MobileNetv2 [41] to extract multiscale ship features, which improves the detection speed
and the generalization performance of the network. For the multiscale features extracted by the
feature extraction network, we propose a novel feature aggregation scheme called dense attention
feature aggregation to strengthen the feature reuse and further improve the generalization ability.
Combining the above ideas, our method can be trained directly on the SAR data set without pretraining.
High-resolution features with multiscale information can be obtained by dense attention feature
aggregation (DAFA) for anchor-free ship detection.

To sum up, to overcome the defects existing in current DCNN-based SAR ship detection methods,
in this paper, we first use a lightweight feature extractor based on MobileNetV2 to extract multiscale
features of the origin SAR images. By replacing the standard convolution with the depth-wise separable
convolution, the network parameters are effectively reduced and the computational efficiency is greatly
improved. Next, to improve the detection performance for multiscale targets, especially small ship
targets, we propose a novel feature aggregation scheme, i.e., DAFA, to deeply fuse the extracted
multiscale features and generate high-resolution features. In DAFA, through the dense connections
and the iterative feature fusions of adjacent scale features, the representation ability of the features is
enhanced. The feature reuse strategy is utilized to improve the generalization ability of the model.
We embed an attention module squeeze and excitation (SCSE) into DAFA to exert attention over
the salient features of the targets and reduce the background clutters. Finally, the deeply-fused
high-resolution features are fed as input towards the anchor-free detector CSP. The three subnetworks
of CSP predict the center-points, sizes and downsampling errors of the ship targets, respectively,
to achieve anchor-free and NMS-free ship detection. The effectiveness of our method is evaluated on
the AirSARShip-1.0 data set consisting of Gaofen-3 SAR images [42]. The experimental results show
that our proposed method can achieve better detection accuracy and speed than other mainstream
DCNN-based ship detection methods.

The rest of the paper is arranged as follows: Section 2 introduces our proposed method in detail,
which mainly includes the lightweight feature extractor, dense attention feature aggregation and
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center-point ship predictor. The experimental results on the AirSARShip-1.0 data set are given in
Section 3 to quantitatively and qualitatively evaluate the effectiveness of our method. In Section 4,
we discuss the influence of the network’s width on the detection performance and further validate the
components’ effectiveness. Section 5 gives the conclusion.

2. Materials and Methods

Figure 1 illustrates the detailed architecture of our proposed method, which can be divided into
three parts from left to right: the lightweight feature extractor, dense attention feature aggregation
(DAFA) and the anchor-free ship detector, namely center-point-based ship predictor (CSP). Firstly,
the input SAR image is processed by a convolution layer with stride = 2 to reduce the size of features
and expand the receptive field. Then, features of four different scales {C1, C2, C3, C4} are extracted
through the four convolution stages of the lightweight feature extractor. These multiscale features are
gradually refined in DAFA through dense iterative connections, which generates the refined multiscale
features {P1, P2, P3, P4}. Next, the high-resolution features P4 are successively fused with {P1, P2, P3}
by 2×, 4× and 8× upsamplings. We embed an attention block, which is the SCSE block, into the
upsampling process to emphasize the salient features of the ship targets, suppress the background
clutters and optimize the representation ability of the features. Through DAFA, the high-resolution
feature Fout is obtained and fed into CSP for further anchor-free ship detection. CSP is mainly composed
of three sub-branches: (1) ship center estimation branch for predicting the location of the ship centers.
(2) Ship size regression branch for estimating the length and width of ship targets, and (3) center
offset regression branch for compensating the downsampling errors. Anchor-free and NMS-free ship
detection is achieved by merging the results of these three branches. In this section, we will introduce
the three parts of our method, respectively, in detail.
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Figure 1. Architecture of our proposed method, which mainly consists of the lightweight feature
extractor, dense attention feature aggregation, and center-point-based ship predictor. {C1,C2,C3,C4} are
features of different scales by the four convolution stages of the feature extractor; {P1,P2,P3,P4} stand
for the multiscale features refined by dense iterative connections; Fout denotes the output feature of
dense attention feature aggregation (DAFA); the red, blue and green arrows in DAFA denote 2×, 4×
and 8× upsamplings, respectively, “A” denotes the squeeze and excitation (SCSE) attention block and
“⊕” denotes the element-wise addition operation.

2.1. Lightweight Feature Extractor Based on MobileNetV2

In DCNN, high-level features usually have a larger receptive field, and stronger semantic
information. Therefore, they are suitable for detecting large targets. On the other hand, shallow features
usually contain less semantic information while maintaining a higher resolution. So, they are more
capable of detecting small targets. For improving the performance of multiscale ship detection
in SAR images, researchers extract multilevel features using DCNN [43,44]. However, detection
based on multiscale features usually leads to an increase in parameters and computational costs.
The generalization ability of DCNN in SAR data also declines due to the increase in parameters. In this
paper, in order to reduce the parameters of DCNN and improve the detection speed, we adopt the
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lightweight feature extractor based on MobileNetV2 to extract the multiscale features of SAR images.
The specific structure of the lightweight feature extractor is illustrated in Table 1.

Table 1. Structure of the MobileNetV2-based feature extractor, where t denotes the dimension expansion
ratio of the features after the first 1 × 1 convolution layer in inverted residual blocks (IRB); c represents
the number of output channels; s stands for the stride; and n indicates to stack the operation for n times.

Stage Input Operation t c n s Output Name

1

512 × 512 × 3 Conv2d - 32 1 2 -

256 × 256 × 32 IRB 1 16 1 1 -

256 × 256 × 16 IRB 6 24 2 2 C4

2 128 × 128 × 24 IRB 6 32 3 2 C3

3

64 × 64 × 32 IRB 6 64 4 2 -

32 × 32 × 64 IRB 6 96 3 2 -

32 × 32 × 96 IRB 6 160 3 1 C2

4 16 × 16 × 160 IRB 6 320 1 2 C1

As given in Table 1, the structure of the lightweight feature extractor can be mainly divided
into four convolution stages. Each stage outputs one feature with different scales, represented by
{C1, C2, C3, C4}. Each stage is composed of several conventional convolution layers or inverted residual
blocks (IRB). The parameter settings of these operations are also shown in Table 1. Among them,
t denotes that the first 1 × 1 convolution layer and IRB increases the dimension of the features by
t times; c represents the number of output channels; s stands for the stride, the resolution of the features
reduces to half when s = 2; and n indicates to stack the operation for n times. The specific introduction
for IRB can be referred to [41]. It mainly consists of two 1 × 1 convolutions and a 3 × 3 depth-wise
separable convolution (DSConv). By replacing the standard convolution with a combination of a
depth-wise convolution and a point-wise convolution, the computational cost of DSConv is reduced by
a factor of (k2 + do)/(dok2) [41,45]. d0 and k represent the number of output channels and the kernel
size, respectively. For instance, the computational cost of 3 × 3 DSConv is about 1/9 of the standard
3 × 3 convolution, which greatly improves the efficiency of the network.

