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Abstract: Global land-cover products play an important role in assisting the understanding of
climate-related changes and the assessment of progress in the implementation of international
initiatives for the mitigation of, and adaption to, climate change. However, concerns over the accuracies
of land-cover products remain, due to the issue of validation data uncertainty. The volunteer-based
Degree Confluence Project (DCP) was created in 1996, and it has been used to provide useful
ground-reference information. This study aims to investigate the impact of DCP-based validation
data uncertainty and the thematic issues on map accuracies. We built a reference dataset based on
the DCP-interpreted dataset and applied a comparison for three existing global land-cover maps
and DCP dataset-based probability maps under different classification schemes. The results of the
obtained confusion matrices indicate that the uncertainty, including the number of classes and the
confusion in mosaic classes, leads to a decrease in map accuracy. This paper proposes an informative
classification scheme that uses a matrix structure of unaggregated land-cover and land-use classes,
and has the potential to assist in the land-cover interpretation and validation processes. The findings
of this study can potentially serve as a guide to select reference data and choose/define appropriate
classification schemes.

Keywords: climate changes; global land-cover maps; accuracy assessment; volunteer-based validation
data; Degree Confluence Project; citizen science; classification scheme

1. Introduction

The increased occurrence of natural disasters and extreme weather patterns in recent decades
has directed global attention toward climate-related changes. Climate change has caused damages
to various aspects of both natural ecosystems and human society in terms of ecological, economic,
and social systems at multiple spatiotemporal scales [1]. To mitigate the current damage caused by
climate change and adapt to its consequences in the future, it is increasingly important to maintain
a precise understanding of climate change and disseminate proper and efficient climate change
information [1,2]. Observing global land cover plays an important role in assessing the impacts of
changes on the environment, as well as the progress of the implementation of international actions (such
as UNFCCC and Kyoto Protocol) related to the mitigation of, and adaption to, climate change [3,4].
Only a few decades ago, global land-cover observation and mapping used to be constrained by the
coarse spatiotemporal resolution of remote sensing images. However, the rapid development of
remote sensing technologies, computer hardware and software, and networks has upgraded land-cover
observation and mapping into a new era of Land Cover 2.0 [5]. This has enabled “free and open access
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data, analysis-ready data, high-performance computing, and rapidly developing data processing and
analysis capabilities that will result in a proliferation of land cover products supporting extensive
use in scientific research” [5]. Nevertheless, when it comes to global land-cover maps, the main
concern is map accuracy, which reveals the extent to which the map can truly reflect the actual land
cover/land-use changes that have occurred. Map accuracy is often measured by conducting a map
accuracy assessment, which is an important part of a rigorous land cover map-based analysis [6].
The accuracy assessment result is significantly affected by the quality of the reference ground as the
process of assessment is to compare reference data with the mapping results [7–10]. Field surveys are
needed to collect ground reference samples, but the traditional geographical method of collection lacks
corroborating evidence, and it is highly labor-intensive, expensive, and time-consuming to conduct a
statistically meaningful survey of ground conditions [6,11,12]. Therefore, for global/continental-scale
maps or for remote and inaccessible locations where the ground reference data are difficult to be
collected via field surveys, visual interpretation of remotely sensed images is often conducted [12–16].
However, due to the restrictions of remote sensing technology, most global land-cover maps present
extensive coverage at the cost of resolution and tend to poorly represent small landscape features
and minor land-cover classes [17,18]. The poor representation of, or failure to represent, the actual
ground condition affects the accuracy of validation data. Therefore, a quantitatively and qualitatively
adequate, compatible, and up-to-date validation database is crucial for assuring validation data-quality
and facilitating the accuracy assessment and comparison [4,8,19,20].

With the significant innovations made in geospatial technologies and web 2.0 applications [21],
the generation of global reference databases has become possible. Such a database is not only
generated by scientific institutions or governmental agencies, but also comes from citizens and
communities or non-specialist users [22–24]. Volunteered Geographical Information (hereafter VGI [25]
is an example of a user-generated database. The geospatial information within VGI is collected and
shared voluntarily online by citizens [26]. VGI has been perceived as highly valuable as it increases
the exchange of geographic information and offers an option for ground reference data collection
to support map validation [19,24,27,28]. The Degrees of Confluence Project (DCP) is an example
of a free, open-access, web-based citizen science project (http://www.confluence.org/). The project
platform provides geo-tagged photographs and geospatial information at intersections of integer
degrees of latitude and longitude globally [29]. For each of the visited confluences, photographs taken
in four directions of the confluences, together with a description of the view observed, as well as the
geospatial information, are shared online. The volunteered data (in the forms of geo-coordinates,
images, and plain text of sample unit description) can serve as land-cover reference data, which allows
users to obtain the required knowledge of study areas on a global scale or that are location-specific to
support their mapping or validating work [29–31].

