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Abstract: Time-series for medium spatial resolution satellite imagery are a valuable resource for
environmental assessment and monitoring at regional and local scales. Sentinel-2 satellites from
the European Space Agency (ESA) feature a multispectral instrument (MSI) with 13 spectral bands
and spatial resolutions from 10 m to 60 m, offering a revisit range from 5 days at the equator to a
daily approach of the poles. Since their launch, the Sentinel-2 MSI image time-series from satellites
have been used widely in various environmental studies. However, the values of Sentinel-2 image
time-series have not been fully realized and their usage is impeded by cloud contamination on images,
especially in cloudy regions. To increase cloud-free image availability and usage of the time-series,
this study attempted to reconstruct a Sentinel-2 cloud-free image time-series using an extended
spatiotemporal image fusion approach. First, a spatiotemporal image fusion model was applied to
predict synthetic Sentinel-2 images when clear-sky images were not available. Second, the cloudy
and cloud shadow pixels of the cloud contaminated images were identified based on analysis of
the differences of the synthetic and observation image pairs. Third, the cloudy and cloud shadow
pixels were replaced by the corresponding pixels of its synthetic image. Lastly, the pixels from the
synthetic image were radiometrically calibrated to the observation image via a normalization process.
With these processes, we can reconstruct a full length cloud-free Sentinel-2 MSI image time-series to
maximize the values of observation information by keeping observed cloud-free pixels and calibrating
the synthetized images by using the observed cloud-free pixels as references for better quality.
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1. Introduction

With the European Space Agency’s (ESAs) 2017 launch of Sentinel-2B satellite and 2015 launch of
Sentinel-2A, the satellite constellation offers a revisit range from 5 days at the equator to a daily approach
of the poles [1]. The Sentinel-2A/2B (Sentinel-2) satellites carry a multispectral instrument (MSI) sensor
with 13 bands in the short-wave spectrum with spatial resolutions ranging from 10 m to 60 m. Since their
launch, a vast number of time-series images have been acquired and become one of the most valuable
Earth observation resources for land surface studies and environment monitoring at regional and local
scales due to its high spatial and temporal resolutions [2–6]. However, Sentinel-2 cannot fully achieve
all surface-reflectance measurements for each acquisition date due to contamination of clouds and
cloud shadows on images, especially in cloudy regions. This makes a great number of the images
useless and impends their applications and full value realization. Studies have found that temporally
sparse earth observations, especially for areas with high probability of cloud coverage, are not sufficient
for monitoring environment dynamics in a vegetation growing season [2,7,8].
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Clouds and cloud shadow (CCS) contamination on images is common to satellite optical remote
sensing. To overcome the CCS problems, many researchers have developed two different methodologies
for reconstruction of cloud-free image time series. The first is the image composite method that uses
observed image time series to reconstruct cloud-free images. For example, several methods have been
developed for reconstruction of cloud-free time-series of Landsat images [9–17]. The second is the
spatiotemporal image fusion approach that generates image time series by synthesizing fine resolution
images (such as Landsat and Sentinel-2 images) from a limited number of clear-sky fine resolution images
and coarse resolution images, such as observations from a moderate resolution image spectroradiometer
(MODIS) when cloud-free fine images are unavailable. Such examples include the spatial and temporal
adaptive reflectance fusion model (STARFM) [18], enhanced STARFM (ESTARFM) [19], the spatial and
temporal adaptive algorithm for mapping reflectance change (STAARCH) [20], the unmixing-based
spatial-temporal reflectance fusion model (U-STFM) [21,22], the flexible spatiotemporal data fusion
(FSDAF) [23], prediction smooth reflectance fusion model (PSRFM) [24], and Kalman filter reflectance
fusion model (KFRFM) [25], etc.

As the image composite method uses only the observed time series images for the reconstruction
process, its effectiveness depends on two factors. One is the availability of cloud-free pixels from the
observations within a specified period used for composing a cloud-free image. Another is how well the
cloud-free pixels or the clouds and cloud shadow pixels can be identified or distinguished effectively.
Both factors still limit the quality of the composited time series images. To improve the performance
of the composite method, Pouliot and Latifovic [17] introduced climate data (temperature and
precipitation) and AVHRR (advanced very high resolution radiometer) data into their reconstruction
process. Introducing the extra information into the harmonic modelling [14] of Landsat time-series
enhances the reconstruction results in the presence of substantial sparsity [17].

By exploiting the sub-daily revisit frequency of MODIS on the Terra and Aqua satellites,
the developed spatiotemporal image fusion approaches can augment the temporal intensity and
circumvent the sparsity of clear-sky observations in Landsat and Sentinel-2 time series. However,
when developing the spatiotemporal image fusion algorithms [18–25], these approaches focused on
the technical challenge of how to blend input images for higher quality output (blended) images.
They ignored a technical challenge outside of the image fusion algorithm itself for reconstruction of a
cloud-free image time-series, i.e., how to merge the cloud-free surface reflectance measurements within
cloud contaminated images that are not used as input data for image fusion processing with synthetic
surface reflectance for better quality.