In addition, the width of the network, i.e., the dimension of the feature maps, largely determines
the number of parameters. For data sets of different sizes, reasonable adjustments on the width of
the network can effectively reduce the parameters and improve the generalization ability. There are
a total of seven kinds of IRB in the feature extractor. The numbers of their output channels are
{16, 24, 32, 64, 96, 160, 320}. We use the following rules to adjust the output channels of IRB (the width
of the network):

t = max(d, bbαcold + d/2c/dc × d)

cnew =

{
t + d t < 0.9αcold

t t ≥ 0.9αcold

(1)

where cold denotes the original dimension of output features and cnew denotes the adjusted dimension
of output features. d represents a divisor. In this paper, we set d = 8 in all the experiments. α is the
adjustment ratio. A typical range for α is (0,2). b·c indicates rounding down operation. According to
Equation (1), the width of the network can be adjusted proportionally to α. At the same time, the new
numbers of channels satisfy that: (1) They can be divided by d; (2) and all of them are greater than
0.9αcold. For example, given α = 0.5, the numbers of the output channels of seven IRBs are adjusted to
{8, 16, 16, 32, 48, 80, 160}. In the discussion section of this paper, we further discuss the influence of the
width of the network on detection performance.
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2.2. Dense Attention Feature Aggregation

In this paper, we propose a novel feature fusion scheme called dense attention feature aggregation
(DAFA) to deeply fuse multiscale features by the feature extractor. Through DAFA, high-resolution
features with multiscale information are obtained for further ship detection. To introduce DAFA in
detail, this section is divided into two parts. In the first part of the section, the design idea of DAFA is
derived by analyzing the weakness of several existing methods. In the second part, we describe the
basic feature fusion unit of DAFA. The SCSE block is introduced to enhance the representation ability of
the features by emphasizing the salient features of the targets and suppressing the background clutters.

2.2.1. Ideas of Dense Attention Feature Aggregation

In order to detect multiscale ship targets, especially small ship targets in SAR images, it is of
vital importance to obtain high-resolution features with multiscale information. The high-resolution
features C4 by the feature extractor are not capable for the ship detection because of its limited receptive
field and shallow semantic meanings. Therefore, a well-designed feature fusion process is necessary
to combine multiscale information and obtain high-resolution features. To show the design ideas of
our proposed feature aggregation process, Figure 2 illustrates different kinds of feature aggregation
schemes. We will introduce the design ideas of our method by analyzing the weaknesses of several
existing methods and making improvements over these methods.
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Figure 2. The structure of different feature aggregation schemes. (a) Long skip connection (LSC);
(b) iterative deep aggregation (IDA); (c) dense iterative aggregation (DIA); (d) dense hierarchical
aggregation (DHA); (e) dense attention feature aggregation (DAFA).

Figure 2a shows a classic feature fusion structure [46], namely long skip connections (LSC).
Among the multiscale features {C1, C2, C3, C4} by the feature extractor, C1 is the smallest but with
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richest semantic information. LSC gradually upsamples C1, and fuses it with the other three features,
C2, C3 and C4, through long skip connections. This process can be described as follows:

Pn = L(C1, C2, · · · , Cn) =

 C1

L(S(C1, C2), · · · , Cn)

i f n = 1

otherwise
, (2)

where Ci represents the feature maps of the ith scale output by the feature extractor, Pi represents the
refined feature maps of the ith scale, L(·) represents the LSC feature aggregation process, and S(·)
represents the feature fusion block. In the feature fusion block, low-resolution features are upsampled
to the same resolution as the high-resolution features. Then they are fused by element-wise addition.
n is the number of multiscale feature maps by the feature extractor. In our model, n = 4.

LSC is able to produce high-resolution features while the fused results are relatively coarse due to
the skip connections. The fusion process shown in Figure 2b is improved by introducing iterative short
connections [47]. This process is called iterative deep aggregation (IDA), which can be expressed by
Equation (3):

Pn = I(C1, C2, · · · , Cn) =


C1

S(P1, C2)

S(Pn−1, I(C2, · · · , Cn))

i f n = 1

i f n = 2

otherwise

, (3)

where I(·) denotes the IDA process.
The iterative aggregation of features enhances feature representation and combines multiscale

information from coarse to fine. However, drawbacks still exist in this kind of fusion scheme. There only
exist short connections between feature maps, which leads to the problem of gradient vanishing.
Recent studies have shown that adding long skip connections to the network is helpful for detection.
It mitigates the gradient vanishing problem and the overfitting problem by feature reuse [48,49].
Inspired by this idea, we propose to combine short connections and long connections to form dense
connections. The derived dense iterative aggregation (DIA) process is shown in Figure 2c. The fusion
process can be expressed iteratively by Equation (4):

Pn = T(C1, C2, · · · , Cn) =


C1

S(P1, C2)

S(Pn−1, Cn, T(C2, · · · , Cn), T(C3, · · · , Cn), · · · , T(Cn−1, Cn))

i f n = 1

i f n = 2

otherwise

, (4)

where T(·) represents the DIA process. Different scales of refined features {P1, P2, P3, P4} are produced
through this feature aggregation process.

To further enhance the semantic information in the high-resolution feature maps, we add
a high-resolution feature fusion path to combine information from the refined multiscale
features{P1, P2, P3}. As shown in Figure 2d, P1, P2, P3 are, respectively, upsampled 2, 4 and 8 times
and successively fused with the high-resolution feature P4. The high-resolution fusion path can be
calculated through Equation (5):

Fout = H(Pn, Pn−1, · · · , P1) =

 Pn

H(S(Pn, Pn−1), · · · , P1)

i f n = 1

otherwise
, (5)

where H(·) denotes the high-resolution feature fusion path. The new feature aggregation scheme is
called dense hierarchical aggregation (DHA) in this paper. Through DHA, we obtain the high-resolution
feature map Fout enhanced with multiscale information.