Despite the fast-paced worldwide development of VGI data, there are still concerns regarding the
potential uncertainties of its quality [8,25,32]. Studies on the obstacles and challenges triggered using
VGI-based reference data have received growing attention recently. However, most of these studies
have focused on map-based types (featuring objects constructed with polygons, lines, and points) of
VGI platforms (such as OpenStreetMap, Wikimapia, and Google Map Maker®) and discussed the issues
surrounding their quality assessment, such as positional accuracy, thematic accuracy, completeness,
temporal quality, logical consistency, and usability [6,33–36]. In addition, there are limited studies on
geo-tagged photographs (images) and verbal description (text)-based platform types, such as DCP for
land-cover validation. Iwao et al. [30] used DCP-derived information to validate a newly developed
land-cover map, and proved that DCP-derived information is one of the best available land-cover
validation datasets that provide quantitative geospatial field information. Kinoshita et al. [31] proposed
a method of using DCP-based ground truth data to integrate the existing global land cover maps
into a new map, and found improved accuracy with this new integrated map. However, the study
revealed disagreement between the cropland and grassland classes. The land cover classes tend to be
confused with land use classes in many existing classification schemes. It is essential to distinguish
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land cover and land use types. Thus, the information that can be derived from each and the accurate
land transforming information can be captured. Moreover, the existing classification schemes differ,
due to the unique purpose of specific applications and the satellite data resolution, which hindered the
comparison of different land cover datasets [7]. The conversion of classification schemes can cause
classification accuracies reduction as translating the classes from one legend to another is usually
inevitable. Therefore, a classification scheme could void interpretation confusion between land-cover
and land-use categories and be compatible with general and specific mapping/validating requirements.

Based on the flow-work proposed by Iwao et al. [30] and Kinoshita et al. [31], we built a validation
dataset using 1701 samples interpreted from the DCP dataset, and further extended our purposes to
(1) evaluate the uncertainty of using DCP as validation data and its impact on map accuracy assessment
and (2) detect the uncertainty of thematic issues of using DCP-based validation data. For this purpose,
we created an unaggregated land-cover and land-use classification scheme that has a hierarchy and
matrix structure, to facilitate the interpretation work. The potential of using such a classification
scheme for improving the interpretation and validation work will also be detected. New probability
maps were integrated using both DCP reference data and the three existing major global land-cover
maps, and then, a map-to-map comparison was performed to find agreements and disagreements
among the classes. Accuracy assessment was also conducted, and changes were analyzed under
different classification schemes.

2. Materials and Methods

2.1. Global Land-Cover Datasets

Three datasets that have been widely utilized in long-term Land Use and Land Cover (LULC)
change analysis were selected for this study. The datasets used in this study (Table 1) were coarse-resolution
(250 m to 1 km) satellite images, including the MODIS Land Cover Map Collection 5 [37], Global Land
Cover 2005 by National Mapping Organizations [38], and GlobCover 2009 [39]. Their corresponding
classification schemes are shown in Table 2.

2.2. Matrix Legend Definition/Creation

Before deriving the validation database, a classification scheme needs to be established first.
Considering the complex relationship between land use and land cover, which cannot be directly
implicated via remotely sensed data [40–44], and the fact that most of the land-use types can be
described by physical appearances, to avoid interpretation confusion between land-cover and land-use
categories, a legend (Table 3) designed in a matrix structure that separately presents the land-cover
and land-use categories was created. To prevent the loss of detailed information on land features, we
also organized the hierarchical classification scheme in both general and sub-legends that cover most
of the land types.

Table 1. Features of three land cover maps used in this study.