To make full use of the cloud-free surface reflectance measurements within cloud contaminated
images that are not used as input data for image fusion, this study attempts to extend the spatiotemporal
image fusion approach for the reconstruction of cloud-free Sentinel-2 MSI image time-series. Based on
the well-developed spatiotemporal image fusion model PSRFM [24,26], we proposed an extended
method for reconstruction of cloud-free Sentinel-2 image time-series. The proposed method goes
beyond image synthetization. It combines useful cloud-free pixels of cloud contaminated images
with their corresponding synthetic images through successful cloud identification, cloud shadow,
and haze pixels. This approach brings us two benefits. First, it maximizes the values of the observation
information by keeping the observed cloud-free pixels. Second, using the observed cloud-free pixels as
references, the synthetized images can be calibrated for better quality. The rest of the paper details
the proposed method as well as the process procedures (Section 2). Section 3 presents a case study.
After that, the test results are evaluated and discussed in Section 4. Finally, this study is concluded
with a summary in Section 5.
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2. Methods and Process Procedures

2.1. Overview of the Reconstruction Method

The reconstruction approach began by gathering all time-series of Sentinel-2 images for a specified
period and a study area. Then, using a spatiotemporal image fusion model to predict cloud-free
synthetic Sentinel-2 images for all dates when cloud-free observation images were not available with
clear-sky Sentinel-2 and MODIS images. After that, we replaced those cloud and cloud shadow
contaminated pixels of the Sentinel-2 observations with the corresponding pixels of the synthetic
images predicted at the same acquisition dates. The reconstruction procedure consisted of four steps:
(1) an image fusion model was used to predict Sentinel-2 images at acquisition dates when cloud-free
images (with either partial or full cloud coverage) were not available; (2) the cloudy and cloud shadow
pixels of the cloud contaminated images were identified based on analysis of the differences of the
synthetic and observation image pairs; (3) the cloudy and cloud shadow pixels of the observations
were replaced by the corresponding pixels of the synthetic image; (4) the pixel values from the synthetic
image were calibrated to the pixel values of the observation image with a radiometric normalization
process. After these processes, an entire cloud-free Sentinel-2 images time-series can be reconstructed.

By using PSRFM [24] as the spatiotemporal image fusion model to generate the cloud-free synthetic
Sentinel-2 image time-series, Figure 1 shows the main work flow of the reconstruction procedures.
The procedural details are given as follows:

(1) Gather the Sentinel-2 image time-series of a study area’s sub-period (t0, t1, t2, . . . , tn).
Without losing generality, assume this period starts at t0 and ends at tn, and the images at
t0 and tn are clear-sky ones. Between the two acquisition dates, all other images at dates
tk (k = 1, 2, . . . , n−1) are either partially cloud-covered or fully cloud-covered (with more than
50% cloud coverage). Therefore, all images at tk need to be processed for cloud-free time-series
reconstruction. An entire study period can consist of multiple such sub-periods.

(2) Retrieve the time-series MODIS images at the Sentinel-2 image acquisition dates. They are then
processed (resampled, re-projected, and geometrically registered with the Sentinel-2 images) for
image fusion modelling.

(3) Generate synthetic Sentinel-2 images for all acquisition dates tk (k = 1, 2, . . . , n−1) from the
clear-sky MODIS and Sentinel-2 image pairs at t0 and tn, and MODIS images at tk using PSRFM.

(4) Make a cloud and cloud shadow mask for every cloud contaminated Sentinel-2 image at tk by
analyzing the reflectance differences between the observational and synthetic Sentinel-2 images.

(5) Replace the cloudy and cloud shadow pixels of the Sentinel-2 observation images with the
corresponding pixels of the synthetic Sentinel-2 images according to the cloud and cloud
shadow mask.

(6) Normalize the pixel values of the replacement by calibrating them to the reflectance values of the
cloud-free pixels of the same Sentinel-2 observation.

(7) Repeat the steps 3 to 6 until all the images are processed. Then, a cloud-free Sentinel-2 image
time-series is reconstructed.
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Figure 1. Reconstruction process flowchart. Date tk indicates all acquisition dates when clear-sky
images were not available.

2.2. Brief Description of PSRFM

The reconstruction quality of a cloud-free Sentinel-2 image time-series using our proposed
approach essentially depends on two key processes. The first is to generate high quality synthetic
Sentinel-2 images for cloudy and cloud shadow pixel replacement and the second is to identify cloudy
and cloud shadow pixels that replace the corresponding pixels of the synthetic images. Herein,
PSRFM [24,26] was used to generate cloud-free synthetic Sentinel-2 image time-series, i.e., the first
key process of the reconstruction procedure. We selected PSRFM for the image fusion processing
because it had been evaluated [24,26] against different landscape environments and dynamics, as well
as being compared to published and well-known image fusion models, such as STARFM [18] and
ESTARFM [19]. The evaluations and comparisons indicated that PSRFM outperformed STARFM and
ESTARFM visually and quantitively.

When interpolating estimates of surface reflectance, PSRFM requires two co-located image pairs
of clear-sky fine and coarse resolution images acquired at start date t0 and end date tn and a time-series
of cloud-free coarse spatial resolution images acquired between the start and end dates donated as t1,
t1, . . . , tn−1 for synthetic fine resolution image prediction. PSRFM can also be applied for extrapolation
when only one pair of clear-sky fine and coarse spatial resolution images are available. For example,
for predicting images earlier than the date of the first clear-sky image pair at t0 or images later than
the date of the last clear-sky image pair at tn, a synthetic image can be generated by the forward or
backward prediction.
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The modelling process involved a spatial partition of the fine resolution pixels sharing spectral
similarity and fitting a linear transformation relating fine and coarse resolution spectra by unmixing
each coarse resolution pixel based on land cover clusters. Then, the spectral change between the
reference (t0 and tn) and prediction dates (tk) was predicted forward and backward, respectively.
Following that, a smoothing process combined the forward and backward predictions through an
average filter weighted by either the time elapsed between reference and predicted date or the
uncertainties of the two predicted images [24].