In addition, recent studies show that the attention mechanism is helpful for improving the
performance of SAR ship detection [28–30]. Inspired by the idea, we embed an attention block,
i.e., SCSE block into the upsampling process. SCSE is used to emphasize the salient target features and
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suppress the background clutters in the high-level features, and thus improve the localization ability
of the fused features. As shown in Figure 2e, the feature aggregation process embedded with SCSE is
called dense attention feature aggregation (DAFA), which is shown in Figure 2e. The whole process
can be computed by Equations (2) and (3), while S(·) here represents the attention-based feature fusion
block, which will be described in detail in the next section.

2.2.2. Attention-Based Feature Fusion Block

In the above aggregation process, features of different scales are aggregated through dense
connections and iterative feature fusions. As the basic unit of the aggregation process, the feature fusion
block plays an important role in combining information from multiscale features. The effectiveness of the
feature fusion block consequently has a great impact on the detection performance. Recent researches
show that the attention mechanism is able to enhance the salient features of the targets and hence
improve the representation ability of the fused features. For example, Cui et al. [28] embed an attention
block into the upsampling process to emphasize the salient information of the multiscale ship targets,
thus improving the detection performance of the network. Gao et al. [29] introduced an attention block
into the network to reduce the information loss in the dimension reduction.

Inspired by the ideas, we introduce an attention block, namely the spatial and channel squeeze
and exception block (SCSE) [50] into the feature fusion block. In the multiscale feature fusion process,
the high-level features contain stronger semantic information thus have a greater influence on the
identification and the localization of the ship targets. SCSE is applied to improve the representation
ability of the fused features by strengthening the salient features and suppressing the background
clutters in the high-level and strong semantic features. The new feature fusion block embedded with
SCSE is called the attention-based feature fusion block (AFFB). In addition, the deformable convolution
is used in AFFB to replace the standard 3 × 3 convolution. The deformable convolution learns the
sampling offsets to enforce it to focus more on the interesting targets. In the object detection task, it has
been proved to be effective in improving the localization ability of the network [37,51]. The structure of
AFFB is shown in Figure 3. Features from the higher-level are first processed by SCSE, then upsampled
to the same resolution as other features. Next, these features are fused through element-wise addition
after the deformative convolutions. Finally, a convolution layer is used to refine the fused features.
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Next, we will introduce the SCSE block in detail. The diagram of SCSE is shown in Figure 4a.
SCSE exerts spatial and channel attention over the high-level feature maps through spatial squeeze
and excitation (SSE) and channel squeeze and excitation (CSE). They, respectively, generate the spatial
attention maps and the channel attention maps. The values of the elements in the generated attention
maps are within the range of [0, 1]. The generated attention maps are then multiplied with the
input features. They weigh the features to preserve the salient features and suppress noise. Finally,
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the attention-enhanced features are obtained through element-wise addition. The overall process of
SCSE can be described by Equation (6):

FA = AS � F + AC ⊗ F, (6)

where F ∈ RH̃×W̃×C̃ represent the input features, AS ∈ [0, 1]H̃×W̃×1 denotes the spatial attention map

generated by SSE, AC ∈ [0, 1]1×1×C̃ denotes the channel attention map generated by CSE, FA ∈ RH̃×W̃×C̃

represent the output features, ⊗ denotes the multiplication operation on the corresponding channels
and � denotes the multiplication operation on the corresponding positions.
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Figure 4. The overall diagram and the detailed illustration of SCSE. (a) Diagram of SCSE; (b) detailed
structure of spatial squeeze and excitation (SSE); (c) detailed structure of channel squeeze and
excitation (CSE).

SSE block is designed to spatially emphasize the salient features of the ship targets. As shown in
Figure 4b, SSE first squeezes the dimension of the input features F ∈ RH̃×W̃×C̃ by 1 × 1 convolution.
The function of the 1× 1 convolution is to integrate information across different channels and generate

activation values. Then the spatial attention map AC ∈ [0, 1]1×1×C̃ is acquired by applying the sigmoid
function. The sigmoid function is used to map the activation values to [0, 1]. The process of SSE is
as follows:

AS = σ(Conv1×1(F)) (7)

where Conv1×1 and σ(·) represent 1× 1 convolution and sigmoid function, respectively.
The CSE block is introduced to stress the important semantic embedding among different channels

of the input features. The detailed structure of CSE is shown in Figure 4c. Firstly, global pooling (GP)
is used to incorporate the spatial information of each channel. GP produces a single value for each
channel that represents the information contained in the channel. These values are then combined
to form a feature vector. Next, two 1× 1 convolutions are used to perform dimension reduction and
dimension increase to this feature vector based on the squeeze and excitation principle [52]. Finally,
the channel attention vector is generated by applying a sigmoid function. The channel attention vector
is then used to weigh the different channels of the input features, so as to selectively enhance the
important semantic information contained in different channels. The process of CSE can be represented
by Equation (8):

AC = σ(Conv1×1[Conv1×1(GP(F))]), (8)

where GP denotes global pooling operation, Conv1×1 represents 1 × 1 convolution and σ(·) is the
sigmoid function.
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Together, the propagation process of AFFB can be shown in Equation (9):

F f used = Dconv3×3[Dconv3×3(Upsample(SCSE(F(i−1)0)))︸                                           ︷︷                                           ︸
feature from scale (i−1)

⊕

n∑
j=1

Dconv3×3(SCSE(Fi j))︸                          ︷︷                          ︸
f eatures from scale i

], (9)

where Fi j is the ith feature from scale j, Dconv represents the deformable convolution, Upsample stands
for the upsampling operation, and ⊕ denotes element-wise addition operation. Through AFFB,
the salient features of the ship targets are enhanced in the high-level features, and then densely fused
with adjacent low-level features. The final fused features are obtained by element-wise addition.

2.3. Center-Point-Based Ship Predictor

Among the classic DCNN-based detection algorithms, most of them rely on the pre-set anchors
of different sizes and aspect ratios for detection. The concept of anchors (or anchor boxes) in the
field of DCNN-based target detection is firstly presented in [21]. In the anchor-based detection
methods, the targets are detected by predicting the errors between the pre-set anchors and the actual
bounding boxes, as shown in Figure 5a. Some disadvantages exist in this kind of detection methods,
such as the difficulty in their adaptability to large scale-variations of the targets, the difficulty of the
parameter optimization of anchors and high computational costs. Therefore, an anchor-free detector is
introduced in our method, which is the center-point-based ship predictor (CSP). As shown in Figure 5b,
CSP achieves anchor-free ship detection by simultaneously predicting the center-points and the sizes
of the ship targets in a fully convolutional way. Moreover, by applying a 3 × 3 Max-pooling operation,
the duplicate detections can be ruled out, which is more efficient than the NMS algorithm.