Product Sensor Time Resolution Classification
Technique

Classification Scheme
(Number of Classes)

MODIS
MCD12Q1

Collection 5

Terra Aqua
(MODIS)

V5.0
(2001–2007) 500 m

Supervised decision-tree
classification combined

with post-processing
refinements

International
Geosphere-Biosphere

Programme
(17)

GLCNMO 2005 Terra (MODIS) 2003 1 km Supervised classification Land Cover Classification
System (20)

GlobCover (v2)
2009

MERIS
(Envisat) 2009 300 m Unsupervised

classification
Land Cover Classification

System (22)
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Table 2. The classification schemes of three existing global land cover maps.

MODIS C5 2005 Thresholds GLNMO 2005 Thresholds GlobCover2009 Thresholds

Class description Vegetation
cover (%)

Height
(m) Class description Vegetation

cover (%)
Height

(m) Class description Vegetation
cover (%)

Height
(m)

[0] Water bodies <10 [1] Broad-leaf evergreen forest 40~100 3~30 [11] Post-flooding or irrigated croplands
[1] Evergreen needle-leaf forest >60 >2 [2] Broad-leaf deciduous forest 40~100 3~30 [14] Rainfed croplands

[2] Evergreen broad-leaf forest >60 >2 [3] Needle-leaf evergreen forest 40~100 3~30 [20] Mosaic cropland/vegetation (grassland, shrubland,
and forest) 50~70/20~50

[3] Deciduous needle-leaf forest >60 >2 [4] Needle-leaf deciduous forest 40~100 3~30 [30] Mosaic vegetation (grassland, shrubland, forest)/Cropland 50~70/20~50

[4] Deciduous broad-leaf forest >60 >2 [5] Mixed forest 40~100 3~30 [40] Closed to open broad-leaved evergreen and/or
semi-deciduous forest >15 >5

[5] Mixed forest >60 >2 [6] Tree open 10–20~40 3~30 [50] Closed broad-leaved deciduous forest >40 >5
[6] Closed shrublands >60 <2 [7] Shrub 15~100 0.3~5 [60] Open broad-leaved deciduous forest 15~40 >5
[7] Open shrublands 10~60 <2 [8] Herbaceous 15~100 0.03~3 [70] Closed needle-leaved evergreen forest >40% >5
[8] Woody savannas 30~60 >2 [9] Herbaceous with Sparse Tree/Shrub 15~100 0.03~3 [90] Open needle-leaved deciduous or evergreen forest 15~40 >5

[9] Savannas 10~30 >2 [10] Sparse vegetation 1~10–20 0.03~3/2~7 [100] Closed to open mixed broad-leaved and
needle-leaved forest >15 >5

[10] Grasslands <10 [11] Cropland [110] Mosaic Forest/Shrubland/Grassland 50~70/20~50
[11] Permanent wetlands [12] Paddy field [120] Mosaic Grassland/ Forest/Shrubland 50~70/20~50

[12] Croplands [13] Cropland/other vegetation mosaic >4 [130] Closed to open shrubland >15 <5
[13] Urban and built up [14] Mangrove 15~100 2~7 [140] Closed to open grassland >15

[14] Cropland-natural vegetation
mosaic component<60 [15] Wetland 15~100 2~7 [150] Sparse vegetation (woody vegetation, shrubs, grassland) <15

[15] Snow and ice [16] Bare Area, consolidated (gravel, rock) [160] Closed to open broad-leaved forest regularly flooded >15

[16] Barren or sparsely vegetated <10 [17] Bare Area, unconsolidated (sand) [170] Closed broad-leaved semi-deciduous and/or evergreen
forest regularly flooded—saline water >40

[18] Urban
[180] Closed to open vegetation (grassland, shrubland, woody
vegetation) on regularly flooded or waterlogged soil—fresh,

brackish or saline water
>15

[19] Snow/ice [190] Artificial surfaces and associated areas Urban areas > 50
[20] Water bodies [200] Bare areas

[210] Water bodies
[220] Permanent snow and ice
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Table 3. Matrix legend defined for this study.

Land Use Land Cover

B1. Cultivated Areas B2. Mosaic Area B3. Artificial Area and Associated Areas
B4.

No useB11.Herbaceous Planted/Cultivated
B21.