For the reconstruction process, we downloaded all Sentinel-2 images for which a cloud-free
image time-series was required and then grouped every image into one of three classes: clear-sky
images (cloud coverage < 5%), partially cloud-covered images (cloud coverage < 50%), and fully
cloud-covered images (cloud coverage ≥ 50%). Here, an image with greater than 50% of cloud coverage
was considered as full cloud coverage. This was based on the requirement of following cloud and
cloud shadow identification methods for a reliable result. After the images were grouped, the clear-sky
images were used as reference images to predict synthetic Sentinel-2 images at those dates when the
images were partially or fully cloud-covered. For an image with full cloud coverage, it was entirely
replaced by its corresponding synthetic image and for a partially cloud-covered image, its cloudy and
cloud shadow pixels were replaced by the corresponding pixels of the synthetic image. Consequently,
the final reconstructed cloud-free image time series consisted of three types of images: the clear-sky
observations, the blended images that replaced the fully cloud-covered images, and the observation
images with cloudy and cloud shadow pixels replacement from the synthetic images.

2.3. Cloud and Cloud Shadow Identification

2.3.1. General Formula

Following the generation of synthetic images using PSRFM, the next challenging was to identify
cloudy and cloud shadow pixels of the cloud contaminated images. If we compared a synthetic image
at tk to the corresponding cloud contaminated image acquired at the same date, based on previous
studies [24,26], the reflectance represented by digital numbers (DN) of the two images should be close
to each other for most cloud-free pixels as the root mean square error and absolute mean error were
small for all individual bands [24,26]. Consequently, a large difference of a pixel value for the two
images was most likely caused by clouds or cloud shadows and other issues such as the haze on the
observational image:

dDN(i, j, b) = DNo(i, j, b) −DNs(i, j, b) (1)

dDN(i, j, b) =
{
≥ T a cloud contaminated pixel
< T a cloud f ree pixel

(2)

where (i, j) is a pixel location and DNo and DNs are the digital number of the observation and synthetic
images of band b, respectively. dDN is the pixel value difference of the two images. T is the threshold
to separate cloud contaminated pixels from cloud-free ones.

2.3.2. Cloudy Pixel Identification

Clouds, especially thick clouds, have high spectral reflectance compared to most of the surface
objects in all six bands (blue, green, red, near infrared, shortwave infrared 1, and shortwave infrared 2
as listed in Table 1 in Section 3). Therefore, a cloudy pixel had larger values in every band compared to
a cloud-free pixel of the same kind. For cloudy pixel identification, we simply used the average of the
six bands in Equation (1):

dDNc(i, j) = (
N∑

b=1

DNo(i, j, b) −
N∑

b=1

DNs(i, j, b))/N (3)
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where
∑

is the summation on all six pixel bands (i, j) and N is the total number of the bands that equals
to 6. The summation on all the bands of a pixel (i, j) is used by Zhai et al. [27] as a cloud index.

For the identification of cloudy pixels, Equation (2) becomes:

dDNc(i, j) =
{
≥ Tc a cloudy pixel
< Tc a cloud f ree pixel

(4)

The question of identifying cloudy pixels becomes how to determine Tc in Equation (4).
Through our analysis, we found that a graph of sorted dDNc value in ascending order for an entire

image against their accumulated pixel number can help determine the threshold Tc. Figure 2 presents
a typical graph of a cloud contaminated image. In this figure, a cloudy pixel shows a large positive
dDNc value at the right end due to its significantly increased reflectance while a cloud shadow pixel
shows a large negative dDNc at the left end of the graph due to its considerably decreased reflectance.
The majority of cloud-free pixels between the two extremes indicate small differences between the
observation and its corresponding synthetic image, which mainly coming from modelling bias or error.
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To visually determine the threshold Tc value in Equation (4), we pinpointed a few tries to identify
cloudy pixels. The threshold was largely located where the change rate of the curve had a large
jump towards the right end of the graph. Mathematically, this can be determined by differencing the
sorted dDNc and comparing their changes to locate the point where a large curve change rate occurs.
Specifically, Tc can be derived by the following steps. First, the sorted dDNc values were arranged
into multiple bins by a given interval, e.g., 100. Then the average of all the values of every bin was
computed. Thereafter, the difference between the consecutive two bins can be calculated as:

dkc = dDNc,k+1 − dDNc,k (5)

where dDNc,k and dDNc,k+1 are the average values of the Kth bin and (K+1)th bin, respectively, and dkc
is the difference between the two average values.

Assuming that the middle portion of the graph represents the values of those cloud-free pixels,
a pixel with any value significantly greater than the average of those values could be considered as a
cloudy pixel. Hence, the threshold Tc can be determined by using the dkc in the middle portion (taking
one third of the entire values conservatively) to calculate their mean dm and standard deviation σm

and then to find the first dDNc value towards the right end of the graph that meets dkc ≥ dm + C σm.
Here, C was an adjustable parameter. From our experiment, C = 5 was a good choice for cloudy pixel
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identification, i.e., when dkc ≥ dm + 5 σm, the corresponding value of dDNc was the threshold Tc for
cloudy pixel identification.

In comparison to other methods for cloudy pixel identification, the proposed method requires only
one parameter, while other methods such as FMASK [28] require a few parameters in order to produce
a cloud mask. In addition, the threshold Tc can be derived automatically from the image data and once
it is determined, a cloud mask can be produced simply by comparison of the dDNc of a pixel to Tc,
while the parameter settings and mask computation of other methods are much more complicated.