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 25 

 

AFFB, the salient features of the ship targets are enhanced in the high-level features, and then 

densely fused with adjacent low-level features. The final fused features are obtained by 

element-wise addition. 

2.3. Center-Point-Based Ship Predictor 

Among the classic DCNN-based detection algorithms, most of them rely on the pre-set anchors 

of different sizes and aspect ratios for detection. The concept of anchors (or anchor boxes) in the 

field of DCNN-based target detection is firstly presented in [21]. In the anchor-based detection 

methods, the targets are detected by predicting the errors between the pre-set anchors and the 

actual bounding boxes, as shown in Figure 5a. Some disadvantages exist in this kind of detection 

methods, such as the difficulty in their adaptability to large scale-variations of the targets, the 

difficulty of the parameter optimization of anchors and high computational costs. Therefore, an 

anchor-free detector is introduced in our method, which is the center-point-based ship predictor 

(CSP). As shown in Figure 5b, CSP achieves anchor-free ship detection by simultaneously 

predicting the center-points and the sizes of the ship targets in a fully convolutional way. Moreover, 

by applying a 3 × 3 Max-pooling operation, the duplicate detections can be ruled out, which is more 

efficient than the NMS algorithm. 

 

(a) 

 

(b) 

Figure 5. Comparison between the anchor-based detection and center-point-based anchor-free 

detection. (a) Anchor-based detection: the yellow, red and blue boxes denote different sizes and 

aspect ratios of anchors that are manually set before training and testing; the green box denotes the 

predicted bounding box; and the orange arrows indicate the errors between the pre-set anchor box 

and the predicted bounding box. These kinds of methods locate the targets by predicting the errors 

between the anchors and the true bounding boxes. (b) In this paper, ship detection is accomplished 

directly by merging the center-point predictions (the red point) and the length and width 

predictions (the orange arrows) of the ship targets. 

The detailed structure of CSP is shown in Figure 6. It is composed of three sub-branches: the 

center estimation, the size regression and the offset regression branches. The input SAR image 
3H WI R    is first processed by the feature extractor and DAFA. Then high-resolution features 

H W CF    by DAFA are fed towards these three branches, where 4H H  and 4W W . After 

the operations of a 3 3  convolution and an 1 1  convolution, the ship center estimation branch 

produces the ship center estimation heatmap 1ˆ [0,1]H WY    that indicates the locations of the ship 

centers; the size regression branch outputs the ship width and length prediction maps 
2ˆ H WS    

that predict the width and length of ship targets; and the offset regression branch generates the 

offset prediction maps 
2ˆ H WO   , which compensate the downsampling errors in the x- and 

y-axis. 

Figure 5. Comparison between the anchor-based detection and center-point-based anchor-free detection.
(a) Anchor-based detection: the yellow, red and blue boxes denote different sizes and aspect ratios of
anchors that are manually set before training and testing; the green box denotes the predicted bounding
box; and the orange arrows indicate the errors between the pre-set anchor box and the predicted
bounding box. These kinds of methods locate the targets by predicting the errors between the anchors
and the true bounding boxes. (b) In this paper, ship detection is accomplished directly by merging the
center-point predictions (the red point) and the length and width predictions (the orange arrows) of the
ship targets.

The detailed structure of CSP is shown in Figure 6. It is composed of three sub-branches: the center
estimation, the size regression and the offset regression branches. The input SAR image I ∈ RH×W×3

is first processed by the feature extractor and DAFA. Then high-resolution features F ∈ RH̃×W̃×C by
DAFA are fed towards these three branches, where H̃ = H/4 and W̃ = W/4. After the operations
of a 3× 3 convolution and an 1× 1 convolution, the ship center estimation branch produces the ship

center estimation heatmap Ŷ ∈ [0, 1]H̃×W̃×1 that indicates the locations of the ship centers; the size
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regression branch outputs the ship width and length prediction maps Ŝ ∈ RH̃×W̃×2 that predict the
width and length of ship targets; and the offset regression branch generates the offset prediction maps
Ô ∈ RH̃×W̃×2, which compensate the downsampling errors in the x- and y-axis.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 25 
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To train the center estimation branch of CSP, we first generate the ground truth in terms of the
center-points of the ship targets. For image I, let (x(k)1 , y(k)1 , x(k)2 , y(k)2 ) denote the bounding box of
the kth ship target in the image. Then, the center-point of the kth ship target can be calculated as

ck = (
x(k)1 +x(k)2

2 ,
y(k)1 +y(k)2

2 ) ∈ R2. We compute the coordinate of this center-point on the downsampled

features F by c̃k = bck/4c. Next, we place all the ship centers on the ground truth heatmap Y ∈ [0, 1]H̃×W̃×1

by using a 2D Gaussian kernel Yxy = exp(−((x− ĉkx)
2 + (y− ĉky)

2)/2σa
2), where σa is the standard

deviation that adaptively changes according to the target size [31]. When two Gaussian centers overlap,
we take the larger value on every overlapped position. Given that the center estimation branch outputs

the ship center estimation heatmap Ŷ ∈ [0, 1]H̃×W̃×1, the pixel-wise focal loss for ship center prediction
is calculated as follows:

Lhm = −
1
N

∑
xy

 (1− Ŷxy)
α

log(Ŷxy)

(1−Yxy)
β(Ŷxy)

α
log(1− Ŷxy)

i f Yxy = 1

otherwise
, (10)

where α and β are the hyperparameters of the focal loss, we set α = 2 and β = 4 in the experiments that
result in the best outcomes; N is the number of ship targets in image I, which is used to normalize
the positive samples of focal loss in each image; Yxy and Ŷxy denote the elements of the ground truth
map and the center estimation heatmap, respectively. Focal loss improves the detection performance
by reducing the weights of easy samples in loss calculation. It makes the model focus more on hard
samples during the training [33].

For each ship k in image I, the size regression branch regresses its size sk = (x(k)2 − x(k)1 , y(k)2 − y(k)1
at the corresponding center-point of the ship. The size regression branch outputs the ship length and
width prediction maps Ŝ ∈ RH̃×W̃×2. We use L1 loss to calculate the regression loss of the branch:

Lsize =
1
N

N∑
k=1

∣∣∣Ŝk − sk
∣∣∣, (11)

where Ŝk and sk denote the actual and predicted sizes of the kth ship target, respectively.