Agricultural areas
and artificial surface

B22.
Agricultural

areas and no use
B31.Urban or built-up B32.Non built-up

A1.
Vegetation

A11.Grasslands
A111.Grasses Cropland Pasture/Hay/Stock yard Urban or Recreational

GrassesA112.Sparse grasses

A12.Shrubland
A121.Shrubs Vineyard/

Orchards
Pasture/Hay/Stock yard

A122.Sparse shrubs

A13.Tree
A131.Forests Plantation trees

Stock yard
Grazing landA132.Sparse trees

A2.
Mosaic Area

A21.Grasses, shrubs
and trees

A211.Grasses and shrubs Pasture/Hay Vineyard/Orchards

A212.Grasses and trees Pasture/Hay /Stock yard Plantation
trees

A213. Shrubs and trees Vineyard/OrchardsPasture/Hay

A214. Grasses, shrubs and trees
Plantation trees

Vineyard/Orchards
Pasture/Hay/Stock yard

A22.Water bodies and
vegetation

A221.Water bodies and grasses
Cropland Pasture/HayA222.Water bodies and shrubs

A223.Water bodies and trees

A23.Barren and
vegetation

A231.Bare area and grasses
Cropland Pasture/Hay/ Stock yardA232.Bare area and shrubs

A233.Bare area and trees

A3.
Natural

Non-Vegetated
Lands

A31.Water bodies
A311.Water bodies Reservoirs/Artificial lakes

Canals/Bays and
Estuaries

A312.Water bodies and bare area

A32.Snow and ice
A321.Snow and ice

A322.Snow and ice and bare area

A33.Bare area
A331.Exposed soils Cropland (Fallow and harvest)

Transportation,
Communications,

and Utilities;
Residential,
Industrial,

Commercials

Open mines and quarries,
Waste disposal

Recreational area
A332.Deserts and Sands

A333.Bare rock a/o Coarse fragments
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The land-cover and land-use information on DCP-sites were recorded based on the three
sub-legends separately. Google Earth® images were used to facilitate the interpretation of photographs
and descriptions on the DCP platform. The classes that include mixtures of plants (woods, grassland,
barren, and water body) are labeled as “mosaic area” class, which avoids most of the confusion between
land use and land cover. Meanwhile, some classes of wetland are omitted/excluded because their pixels
might present reflections similar to those of wet-ish woody lands/grasslands or irrigated croplands.

Following are the three sub-legends that were derived from this matrix legend to assess accuracy:

• Land Cover-I (hereafter LC-I) legend (nine land-cover types):

(A11) Grasslands, (A12) Shrubland, (A13) Tree, (A21) Grasses, shrubs and trees, (A22) Water bodies
and vegetation, (A23) Barren and vegetation, (A31) Water bodies, (A32) Snow and ice, (A33) Bare area.

• Land Cover-II (hereafter LC-II) legend (23 land-cover types):

(A111) Grasses, (A112) Sparse grasses, (A121) Shrubs, (A122) Sparse shrubs, (A131) Forests, (A132)
Sparse trees, (A211) Grasses and shrubs, (A212) Grasses and trees, (A213) Shrubs and trees, (A214)
Grasses, shrubs and trees, (A221) Water bodies and grasses, (A222)Water bodies and shrubs, (A223)
Water bodies and trees, (A231) Bare area and grasses, (A232) Bare area and shrubs, (A233) Bare area
and trees, (A311) Water bodies, (A312) Water bodies and bare area, (A321) Snow and ice, (A322)
Snow and ice and bare area, (A331) Exposed soils, (A332) Deserts and Sands, (A333) Bare rock a/o
Coarse fragments.

• Land Use (hereafter LU) legend (six land-cover types):

(B11) Herbaceous planted/cultivated, (B21) Agricultural areas and artificial surface, (B22) Agricultural
areas and no use, (B31) Urban or built-up, (B32) Non built-up, (B4) No use.

2.3. Validation Data Preparation

As of October 2013, when the three existing global land-cover maps were produced, for all the
even integer intersection degree points, there were 3484 visits, and each site had been photographed
with four directions by DCP volunteers. By excluding the second and additional records from visitors,
as well as incomplete records, a remaining 1701 successful worldwide DCP points with an even
number of integer degrees of latitude and longitude that reflected the characteristic land cover over the
surrounding square kilometer were selected for the analysis (Figure 1).

Information for each site was recorded into Microsoft Excel® according to their locations. Based
on the matrix legend, all 1701 DCP points were categorized into land-cover or land-use classes based
on sub-legends (LC-I legend, LC-II legend, and LU legend); that is, each point could be categorized
into three different classes in Microsoft Excel®. Google Earth® images were used to assist in the
classification of each sub-legend. Figure 2 shows some typical land-cover and land-use classes used in
the DCP classification scheme.