2.3.3. Cloud Shadow Pixel Identification

Since cloud shadows alter the pixel value of near infrared (NIR) band and shortwave infrared
band 1 (SWIR1) more significantly than other bands, we applied the average of the two bands (NIR and
SWIR1) in Equation (1) for cloud shadow pixel identification. Similar to the identification of cloudy
pixels, the difference of the digital number of the synthetic and the observation images was used to
screen cloud shadow pixels as follows:

dDNcs(i, j) = (
∑

DNo(i, j) −
∑

DNs(i, j))/2.0 (6)

where
∑

is the summation on NIR and SWIR1 of a pixel (i, j) of a Sentinel-2 image, and its corresponding
synthetic Sentinel-2 image.

In comparison to a cloud-free pixel, according to Equation (6), a cloud shadow pixel has a large
negative dDNcs as clouds block the incoming radiance on cloud shadow pixels. Hence, to identify
cloud shadow pixels, we have:

dDNcs(i, j) =
{
≤ Tcs a cloud shadow pixel
> Tcs a normal pixel

(7)

where Tcs is the threshold to be determined for distinguishing cloud shadow pixels from cloud-free ones.
If we plotted a distribution of sorted dDNcs with its accumulated pixel number of a cloud

contaminated image (Figure 3), it would be similar to the distribution of the sorted dDNc in Figure 2.
Hence, we determined the threshold Tcs by using the same approach for the threshold identification for
cloudy pixels. The threshold Tcs can be pinpointed visually, as shown in Figure 3 or by the mathematic
method described above for cloud threshold Tc determination. The only difference was that the
comparison of the curve change rate was from the middle of the graph towards the left side of the
graph and C = 3 was reasonable for cloud shadow identification according to our experiment.
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2.3.4. Haze Pixel Identification

In comparison to cloudy and cloud shadow pixel identification, haze pixel identification is more
challenging because a haze pixel usually has mixed surface reflectance of objects on land surface.
Considering that the blue band is one of the most sensitive bands to haze effects, we used the difference
of blue bands between the observation and its synthetic image in Equation (1) to identify haze
affected pixels.

dDNh(i, j) = DNo(blue, i, j) −DNs(blue, i, j) (8)

where DNo and DNs represent digital number of observation and its synthetic image in blue bands,
respectively. dDNh is the pixel value difference between the two images. Haze usually makes a pixel
value larger than that of a haze-free pixel. Similar to the cloudy pixel identification, to detect a haze
pixel we have:

dDNh(i, j) =
{
≥ Th haze pixel
< Th a haze f ree pixel

(9)

where Th is the threshold to be determined for distinguishing between haze and haze-free pixels.
Using the same approach of determining the threshold Tc for cloudy pixel identification,

the threshold Th can be determined. However, the selection of the parameter value C was not
as obvious as for cloudy and cloud shadow pixel identification. It depended on not only the degrees
(e.g., thin or thick) of haze on the image but also the prediction accuracy of its corresponding synthetic
image. As the difference ranges of dDNh(i, j) in Equation (8), it was usually much smaller than dDNc

in Equation (4) or dDNcs in Equation (6), and the difference of some thin haze pixels may be close to
the largest prediction errors of the synthetic image, wherein a smaller C was recommended. For our
test case, we selected C = 3 for haze pixel identification.

To improve the accuracy of haze detection, we introduced an additional condition
DNo(blue, i, j ) ≥ DNo,min to Equation (9). This states that for a haze pixel its observation value
of blue band should be bigger than a minimum value DNo,min, otherwise the difference dDNh(i, j) is
considered as contribution from the synthetic image prediction error even though the value is bigger
than the threshold Th. Therefore, some misidentified haze pixels can be excluded. The minimum value
DNo,min can be determined as:

DNo,min = DNo,mean + nσDN0 (10)

where DNo,mean is the mean value of all DNo(blue, i, j) and σDN0 is their standard deviation. n is an
acceptable factor from 0.5 to 2.

2.3.5. Normalization of Reconstructed Images

After cloudy, cloud shadow, and haze pixels of a Sentinel-2 image were identified, they were
replaced with the corresponding pixels of its synthetic image to form a cloud-free image. Since the
synthetic image had minor visual differences from its counterpart observation on the reconstructed
cloud-free image, there was some small roughness such as salt-and-pepper noises, especially around the
edges of cloudy and cloud shadow pixels. To homogenize the differences, a normalization processing for
calibrating the synthetic pixel values to the observational values was required. There are two main types
of normalization methods: mapping and regression [16]. The mapping method directly establishes a
pixel value equation between the processed images and uses the output of the mapping equation to
replace the pixel values under consideration. The regression method creates a regression model to
establish the pixel value distortion relationship between the images via pseudo-invariant features.

In this study, we took the mapping approach. The normalization process can be expressed
as follows:

yn = axb + b (11)
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where yn is the pixel value after the normalization process that maps a synthetic image to the observed
image; xb is the replacement pixel value of the synthetic image; a and b are normalization parameters
that are determined by a linear regression.

Considering that different clusters may have different reflectance change rates, we performed the
linear regression to determine the normalization parameters a and b for each cluster. We followed four
steps in the normalization process:

(1) Segment the synthetic Sentinel-2 image into k clusters. The cluster number k can refer to the
optimized clusters used for the image blending by PSRFM [24].