Remote Sens. 2020, 12, 2619 12 of 25

The prediction maps are downsampled by four times compared to the original input image.
Discretization errors are introduced when we are calculating the downsampled center coordinates
through c̃k = bck/4c. In order to compensate for these errors, we use the offset regression branch to
predict the discretization errors. We use the same L1 loss as the size regression branch:

Lo f f =
1
N

N∑
k=1

∣∣∣∣Ôc̃k
− (

ck
R
− c̃k)

∣∣∣∣, (12)

where Ôc̃k
is the predicted center discretization error of the kth ship target, and R is the downsampling

rate, which is 4 in our method. It needs to be noticed that the supervision is only conducted on each
ship center c̃k.

Finally, to jointly train the three branches, we calculate the overall loss by the weighted sum of the
above three losses, as Equation (13):

Lcdet = Lhm + βsizeLsize + βo f f Lo f f , (13)

where βsize and βo f f are the hyperparameters representing loss weights. As suggested in [51], βsize = 0.1
and βo f f = 1 are set in all our experiments.

During testing, we obtain the detection results by integrating the outputs of the three branches.
Firstly, a 3 × 3 Max-pooling is applied to the ship center estimation map to generate a group of
detections for the ship centers. The 3 × 3 Max-pooling can effectively eliminate the duplicate detections.
It can replace the NMS postprocessing algorithm in faster speed due to the GPU acceleration.
Let Ĉ =

{
(x̂i, ŷi)

}n
i=1 denote the estimated ship centers. The coordinates of the ith ship center is

represented by (x̂i, ŷi). Then the detected bounding boxes can be expressed by Equation (14):

B̂ =
{
(xmini , ymini , xmaxi , ymaxi)

n
i=1

}
= (x̂i + δx̂i − ŵi/2, x̂i + δx̂i + ŵi/2,

ŷi + δŷi − ĥi/2, ŷi + δŷi + ĥi/2),
(14)

where B̂ represents the set of the detected bounding boxes; δx̂i and δŷi are the predicted discretization
errors of the ith ship center in x and y directions, respectively; and ŵi and ĥi are the predicted width
and height of the ith ship target, respectively.

3. Results

In this section, we implement experiments on the AirSARShip-1.0 data set to evaluate the
effectiveness of our method. First, the AirSARShip-1.0 data set and the experimental settings will be
described in detail. Then, the evaluation metrics for quantitative comparison are introduced. Next,
we evaluate the effectiveness of the DAFA by comparison experiments. Finally, we compare our
methods with several DCNN-based ship detection algorithms, the qualitative and quantitative results
are given to validate the performance of our method.

3.1. Data Set Description and Experimental Settings

In this paper, to evaluate the effectiveness of our method, experiments are carried out on a
large-scene and high-resolution SAR ship detection data set AirSARShip-1.0 [53]. AirSARShip-1.0
consists of 31 single-polarized SAR images acquired from Gaofen-3. The polarization mode of these
SAR images is HH. The imaging modes include the spotlight and strip. The resolution varies from
1 m to 3 m. Most of the image sizes are 3000 × 3000 pixels (one of them is 4140 × 4140 pixels). In the
experiments of this paper, 21 of the 31 SAR images of the dataset are used as the train-val (training
and validation) set, and the remaining 10 images are used as the test set. We then randomly split the
train-val set into the training set and the validation set with the proportion of 7:3. Considering the
limitation of the GPU memory, we divide the large-scene SAR images into 500 × 500 slices for training
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and testing. For those ships that are truncated by slicing, we keep the bounding boxes whose area
exceeds 80% of the original bounding box, otherwise, the bounding boxes are discarded. The training
set only consists of slices that contain ship targets. In the test set, we conduct the detection on all the
slices whether they contain the ship targets or not. Finally, we augment the training set by 90-degree
rotation. After augmentation, there are a total of 512 image slices with a size of 500 × 500 in the training
set. A large-scene image of the AirSARShip-1.0 is shown in Figure 7a, which contains inshore and
offshore scenes and different scales of ship targets. Several image slices are shown in Figure 7b–e.
Figure 7b mainly shows inshore scenes and small ship targets while Figure 7c shows the offshore
scenes. In Figure 7d, there are strong land clutters around the ship targets. The ship targets shown
in Figure 7e are very small compared to other images. In summary, it can be seen that the data set
includes both inshore and offshore scenes, and the size of ships varies greatly.
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Figure 7. Several synthetic aperture radar (SAR) images from the AirSARShip-1.0 data set. (a) Example
of the large-scene SAR image; (b–e) some SAR image slices cut from large-scene SAR images.

The training hyperparameters of our method are set as follows: we randomly initialize the
parameters of our models, without using the ImageNet pretrained models. We train the three parts
of our model end-to-end with labeled data. We use Adam optimizer [54] as the training optimizer,
and the weight decay of which is set to 0.0005. The learning rate is 0.001, and the number of minibatch
samples is set to four. We train the models for 200 epochs in total. The learning rate drops by 10 times
at the 120th and 180th epoch. The width adjustment ratio mentioned in Section 2.1 is set to 0.5 in all
our experiments.

The experiments are implemented using the deep learning framework Pytorch [55], and carried
out on a platform configured with 32G memory, an Intel Xeon L5639 CPU and a Tesla K20c GPU for
training and testing. The system of the experiment platform is Ubuntu 18.04.

3.2. Evaluation Metrics

Three widely used metrics are adopted in this paper to quantitatively evaluate the performance
of the models, including the precision–recall (PR) curve (PR), average precision (AP) and f 1-score.
As the name suggests, the PR curve takes recall as the abscissa axis and precision as the ordinate
axis. The more areas the PR curve covers, the better the model performs. The precision measures
the correctness of the detection results, calculated by the fraction of the true positives in the detected
positive samples. The recall indicates the completeness of the detection results, which can be computed
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by the fraction of the true positives in all the positive samples. The calculation of these two metrics can
be described by Equation (15):  Precison = NTP

NTP+NFP

Recall = NTP
NTP+NFN

, (15)

where NTP represents the number of the correctly detected targets. NFP indicates the number of the
nonship targets that are wrongly detected; NFN denotes the number of the undetected ship targets.