Additionally, to determine the impact of uncertainty of validation data and the different
classification schemes on the accuracy of land-cover maps, four additional classification schemes were
created based on the LC-II classification scheme by reducing the number of classes in which some of
the mosaic classes (A211, A231, A213 and A212) with uncertainty were omitted. Details of the seven
classification schemes are shown in Table 4.
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Figure 1. Distribution of the 1701 Degree Confluence Project (DCP)-derived reference points used in
this study.

Table 4. Classification schemes for accuracy assessment.

Classification
Scheme

Classes
Number

Total Training
Samples

Total Testing
Samples Classes

LC-I 9 831 865
A11, A12, A13,

A21, A22, A23, A31,
A32, A33

LC-II 23 831 865

A111, A112, A121,
A122, A131, A132,
A211, A212, A213,
A214, A221, A222,
A223, A231, A232,
A233, A311, A312,
A321, A322, A331,

A332, A333

LU 6 831 865 B11, B21, B22, B31,
B32, B4

LC-II-01 13 773 807

A111, A121, A131,
A211, A212, A213,
A231, A232, A233,
A311, A321, A332,

A333

LC-II_02 9 741 774
A111, A121, A131,
A212, A213, A311,
A321, A332, A333

LC-II-03 8 727 764
A111, A121, A131,
A212, A311, A321,

A332, A333

LC-II-04 7 651 693
A111, A121, A131,
A311, A321, A332,

A333
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Figure 2. Some typical land-cover and land-use classes used in the DCP classification scheme (photographs are referenced from the DCP website).
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2.4. Comparison between DCP-Based Ground Truth Data and Existing Maps

To test the levels of agreement and disagreement between the land-cover maps and DCP-based
ground truth data, a DCP point-based comparison was performed. The number of DCP ground truth
points that matched the three existing maps were 1701 for MOD12C5 and GlobCover 2009, and 1696
for GLNMO 2005. Among the 1696 mutual points, 831 were randomly selected as part of the training
dataset, while the remaining were used for the testing dataset. First, we assessed agreement between
each of the three maps and the DCP-based training data based on the classification schemes derived
from the matrix legend.

The agreement numbers between classes of the existing map and the DCP-based ground truth
data were counted (for example, in Appendix A Tables A1–A3, the agreement numbers were 122
between Water Body class A31 of DCP-based ground truth data and Water Body class 0 of MOD12C5,
131 between A31 and GlobCover2009, and 128 between A31 and GLNMO 2005). Then, agreement rate
scores were calculated using Equation (1) which dividing the counted agreement number by the total
agreement number in the class of an existing land cover map. The agreement rate scores represent the
probability of the occurrence of a DCP-class for a class in an existing land-cover map. The formula is
defined as:

xM,n,m =
aM,n,m∑6

m=1 aM,n,m
(1)

where a represents the number of agreements between the land-cover map and DCP data, M refers to
the existing land-cover map, n stands for the n-th land-cover type in map M, and m stands for the m-th
land-cover type in the DCP training data [31].

2.5. Integration of New Maps

We calculated the sums of agreement rate scores obtained from the three existing maps for each
site (point). Thus, each site (point) will obtain several values (the number of values is corresponding to
the categories of classification scheme) representing the probability of occurrence of each DCP-class.
Then, a look-up table was created in Microsoft Excel® to search for the maximum sums of probabilities
of occurrence for each site. Then, the land-cover type of the site was decided according to the DCP-class
with the maximum value. Thus, the new land-cover maps (based on LC-I, LC-II and LU legend) will
be created based on the decision of which classes are at each site. The 865 testing samples were used to
validate the accuracy of the newly generated maps. A flowchart of this process is shown in Figure 3.
Moreover, to assess the impact of DCP-based mosaic classes and combined form of LCLU (hereafter
LCLU) classification schemes on map accuracy, ten additional maps (based on LC-II-01, LC-II-02,
LC-II-03, LC-II-04, LCLU-I, LCLU-II, LCLU-01, LCLU-II-02, LCLLU-II-03 and LCLU-II-04 legend) were
created and validated similarly.
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Figure 3. Flowchart of the procedure performed in this study.