(2) Identify, for each cluster, all the cloud-free pixels that are common to the synthetic and observed
images and belong to the same cluster, then use the pixel pairs to estimate normalization
parameters a and b in Equation (11).

(3) Apply the estimated normalization parameters to map the replacement pixels of the cluster to the
observed image.

(4) Repeat steps 2 and 3 for all the clusters.

3. Case Study

3.1. Study Area

The study area was located in Saskatchewan, Canada, as shown in Figure 4, and had a dimension
of 28 by 40 km, as well as an image size of 1400 by 2000 with 20 m spatial resolution. The landscape of
the study area was in an agricultural environment. In an attempt to monitor land cover changes from
pasture to cropland, we generated a daily time-series synthetic Sentinel-2 images for the vegetation
growing season from 26 April 2018 to 10 October 2018 from clear-sky Sentinel-2 observations and
MODIS images (MCD43A4). The image time-series was used to demonstrate our proposed methods in
this study for cloud-free time-series image reconstruction.
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3.2. Image Data

Two types of time-series images were used as input in the case study: one was Sentinel-2
time-series and the other was MODIS MCD43A4 time-series. The Sentinel-2 images of the time-series
had a great number of pixels contaminated by clouds and cloud shadows. Our goal was to reconstruct
a cloud-free Sentinel-2 time-series from the two type images.

3.2.1. Sentinel-2 MSI Image Time-series

The Sentinel-2 MSI image time-series of the study area came from both Sentinel-2A and Sentinel-2B
satellites and covered the vegetation growing season from 26 April 2018 to 10 October 2018. The temporal
intervals of these images were 2 to 3 days. For the entire period, there were 67 observed Sentinel-2
images. Among them, there were only 14 (20.90%) clear-sky images (cloud coverage <5%) and
21 (31.34%) partially cloud-covered images (cloud coverage < 50%), as well as 32 (47.76%) fully
cloud-covered images (cloud coverage ≥ 50%). Figure 5 shows the cloud-free pixel distribution in this
time series.
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As presented in Figure 5, majority of the pixels (about 60% of the total pixels) have 33 to
35 cloud-free days (about 18% pixels of 33 days, 22% of 34 days, and 19% of 35 days) that corresponded
to about half of the total 67 image acquisition dates. Besides these, the number of pixels drop quickly
with an increasing or decreasing number of cloud-free days. For example, while there were about
12.5% pixels with 36 cloud-free days, the percentage was down to 5% with 37 clear-sky days, and only
about 1% with 38 days. These numbers indicated that, within the time period, fewer than half of the
total image pixels of the time-period were useable. In the reconstruction process of the time-series,
all cloud contaminated pixels were replaced by the corresponding pixels of the synthetic images while
keeping and maximizing the value of all observed cloud-free pixels.

3.2.2. MODIS MCD43A4

The second type of the images used in this study is daily MODIS MCD43A4 (Version 6). There are
several collections of daily MODIS images that could be used to match the acquisition dates of
the Sentinel-2 images time-series: MOD09GA from Terra, MYD09GA from Aqua, and MCD43A4.
MOD09GA and MYD09GA were daily MODIS images, and MCD43A4 was daily but was with
combined images from Terra and Aqua satellites with nadir bidirectional reflectance distribution
function (BRDF) adjusted reflectance. Pixels of MCD43A4 were temporally weighted from the data
of 16 days period for the 9th day of the period. As both Sentinel-2 satellites and MODIS had almost
the same local overpass time, most likely if a Sentinel-2 image has cloud coverage issues, the daily
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MODIS MOD09GA/MYD09GA image acquired at the same day may also have the same problem.
On the other hand, MCD43A4 came from 16 days images and cloudy pixels were not used for the data
production. Furthermore, the view angle effects of MCD43A4 were removed according to bi-directional
reflectance distribution function and they were alike from the nadir view angle, resulting in a stable and
consistent NBAR (nadir BRDF adjusted reflectance) product [29]. Considering that the main purpose
of this study was to reconstruct cloud-free Sentinel-2 image time-series, MCD43A4 images were more
appropriate. Thus, MCD43A4 images at the same acquisition dates of the Sentinel-2 image time-series
were used for image fusion exercise in this study. All the observation images were surface reflectance
and downloaded from the USGS Earth Resources Observation and Science (EROS) Center [30].

3.3. Synthetic Sentinel-2 Image Production by Image Fusion

Sentinel-2 and the MODIS images had six similar spectral bands (bandwidths) but different
spatial resolutions, as is listed in Table 1. Before the image blending exercise, all the image bands were
resampled to a unified spatial resolution of 20 m and the MODIS images were re-projected to map
projection of the Sentinel-2 images. Then, the clear-sky image pairs of the Sentinel-2 and MCD43A4
images were prepared for model calibration and the MODIS images at all other Sentinel-2 acquisition
dates were used for prediction of synthetic Sentinel-2 images by PSRFM.

Table 1. Sentinel-2A MSI bands and the corresponding MODIS (MCD43A4) bands for image fusion.

Band Name

Sentinel-2A * MSI MODIS (MCD43A4)

Band ID Bandwidth
(nm)

Spatial
Resolution (m) Band ID Bandwidth

(nm)
Spatial

Resolution (m)

Blue b2 439–533 10 b3 459–479 500
Green b3 538–583 10 b4 545–565 500
Red b4 646–684 10 b1 620–670 500

Near-infrared (NIR) b8A 837–881 20 b2 841–876 500
Shortwave infrared (SWR1) b11 1539–1682 20 b6 1628–1652 500
Shortwave infrared (SWR2) b12 2078–2320 20 b7 2105–2155 500

* Sentinel-2B MSI has the similar bandwidths.