There is a contradiction between precision and recall. When increasing one of the two metrics,
the other will decline. To address the contradiction, we introduce the f 1-score that combines these two
metrics to comprehensively evaluate the detection performance. The f 1-score metric can be computed
as follows:

f1-score = 2
precision× recall
precision + recall

, (16)

The f 1-score measures the detection performance of the model with a single-point threshold.
The AP metric is adopted to evaluate the global detection performance under different thresholds. It is
measured by the area under the PR curve, which can be expressed as follows:

AP =

∫ 1

0
P(R)dR, (17)

3.3. Effectiveness of Dense Attention Feature Aggregation

In order to improve the localization ability of the network for multiscale ship targets, especially
small ship targets, we propose the feature aggregation scheme DAFA mentioned in Section 2.2.
To generate high-resolution features and mitigate the overfitting problem, the specially designed dense
connections and the attention-augmented upsampling are introduced in DAFA. Here, we verify the
effectiveness of DAFA by conducting several carefully designed comparison experiments. To be specific,
we set comparison experiments with different feature aggregation schemes, which are: (1) Long Skip
Connections (LSC) [46] as shown in Figure 2a; (2) Iterative Deep Aggregation (IDA) [47] as shown
in Figure 2b; (3) Dense Iterative Aggregation (DIA) as shown in Figure 2c; (4) Dense Hierarchical
Aggregation (DHA) as shown in Figure 2d; (5) Dense Attention Feature Aggregation (DAFA) as shown
in Figure 2e. In the experiments, other hyperparameters required in training and testing are set to
be the same. In order to quantitatively evaluate the effectiveness of DAFA, Table 2 gives the detailed
detection results of different feature aggregation schemes.

Table 2. The quantitative detection performance of different feature aggregation schemes.

Methods Precision (%) Recall (%) f 1-Score (%) AP (%)

LSC 77.86 75.17 76.49 77.13
IDA 79.70 77.93 78.81 80.49

DIA (ours) 82.98 80.69 81.82 82.96
DHA (ours) 82.07 84.26 83.15 85.34
DAFA (ours) 85.03 86.21 85.62 86.99

It can be seen from Table 2 that DAFA achieves the best performance in precision, recall, f 1-score
and AP, reaching 85.03%, 86.21%, 85.62% and 86.99%, respectively. For LSC, IDA and DIA, the overall
detection performance measured by f 1-score and AP is gradually improved. It demonstrates that
the iterative refinement and dense connections are helpful for ship detections. DHA achieves higher
performance than DIA, which implies that the high-resolution feature fusion path further strengthens
the semantic information and improves the representation ability of the high-resolution features.
For DHA and DAFA, the results show that the introduction of SCSE improves f 1-score and AP by 2.5%
and 1.7%. It indicates that SCSE can effectively emphasize the salient features in high-level features.
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The enhanced high-level features are helpful for strengthening the representation ability of the fused
features and further optimize the detection performance of the network.

The PR curves are illustrated in Figure 8a to comprehensively show the effectiveness of these
aggregation schemes. It is shown that the PR curve of LSC lies at the innermost, indicating that its
detection performance is the worst. The PR curve of IDA shows improvement, proving that the iterative
connections can produce finer features than long skip connections. The PR curve of DIA lies lower than
that of IDA, demonstrating that dense connections can help achieve better performance by feature reuse
strategy. The PR curve of DHA lies lower than that of DIA, showing that the high-resolution feature
fusion path is able to optimize the detection performance by fusing features with larger receptive fields
and stronger semantic information. The PR curve of DAFA is at the highest, which suggests that the
attention mechanism can effectively strengthen the localization accuracy and semantic meaning in the
high-level features, and thus improve the representation ability of the fused features.
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In addition, comparisons of the number of the parameters and the detection speed are revealed
in Figure 8b, where params denotes the number of all parameters (M) in the network, and times is
obtained by computing the average time (ms) for detecting a SAR image slice on the test set. As shown
in Figure 8b, DHA has a relatively small increase (only 0.12M) in the parameter amount compared with
LSC. A lot of element-wise addition fusions are introduced in the aggregation process, which results
in an increase of 9 ms in test time. From Figure 8b, we can also find that the parameters of DAFA
embedded with SCSE increase very little (only about 0.01M), while the detection time is increased by
7 ms. It indicates that the number of parameters of the SCSE block is small, and the computational cost
is relatively large but acceptable.

In Figure 9, we visualize the detection results on several SAR image slices for comparison.
Figure 9a shows the ground truth, in which the real ship targets are marked with purple rectangles.
Figure 9b–f shows the detection results of DAFA, DHA, DIA, IDA and LSC, in which the detected ship
targets are marked with green rectangles. The false alarms and missed targets can be located with
the reference of Figure 9a. As shown in Figure 9f, the detection results of LSC are the worst among
these methods. There are more false alarms and missed ship targets in both inshore and offshore
scenes. IDA also has some false alarms and missed targets in different scenes according to Figure 9e.
Compared with these two methods, DIA in Figure 9d has less missed targets in the inshore scene.
DHA further improves the detection results compared to DIA. The missed targets in the offshore scene
are reduced. The comparison of the above detection results demonstrates that dense connections and
iterative feature fusions can effectively improve the localization ability of the network for a variety of
scenes. The high-resolution feature fusion process further optimizes the detection results by combining
multiscale semantic information. In Figure 9b, it can be seen from the results of DAFA that the false
alarms in the land area further reduce. It indicates that SCSE is able to suppress the background clutters
in the high-level features, optimize the feature fusion process and improve the detection performance.
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Figure 9. Detection results of different feature aggregation schemes. (a) Ground Truth; (b) DAFA
(average precision (AP) = 86.99%); (c) DHA (AP = 85.34%); (d) DIA (AP = 82.96%); (e) IDA (AP = 80.49%);
and (f) LSC (AP = 77.13%). The purple rectangles mark the real ship targets, and the green rectangles
mark the detected ship targets.

3.4. Comparison with Other Ship Detection Methods

In this section, we will compare our method with other DCNN-based ship detection methods.
The traditional ship detection methods are suitable for detecting low-resolution targets with strong
scattering, while for high-resolution SAR images, the DCNN-based methods greatly surpass these
methods in accuracy and efficiency even with limited training samples [21,45,53]. Hence, to verify the
effectiveness of our method, we compare our method with several other state-of-the-art DCNN-based
methods, which are introduced as follows:

1. Faster-RCNN [21]: Faster-RCNN is a classic deep learning detection algorithm, and is widely
studied in the ship detection of SAR images [39,49]. Faster-RCNN employs the region proposal
network (RPN) to extract target candidates for coarse detection. Then, the detection results are
refined by further regression.