3. Results

3.1. Agreement Analysis between DCP Data and Three Global Land-Cover Products

The number of samples in agreement between each of the three maps and the training data
applied with different classification schemes derived from the matrix legend is listed in Appendix A.
The agreement scores among classes between DCP-based ground truth data and the three existing
maps were then calculated. Figure 4 presents the results regarding the agreement rates calculation.
Furthermore, the probability of occurrence of a category class of DCP ground truth data obtained
under a land-cover classification scheme for a class in a land-cover map was measured.
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Figure 4. The agreement rates between DCP-derived reference data and three existing maps:
(a) MCD12Q1 2005, (b) GlobCover 2009, (c) GLNMO 2005. The numbers in the columns and
rows represent classification schemes of the maps (row) and classification schemes of DCP-derived
validation data (column).3.1.1. Forest Classes.

The tree-related classes (A13 and A131) in DCP have high agreement rates with the forest classes
of the three global land-cover products. The forest-related classes having the highest agreement of the
three global land-cover datasets are NOs. 1–5 of MCD12Q1 2005 (agreement rates greater than 81.8%
and less than 96.7%); NOs. 40, 50, 60, 70, 90 and 100 of GlobCover 2009 (agreement rates greater than
66% and less than 92.1%); and NOs. 1–6 of GLNMO 2005 (agreement rates greater than 70.7% and less
than 93.7%).

Moreover, according to the classification scheme of land use in the matrix legend, the no-use
class (B4) in DCP has great agreement rates with the three forest classes of the three global land-cover
products, which indicates that most of the forest sites are natural forests without utilization.

However, 44.1% and 47% of woody savanna (NO. 8) and savanna (NO. 9) sites in MCD12Q1
2005 are labeled as trees in DCP data. Additionally, 22.1% and 25% of the cropland/other vegetation
mosaic (NO. 13) and wetland (NO. 15) in GLNMO 2005, as well as 26.1% and 30.9% of mosaic forest
or shrubland/grassland (NO. 110) and the mosaic grassland/forest or shrubland classes (NO. 120)
in GlobCover 2009, were labeled as tree classes. This is probably because these classes contain the
tree cover, and it is difficult to determine the percentage of tree coverage for larger areas only using
visual interpretation of DCP-recorded photographs. Moreover, ~10% of the forest-related classes in
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GlobCover 2009 were labeled as the herbaceous planted/cultivated class in DCP data, which indicates
that these forest areas are artificial plantation farms or used as grazing land.

3.1.1. Grassland Classes

Based on the land-cover classification scheme of the matrix legend, the grassland classes of DCP
data (A11 and A111) have high agreement with the grassland classes of MCD12Q1 2005 and GlobCover
2009. The agreement rates are 48.1% with closed to open grassland (NO. 140) and 40.2% with sparse
vegetation (NO. 150) from GlobCover 2009. Moreover, the agreement rates with NO. 180 (closed to
open (>15%) vegetation (grassland, shrubland, woody vegetation) on regularly flooded or waterlogged
soil—fresh, brackish, or saline water) and NO. 190 (artificial surfaces and associated areas (urban
areas > 50%)) are greater than 60%. The grassland class A11 has agreement rates of 37.9% with sparse
vegetation (NO. 10) and 31.3% with wetland (NO. 15) of GLNMO 2005.

The grassland classes of both DCP data (A11 and A111) and the three global land-cover datasets
presented agreement rates greater than 65% with cropland classes. The cropland-related classes for
three global land-cover datasets are NO. 12 of MCD12Q1 2005; NOs. 11, 14, 20, and 30 of GlobCover
2009; and NOs. 8, 11, 12, and 13 of GLNMO 2005.

The grassland classes (A11 and A111) also show agreement with shrub-related classes (48% with
closed shrubland and 36% with open shrubland in MCD12Q1 2005; 44.7% with closed to open shrubland
(NO. 130) in GlobCover 2009; and 38.7% with shrub (NO. 7) and 21.4% of herbaceous with sparse
tree/shrub (NO. 9)).