4. Results and Discussions

As an experimental study, we reconstructed the cloud-free Sentinel-2 image time-series with
67 images of the study period from 26 April to 10 October 2018 using the proposed methods and data
described in Sections 2 and 3. For the results and discussions, without losing generality, we employed
six typical cloud contaminated images from the reconstructed time-series to illustrate the effectiveness
of the methods. Figure 6 shows the false color composition of the six images. Three of these images
(16 May, 15 June and 5 October 2018) were cloud contaminated, two of them were mainly contaminated
by haze (30 July and 21 August 2018), and one (3 October 2018) was contaminated by mixed thin clouds
and thick clouds. We select these six images as examples for two reasons. The first was that the total
contaminated pixels should be less than 50%. This was required by the method to make sure that the
difference comparison was reliable for an effective result. The second was that they should include
images contaminated by both cloud and haze for some challenged cases.
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4.1. Cloudy, Cloud Shadow, and Haze Pixels Masks

Using the Sentinel-2 MSI observations shown in Figure 6 and their corresponding synthetic images
generated by PSRFM, we tested the cloudy, cloud shadow and haze pixel identification methods
proposed in Section 2. For a comparison, we also applied the well-developed FMASK method [28] to
the same images for clouds and cloud shadows detection. Figure 7 displays the six cloud contaminated
images with their clouds and cloud shadow masks resulted from the two clouds and cloud shadow
detection methods. The cloud and cloud shadow identification method proposed by this study
is called image fusion cloud masking (IFCM). Here, cloud mask includes clouds, cloud shadows,
and haze elements.

It is evident, as shown in Figure 7, that the cloud, cloud shadow, and haze masks by IFCM
matched well to the cloudy, cloud shadows, and haze pixels of the images. In comparison to the results
of FMASK, IFCM looked better visually, especially for the thin clouds and haze detection. For example,
IFCM masked the thin clouds in the images on 3–5 October 2018 (the last two rows) more accurately.
The image on 3 October 2018 had both thin and thick clouds; IFCM identified both to a certain extent
while FMASK only detected thick clouds. For the image on 5 October 2018, the FMASK mask showed
more omissions while the IFCM mask more accurately reflected the reality.

For the two images (the third and fourth rows) with the haze contamination, IFCM could identify
the haze pixels to a certain extent, though some non-haze pixels were over identified. The over
identified non-haze pixels were a result of compromise in determining the threshold value Th for the
haze detection. The bigger the threshold value Th, the less the identified haze pixels, including the
over identified non-haze pixels. Unlike the clouds and cloud shadow pixel detection, the difference
between a haze contaminated pixel and its corresponding synthetic pixel can be smaller than the top
image fusion modelling bias or errors, so that the over identified non-haze pixels are not avoidable to
keep the real haze pixels detected. As FMASK was not specially developed for haze detection, it over
detected the haze pixels as cloud and cloud shadow pixels more considerably. From this point of view,
IFCM was more flexible than FMASK for haze detection.
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4.2. Reconstruction Results of Cloud-free Sentinel-2 Images

Based on the cloud masks resulted from the cloud and cloud shadow detection, we reconstructed
the cloud-free Sentinel-2 image time-series by replacing the cloudy, cloud shadow and haze pixels of
the original cloud contaminated images with the corresponding pixels of its synthetic images. Figure 8
presents the observations, synthetic, and reconstructed images for their visual comparison.Remote Sens. 2020, 12, x FOR PEER REVIEW  15  of  23 
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From Figure 8, it can be found that both the synthetic and reconstructed images are cloud-free and
the differences between the two images were small for all six images. The main reason was that the
synthetic images were of reasonably high quality and the replacement of the clouds and cloud shadow
pixels in the observations from the synthetic images overall matched well to the rest of the cloud-free
pixels of the observations although some minor differences between the synthetic and reconstructed
images were still visible.

4.3. Normalization Results

To verify the effect of the normalization process, we compared the reconstructed Sentinel-2 images
before and after the normalization process for all six images shown in Figure 9. It was apparent that
the differences between the reconstructed images before and after the normalization process were not
considerable for all six images. As discussed above, the main reason was that the synthetic Sentinel-2
images were well predicted and resembled their observations. The normalization process only made
minor changes to those replacement pixels from the synthetic Sentinel-2 images and brought them
to match better to their true observation based on the cloud-free pixels of the observations. Overall,
the images after the normalization looks smoother and more natural than the reconstructed images
without the normalization. For example, we saw some differences between the cloud-free pixels and
the replacement pixels on the image dated 5 October 2018 before the normalization process. However,
the differences were greatly reduced on the same image after the normalization.

4.4. Time-series Normalized Difference Vegetation Index (NDVI)

As shown in Figure 4, the study area was in an agricultural region. Majority of the landscape was
covered by cropland (~66.3%), followed by grassland (~15.8%), shrubland (~9%), and deciduous forest
(~1.6%). The four types of vegetation covered about 92.6% of study area. The rest was waterbody,
buildup area, and others. As part of effort to check the quality of the reconstructed time-series
Sentinel-2 images, we calculated the NDVI time-series of the four vegetation types of the study period
as shown in Figure 10 from sample data of the clear-sky Sentinel-2 images, MODIS, synthetic Sentinel-2
images, and reconstructed Sentinel-2 images. The clear-sky Sentinel-2 and MODIS images were used
to generate synthetic Sentinel-2 images when cloud-free images were not available. The sample data
used for calculation of NDVI were randomly selected from these images and the only requirement
was that all its neighbor pixels of 25 by 25 (the size of a MODIS pixel) had the same land cover type.
The requirement for the deciduous sample was relaxed to 15 by 15 pixels due to a small portion of
deciduous forest land cover in the study area.