2. RetinaNet [33]: RetinaNet is a deep learning algorithm based on the feature pyramid network
(FPN) for multiscale target detection. The focal loss is proposed to improve the detection
performance for hard samples.

3. YOLOv3 [56]: YOLOv3 is a real-time detection algorithm, where the feature extraction network is
carefully designed to realize the high-speed target detection.

4. FCOS [36]: Among the above three deep learning detection algorithms, the predefined anchors
are used to help predict targets in training and testing. FCOS is a recently proposed anchor-free
detection algorithm. It achieves the anchor-free detection by regressing a 4D vector representing
the location of the targets pixel by pixel.

5. Reppoints [37]: Reppoints is also a newly proposed anchor-free detection algorithm, which locates
a target by predicting a set of key points and transforming them into the predicted bounding box.

Except that YOLOv3 is implemented with the Darknet framework [57], we implement most of
the comparison experiments using the MMDet framework [58] based on Pytorch. Among the above
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comparison experiments, YOLOv3 uses the darknet-53 with 53 convolution layers as the feature
extraction network, and all the other methods adopt ResNet-50 [59] with 50 convolution layers as
the feature extraction network. The training and testing hyperparameters are set according to the
suggestions in MMDet or Darknet. An early stopping strategy is used to reduce the overfitting problem.
The quantitative detection results of these methods are presented in Table 3.

Table 3. The quantitative detection performance of several deep convolutional neural network
(DCNN)-based ship detection algorithms.

Methods Precision (%) Recall (%) f 1-Score (%) AP (%)

YOLOv3 63.87 68.28 66.00 64.65
FCOS 67.07 77.24 71.79 68.84

Reppoints 65.24 84.07 73.47 73.98
RetinaNet 72.12 82.07 76.77 79.00

Faster-RCNN 73.49 84.14 78.46 78.43
Ours 85.03 86.21 85.62 86.99

From Table 3, we can see that the overall performance of our method measured by f 1-score and
AP surpass other methods by more than 5%. It proves the effectiveness of our method. Among other
detection methods, YOLOv3 has the worst detection performance, both f 1-score and AP are less than
70%. The anchor-free based methods FCOS and Reppoints achieve better performance than YOLOv3,
but the overall performance is relatively poor compared to other anchor-based methods. The detection
performance of RetinaNet and Faster-RCNN is better than that of YOLOv3, FCOS and Reppoints.
Both of the AP values are close to 80%, achieving 79.00% and 78.43%, respectively. The reason why
anchor-based methods perform better than peer anchor-free methods is that the pre-set anchors actually
incorporate the prior information of the target sizes. Therefore, it reduces the difficulty in training
on the SAR data set with limited training samples. In order to take advantage of the anchor-free
mechanism and generalize well on the SAR data set, we combine a lightweight feature extractor and
the feature reuse strategy into the anchor-free detection. As a result, compared to other comparison
methods, our method is more effective for detecting multiscale ship targets in the SAR images.

The PR curves of the detection methods are drawn in Figure 10a. It can be observed that the PR
curve of the YOLOv3 method is at the innermost, indicating that its detection performance is the worst.
The PR curve of FCOS is fuller than YOLOv3′s. The PR curve of Reppoints shows improvement over
those of the above two methods, but still lies at the inner side of Faster-RCNN and RetinaNet’s. The PR
curve of our method lies at the outermost, showing that it has the best global performance for ship
detection. In summary, the results verify the superior performance of our method.
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Figure 10b compares the number of the parameters and detection speed of these DCNN-based
detection methods. As shown in Figure 10b, YOLOv3 has the largest number of parameters (61.5M),
because of its 53-layer feature extraction network. However, the detection time of YOLOv3 is the
shortest (9.9 ms), showing superior efficiency. It is due to its specially designed network structure
and the highly efficient framework that this algorithm is implemented on. However, it should be
noticed that although achieving high efficiency, the performance of YOLOv3 is very poor with the AP
of 0.6465. Among other methods, our method reaches the highest detection speed (33 ms), while the
detection times of Reppoints, FCOS, RetinaNet and Faster-RCNN takes 75 ms, 53 ms, 72 ms and 50 ms,
respectively. It demonstrates the high efficiency of our method. Besides, the weight of our method
(0.83M) is far lighter than all other methods. In summary, the above results show that our method is
efficient in computation and light in storage, thanks to the lightweight feature extractor and the feature
reuse strategy. Next, to further validate the performance of our method, we present the detection
results of different DCNN-based methods on real SAR images in Figures 11 and 12.
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Figure 11. Detection results of different methods on several SAR image slices. (a) Ground Truth; (b) our
method (AP = 86.99%); (c) RetinaNet (AP = 79.00%); (d) Faster-RCNN (AP = 78.43%); (e) Reppoints
(AP = 73.98%); (f) FCOS (AP = 68.84%); (g) YOLOv3 (AP = 64.65%). The purple rectangles mark the
real ship targets, and the green rectangles mark the detected ship targets.
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Figure 12. Detection results of different methods on a large-scene SAR image. (a) Our method;
(b) Faster-RCNN; (c) RetinaNet; (d) Reppoints; (e) FCOS; (f) YOLOv3. The green rectangles mark the
correctly detected ship targets, the yellow rectangles mark the missed detections and the red rectangles
mark the false alarms.

In Figure 11, detection results on several SAR image slices qualitatively show the performance of
these methods. Figure 11a gives the ground truth and Figure 11b–g shows the results of our method,
RetinaNet, Faster-RCNN, Reppoints, FCOS and YOLOv3, respectively. Image slices in the first three
rows are composed of offshore scenes, and the latter three include the inshore scenes. In Figure 11g,
a lot of missed detections occur in both inshore and offshore scenes of the YOLOv3′s detection results.
In Figure 11f, the missed detections are reduced in the results of FCOS, but still, many ship targets
remain undetected. The results of FCOS in Figure 11e show few missed detections in the offshore
scene, but false alarms appear in some land areas due to the land clutter. In Figure 11d, Faster-RCNN
mistakenly detects the weakly-scattered ghost targets on the sea surface as ship targets in the second
image, a small ship target is undetectable in the third image and false alarms appear in the land areas.
In Figure 11c, RetinaNet is prone to generate false alarms and missed detections in the strong scattering
area, resulting in inaccurate detection results. In Figure 11b, the results of our method are more accurate
than other methods, with few false alarms and missed detections in both inshore and offshore scenes.
Therefore, the results demonstrate that our method has superior detection performance than other
comparison methods.