3.1.2. Mosaic Classes

There were common low agreement rates among the classes related to mosaic areas for both DCP
and global land-cover datasets. In the map of MCD12Q1 2005, the class of cropland/natural vegetation
mosaics (NO. 14) was in agreement with grasses (A111), trees (A13 and A131), grasses and trees (A212),
and shrubs and trees (A21) with rates of ~23.8%–33.3%. Grass and trees (A212) of the DCP data were
in agreement with woody savannas (NO. 8), savannas (NO. 9), and urban and built-up (NO. 13) of
MCD12Q1 2005 with rates of more than 23%. Based on the classification scheme of land use, 47.6% of
the cropland/natural vegetation mosaics in MCD12Q1 2005 were labeled as no-use land without human
activities, while 47% were labeled as herbaceous planted/cultivated (B11). In the map of GlobCover
2009, the class of closed broad-leaved forest or shrubland permanently flooded saline or brackish
water (NO. 170) was in relatively high agreement with a rate of 50% with grassland (A11) and grasses,
shrubs, and trees (A21) for the LC-I scheme, while 50% with (A111) and (A211) for the LC-II scheme.
The agreement rates between the mosaic classes (NOs. 110 and 120) of GlobCover 2009 and grassland
classes (A11 and A111) were ~30%. They were also in low agreement with most of the mosaic classes
(A211, A212, A213, A214, A221, A222, A223, A231, A232 and A233) of the DCP data. Based on the
classification scheme of land use, more than 81% of mosaic classes (NOs. 110 and 120) in GlobCover
2009 were labeled as no-use classes. In the map of GLNMO 2005, the class of cropland/other vegetation
mosaic (NO. 13) was in agreement with grassland (A11), trees (A13), grasses, shrubs, and trees (A21),
and grasses and trees (A212). The wetland (NO. 15) was in agreement with grasses and trees (A212)
with rates of 8.8%, 57.5%, and 39.8%, which were labeled as herbaceous planted/cultivated (B11) and
no-use class (B4).

3.1.3. Urban and Built-Up Classes

Based on the classification scheme of land use, there is a high total agreement rate between the
urban and artificial area and associated areas (B3) and the DCP data in MCD12Q1 2005. The results
showed that 38.5% of urban and built-up (NO. 13) was in agreement with the urban or built-up class
(B31) and 46.2% of urban and built-up (NO. 13) was labeled as no use (B4). For the map of GLNMO
2005, its urban class (NO. 18) and urban or built-up class (B31) have an agreement rate of 54.5%.
There was little confusion between urban classes (NO. 13 in MODIS Collection 5 2005 and NO. 190 in
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GlobCover 2009) with the barren and vegetation-related classes (A23, A231, A232 and A233) except for
the urban class (NO. 18) in GLNMO 2005, with an agreement rate of 36.4%. This is mainly because
there is vegetation (grasses/shrubs/trees) growing inside the urban area, which is labeled as bare area,
and that in the LC-II legend of the DCP data. For the map of GlobCover 2009, the agreement rate
between artificial area and associated areas (NO. 190) and bare area (A33) was 80%, of which 40% was
labeled as non-built-up (B32), and another 40% was labeled as no use (B4). This is probably due to the
non-built-up class containing open mines, quarries, waste disposal, and reservoirs. This can also be
attributed to the fact that vegetated urban areas are included in the urban class in GLNMO 2005.

3.1.4. Bare Area Classes

Bare area (A33) and its relative specific classes (A331, A332 and A333) in the land-cover legend
correspond to barren class (NO. 16) in MCD12Q1 2005, NO. 200 in GlobCover 2009, and NOs. 16 and 17
in GLNMO 2005. The agreement rates of bare area for both DCP data (A33) and global land-cover maps
were greater than 76% and reached 90.4% for NO. 17 in GLNMO 2005. The relatively high agreement
rate of 80.6% also occurred between DCP data and GlobCover 2009. Based on the classification scheme
of land use, 96.5% of barren in MCD12Q1 2005 and 95.5% of barren in GlobCover 2009 were under no
human activities. Based on the classification scheme of LC-II, the agreement rates between the DCP
data and the bare classes of the three maps were high, and most of them were deserts and sandy areas
(A332), which indicates that most bare lands were deserts and sandy areas.

3.1.5. Water-Related Classes

The water-related classes (A31 and A311) presented high agreement rates of greater than 90%
for both the DCP data and global land-cover maps. The class of snow and ice (A32) also showed
relatively high agreement rates (66.7% to 75%) for both DCP data and global land-cover maps. Possible
explanations for this result could be that their presence in a large homogeneous pattern is easy for
visual interpretation, and the reflectance signals of water bodies are easy to be distinguished via visual
interpretation and satellite sensors, compared to vegetated land surface.