As shown in Figure 10, although different land cover has different NDVI shapes, the NDVI
patterns from the four images were similar for all the same land cover types. The NDVI time-series
from MODIS and the synthetic Sentinel-2 images looked similar with exception of the deciduous
forest. The NDVI time-series from the synthetic Sentinel-2 images were generally larger than that
from the MODIS data though the general patterns of the two were the same. This was because the
sample MODIS pixel for the NDVI calculation was not a homogeneous deciduous forest land cover.
In general, the NDVI time-series from the synthetic Sentinel-2, reconstructed and clear sky images
were very similar. This confirmed that first the synthetic images were well predicted and the second
reconstructed cloud-free Sentinel-2 image time-series was well produced.
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4.5. Discussions

There were two critical issues when reconstructing cloud-free Sentinel-2 images time-series
using our proposed image fusion approach: the quality of the blended images and the accuracy of
clouds/cloud shadow pixels identification.

In this study, we used the PSRFM model for predicting cloud-free synthetic Sentinel-2 images
when clear-sky Sentinel-2 images were not available. Some pixels of these synthetic images were
used to replace those cloudy and cloud shadow pixels of the corresponding observations. Apparently,
high quality of the synthetic Sentinel-2 images was the first key component in the chain of the
reconstruction process to warrant high quality output. PSRFM is a well-developed spatiotemporal
reflectance fusion model and has been validated and compared to some well-known image fusion
models [24,26]. It works well for both gradual and abrupt land cover change situations, as well as for
heterogeneous landscapes. Therefore, it was chosen for the synthetic image production. In addition
to PSRFM model, other well-developed image fusion models can also be used for the reconstruction
purpose as long as it can predict high quality of synthetic images such as STARFM, ESTARFM, FSDAF,
and KFRFM [25].

To reconstruct cloud-free time-series Sentinel-2 images, MODIS MCD43A4 images were used as
the coarse resolution image input. MODIS MCD43A4 images were generated from the cloud-free
pixels of both Terra and Aqua satellites over a 16 days period for NBAR computation. The product
provided a consistent cloud-free and nadir view image that was one of the best MODIS datasets for
image fusion even though some pixels were of higher quality (full inversion), and some pixels were
of lower quality (magnitude inversion) [29]. The latter could be a source of the synthetic Sentinel-2
image bias.

When using MODIS MCD43A4 images to reconstruct cloud-free time-series Sentinel-2 images,
a question was raised: Why not apply the same composite method of generating cloud-free MODIS
MCD43A4 images to reconstruct the cloud-free Sentinel-2 image time-series? Technically, it is possible
as long as there are enough cloud-free pixels available from the Sentinel-2 observations over a 16 day
period. Practically, depending on the season and the location of interest, the useful cloud-free pixels
from Sentinel-2 observations over the 16 days period may be limited. For instance, according to the
analysis about the cloud-free pixels of the Sentinel-2 images used for the test case in Section 3.2.1,
fewer than half of the total image pixels of the time-period from 26 April 2018 to 10 October 2018
were useable. With MODIS’s daily revisit, the number of images available for the composite was
triple the number of Sentinel-2 images (at about a 3-day revisit frequency) available for the same
period of 16 days. Therefore, in comparison to the composite method, the proposed method in this
study can augment the stronger temporal intensity of MODIS and circumvent the sparsity of clear-sky
observations in Sentinel-2 time series.

The second critical issue of this proposed approach was the identification of clouds and cloud
shadows. The case study proposed a new method for cloudy and cloud shadow as well as haze
pixel identification by analyzing the differences between observations and their synthetic images.
Our proposed method has obvious advantages. It is simple and effective. A conventional cloud
identification was based on the spectral difference between cloudy pixels and other cloud-free ones
within an image. As some land surface objects such as buildings, bare dry soil, and roads have
similar high reflectance as clouds do, it is usually problematic to distinguish clouds from those objects.
However, by our method, those objects can be easily excluded from clouds. The reason is that if a
land surface object, for example, a building or a road, has high spectral reflectance in nature, it should
have high spectral reflectance in both observation and its synthetic images (if the synthetic image is
correctly predicted which is the case from our PSRFM modelling). Therefore, their reflectance difference
expressed in Equation (3) should be small, and the object can be easily identified as non-cloud object.
In contrast, assuming an object has small spectral reflectance in nature, on the one hand, it will present
big spectral reflectance if it is covered by clouds in a cloud contaminated image, and on the other hand,
it still has a small spectral reflectance value in its corresponding cloud-free synthetic image. Hence,
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the large difference of the pixel values of the observation and the synthetic image would reveal it as a
cloudy pixel.

The advantage for the cloud identification can be extended to the cloud shadow identification.
For example, cloud shadow pixels can often be mixed to water pixels as both cloud shadow and water
have small spectral reflectance. For similar analysis, assuming a synthetic image is well predicted,
a water pixel can have a small value in both observation and synthetic images. Therefore, a small
difference between them indicates that it is not a cloud shadow pixel. That being said, a medium to
high surface reflectance object has a small value if covered by cloud shadow. Hence, a large difference
of a pixel between a cloud contaminated image and its corresponding synthetic image can uncover the
cloud shadow pixel.