Figure 12 shows a comparison between the detection results of different methods on a large-scene
SAR image in the test set. This large-scene SAR image mainly includes offshore ships. There are
strong clutters in the inshore scenes which might lead to false alarms. We can see that there appear
few false alarms and missed targets in the offshore scenes in the results of our method, and the false
alarms are suppressed in the inshore scenes as well. For Faster-RCNN, a lot of false alarms occur in the
inshore scenes. The detection results of RetinaNet have fewer false alarms than that of Faster-RCNN in
the inshore scenes, but the false alarms in the offshore scenes increase. In Figure 12d, the results of
Reppoints have serious false alarm problems both in the inshore and offshore scenes. In Figure 12e,
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missed detections happen in the offshore scenes for FCOS, and there are also some false alarms in the
inshore scenes. In Figure 12f, the YOLOv3 method has a serious problem of missed detection in the
offshore scenes, which greatly degrades the quality of the detection results. The comparison of these
detection results further proves the effectiveness of our method.

4. Discussion

4.1. Influence of the Network’s Width

The network’s width has a key influence on the number of parameters and the detection speed
of the network. A smaller width may lead to fewer parameters and better generalization ability.
However, if the width is too small, the fitting ability of the network will be deficient and the detection
performance will be degraded as a result. In this paper, due to the lightweight feature extractor and
the feature reuse strategy used in DAFA, our method generalizes well in the SAR data set and does not
rely on the pretrained model for training. Therefore, in our method, we can freely adjust the network’s
width to balance the generalization ability and the detection speed of the model. To show the influence
of the network’s width, Figure 13 illustrates how the detection performance and efficiency of our
method change in different widths.
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Figure 13. The influence of the network’s width on performance, the number of parameters and the
detection speed of the network. (a) Influence of the network’s width on the detection performance of
the network; (b) influence of the network’s width on the number of parameters and the detection speed
of the network.

We adjust the network’s width with the help of the adjustment ratio α described in Section 2.1.
The results for different widths are acquired by conducting experiments on different α. To be specific,
we initially set α to 0.25 and increase it to two with a step of 0.25. Figure 13a shows the influence of the
network’s width on the detection performance of the network. A small α indicates a smaller network
width. We can see that AP reaches the highest when α= 0.5 and f 1-score reaches the highest when
α= 0.75. When α is smaller than 0.5, the detection performance degrades greatly. When α is greater
than one, the detection performance gradually drops. It implies that our method reaches the best
generalization ability on the adopted SAR data set when α ∈ (0.5, 0.75). Figure 13b gives the results of
the number of parameters and the detection time for different widths of the network. We can observe
that the number of the parameters increases exponentially as α increases. The detection time also
gradually increases as α increases. To conclude, as the width of the network increases, the detection
performance of the network first increases due to the improvement of the fitting ability, and then
degrades because of the degradation of the generalization ability. The detection speed drops due to the
increment of the number of the parameters. After balancing the performance and efficiency, we select
α= 0.5 as the network’s width in all our experiments.
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4.2. Validating the Effectiveness of Feature Map Visualization

In order to intuitively evaluate the effectiveness of DAFA, we visualized the intermediate feature
maps in DAFA as shown in Figure 14a. We also visualize the feature maps of LSC in Figure 14b for
comparison. In Figure 14, the corresponding feature maps of three SAR image slices are displayed
in each aggregation stage. For the convenience of visualization, the feature maps of different scales
are resized to the same size. The brighter colors represent stronger responses. It can be concluded
from Figure 14 that: (1) With the decrease of resolution, the location accuracy of the targets declines,
the semantic meaning of the features is strengthened and the strong land clutter is gradually suppressed;
(2) In DAFA, the location accuracy of the targets is gradually improved because of the dense connections
and the attention augmentation, while the results of LSC is more coarse due to the long skip connections;
(3) The high-resolution feature fusion path in DAFA effectively combines semantic information from
different scales and suppress the background clutters. The above observation demonstrates the
effectiveness of DAFA to combine multiscale information and generate high-resolution features,
thanks to the specially designed dense connections and SCSE.
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maps in DAFA; (b) visualization results of the feature maps in LSC for comparison. The blue arrows
denote the downsampling process. The red, blue and green arrows denote the upsampling process
in DAFA.

To visually verify the effectiveness of the SCSE, some feature maps are visualized in Figure 15.
Figure 15b shows the feature maps before processed by SCSE, and Figure 15c shows the feature
maps output by SCSE. In the visualization results, the brighter colors denote greater activation values.
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By comparing Figure 15b,c, we can observe that the contrast between targets and the background is
improved, and the position responses of the targets are more accurate. In the inshore scenes, we can
see that the land clutters are effectively suppressed after SCSE. The above results indicate that SCSE
can effectively enhance the salient features of the targets and suppress the background clutters.
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5. Conclusions

To overcome several defects in current DCNN-based methods, in this paper, we have proposed a
novel fully convolutional network for anchor-free ship detection in SAR images. The main contributions
of this paper are as follows: (1) To overcome the weaknesses of the anchor-based detection methods,
we adopted an anchor-free detector, i.e., CSP, to conduct anchor-free and NMS-free ship detection.
CSP predicts the centers and sizes of the ship targets end-to-end without pre-set anchors, which make
the ship detection process faster and more accurate. (2) To improve the generalization ability of DCNN
in the SAR data set, we presented a novel feature aggregation scheme, i.e., DAFA, to deeply fuse the
multiscale features. The feature reuse strategy by dense connections was introduced to alleviate the
overfitting problem and improve the generalization ability. The SCSE attention block was embedded
into DAFA to strengthen the representation ability of the fused features and thus optimize the detection
performance. (3) To reduce the parameters in DCNN and improve the detection efficiency, we adopted
a lightweight feature extractor based on MobileNetV2 to extract multiscale features directly from
the single-polarized SAR images. The depth-wise separable convolution was used to replace the
standard convolution, which helps achieve higher efficiency with fewer parameters. The experiments
implemented on the AirSARShip-1.0 data set demonstrate that the dense connections, iterative feature
fusions and the attention mechanism in DAFA effectively improve the performance of the anchor-free
ship detection in SAR images. The results have also shown that the performance of our method
surpasses other methods, further validating the effectiveness of our method.
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