It is possible that the difference between a haze or thin cloud contaminated pixel and its
corresponding synthetic pixel is smaller than the top image fusion modelling bias or errors. This could
result in false haze and thin cloud pixel masking. However, the chance is relatively small since from
PSRFM model evaluation, majority of the pixels are well predicted for all the bands. A small number
of outliers will not affect the overall accuracy of haze, cloudy, and cloud shadow pixel identification.

To distinguish cloud-free and cloud contaminated pixels, our method determined the values of
only three threshold parameters: Tc for clouds, Tcs for cloud shadows, and Th for haze. They were easily
determined by our proposed method, either visually or automatically. Like other methods, the cloud
contaminated pixels (clouds, cloud shadow, and haze) can be over- or underestimated. Cloudier,
cloud shadow, or haze pixels can be masked if decreasing the absolute value of the thresholds and vice
versa. In our proposed reconstruction process, after we identified the cloud contaminated pixels of
an observation image, those pixels were replaced by the pixels of the corresponding synthetic image.
Since the synthetic images had high quality, we preferred to overestimate the cloud contaminated
pixels instead of underestimating them as inclusion of more cloud contaminated pixels in the mask
resulted in better results than omission of true cloud contaminated pixels in the mask. In the latter
situation, unidentified cloud contaminated pixels remained in the reconstructed time-series. In contrast,
in the former situation, some cloud-free pixels (which were wrongly identified as haze, cloudy/cloud
shadow pixels) were replaced by the corresponding pixels of the synthetic image, which later were
radiometrically calibrated to the observation values. Therefore, the impact of overestimating cloudy,
cloud shadow, and haze pixels on the final reconstruction time-series was small.

Like other cloudy pixel identification, this proposed method worked better for images with thick
cloud contamination than with thin cloud coverage as thick clouds made the affected pixels dramatically
distinguishable from cloud-free pixels, and a pixel with thin cloud or haze coverage showed surface
reflectance underneath. For an image with thin cloud and/or haze coverage, we adjusted the value of
threshold Th. A smaller Th could identify more thin cloud or haze covered pixels. In this situation,
omission of some true cloud-free pixels could be possible. However, as discussed above, such small
omission would not significantly impact the quality of the reconstructed cloud-free time-series images.

Among the three types of cloud contaminated pixels (cloudy, cloud shadow, and haze pixels),
the accuracy of cloudy and cloud shadow pixel identification was higher than that of haze pixel
identification. The main reason was that a cloudy and cloud shadow pixel usually had a large
reflectance difference compared to a cloud-free pixel while the value difference of a haze and a haze-free
pixel was relatively small. A haze pixel may also contain some of the surface reflectance underneath.
Hence, due to the smaller difference, bias from the synthetic image prediction may contribute to over
or under identification of haze pixels. Because of this, the method for haze pixel identification needs to
be further polished.

5. Conclusions

Time-series for Sentinel-2A/2B (Sentinel-2) MSI images are valuable resources for environmental
study and change monitoring. Although the revisiting capability of Sentinel-2 constellation has
been greatly improved compared to other sensors such as Landsat, values of Sentinel-2 images
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cannot be fully realized due to cloud coverage, especially in the cloudy regions. This study aimed
to reconstruct cloud-free Sentinel-2 image time-series from a limited number of clear-sky Sentinel-2
observations and MODIS MCD43A4 images using an extended spatiotemporal image fusion approach.
With this approach, the cloud-free pixels of a time-series of Sentinel-2 observations were kept while the
cloudy and cloud shadow pixels were replaced by the pixels of their corresponding synthetic images.
The proposed new algorithm of this study to identify cloudy, cloud shadow, and haze pixels was
simple but effective. To take advantages of high quality synthetic Sentinel-2 images, the identification
of cloudy, cloud shadow, and haze pixels was based on analysis of different cloud contaminated
Sentinel-2 observations and synthetic image from clear-sky Sentinel-2 and MODIS MCD43A4 images.
By replacing only cloud contaminated pixels while keeping all cloud-free pixels of observations,
the method produced the highest quality of a reconstructed time-series image. Experiment with
reconstruction of a cloud-free time-series of 67 Sentinel-2 images of the case study indicated that the
proposed method worked well. Hence, our proposed approach could make Sentinel-2 images more
usable and useful.

This reconstruction method depends on the quality of synthetic images. The higher the quality of
synthetic images, the higher quality of a reconstructed image time-series. In this regard, choice of a good
image fusion model is necessary. In this study we used PSRFM for image fusion as previous studies
indicated that it produced high quality of synthetic Sentinel-2 images at various landscape situations.

While this study demonstrated the proposed method with Sentinel-2 images, this method can be
also applied to reconstructing time series Landsat 8 imagery since the PSRFM model was successfully
used to produce synthetic Landsat 8 image time-series in their earlier studies.

One of the main limitations of this technique was that it generated only six bands of cloud-free
time-series Sentinel-2 MSI images due to the constraint of spectral bandwidth scope. The image
fusion methods, including PSRFM, were built on the similarity of reflectance bandwidths between
fine (e.g., Sentinel-2) and coarse (e.g., MODIS) images. As the two sensors had only six similar bands,
as shown in Table 1, only the reflectance of the six bands were blended and processed for time-series
image reconstruction.
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