3.2. Assessing the Accuracy of Classification Datasets

Figure 5 shows the overall accuracy for seven newly generated global land-cover maps, in which
the LU scheme-based new map obtained the highest overall accuracy of ~82.5%, while the LC-II-based
new map showed the lowest overall accuracy of ~65.8%. The overall accuracy of four LC-II-derived
scheme-based maps improved by reducing the number of mosaic classes (10 classes were reduced from
LC-II to LC-II-01; 4 more classes were reduced from LC-II-01 to LC-II-02; 1 more class was reduced
from LC-II-02 to LC-II-03; 1 more class was reduced from LC-II-03 to LC-II-04).

Figure 5. Overall accuracies of seven new integrated global land cover maps.

Tables 5–11 shows the confusion matrix of the newly generated land-cover maps based on three
different classification schemes (LC-I, LC-II, LU, LC-II-01, LC-II-02, LC-II-03 and LC-II-04).
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The classes of water bodies (A31 and A311) and bare area (A33 and A332) showed high producer
accuracy (PA) and user accuracy (UA) in all global datasets, and thus, are considered quite accurately
mapped in all datasets. Land cover, like water bodies and bare area, are classes with consistent
components of the landscape over large areas, which make the interpretation work easier. DCP
validation data were proved to have the potential for providing useful information for such classes.
However, some classes with consistent landscape components but high PA and low UA indicated
overlapping. An example is the class of grasslands (A11 and A111). Its PA of 89.9% indicated that
accurate mapping of all areas that represent this class on the ground have been mapped as it is.
However, its low UA of 58.8% indicated that ~42.2% of samples that are not grasslands are committed
to this class. The error matrix (Table 12) emphasizes that most of this commission error resulted from
confusion with the mosaic classes and tree class.

The class of shrublands (A12 and A121) shows the lowest overall accuracy and was proved to be
rather uncertain and tended to be confused with grasslands and trees in all datasets. The definition of
the shrublands class varies differently in various land-cover products. In MODIS Collection 5 2005,
shrublands are defined as woody vegetation less than 2 m tall and with shrub canopy cover between
10% and 60%, while GLNMO 2005 uses height range of 0.3–5 m as the threshold value and 100–150%
as the canopy-cover threshold value.

The class of exposed soils (A331) shows poor overall accuracy, showing major confusion with
grasslands (A111), which is mainly caused by the difference in interpretation and classification of fallow
cropland in different land-cover products. In the existing global land-cover maps, fallow cropland
(exposed soils without vegetation cover) has been classified as cropland, while in the DCP data, it was
classified as exposed soils based on the photographs and description of the sites.

Table 5. Confusion matrix of LC-I scheme-based new land cover map.

LC-I A11 A12 A13 A21 A22 A23 A31 A32 A33 Sum PA (%)

A11 261 0 23 0 0 0 1 0 12 297 87.9
A12 19 0 5 0 0 0 0 0 3 27 0
A13 54 0 194 0 0 0 0 0 1 249 77.9
A21 71 0 24 1 0 0 0 0 2 98 1.02
A22 6 0 0 0 0 0 0 0 0 6 0
A23 11 0 5 0 0 0 0 0 1 17 0
A31 2 0 2 0 0 0 66 0 1 71 93
A32 4 0 4 0 0 0 1 1 3 13 7.69
A33 18 0 4 0 0 0 1 0 64 87 73.6
Sum 446 0 261 1 0 0 69 1 87 865

UA (%) 58.5 0 74.3 1 0 0 95.7 1 73.6

Table 6. Confusion matrix of LU scheme-based new land cover map.

LU B11 B21 B22 B31 B32 B4 Sum PA (%)

B11 135 0 0 0 0 99 234 57.7
B21 1 0 0 0 0 3 4 0
B22 0 0 0 0 0 1 1 0
B31 0 0 0 0 0 7 7 0
B32 0 0 0 0 0 3 3 0
B4 37 0 0 0 0 579 616 94

Sum 173 0 0 0 0 692 865
UA (%) 78 0 0 0 0 83.7
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Table 7. Confusion matrix of LC-II scheme-based new land cover map.

LC_II A111 A112 A121 A122 A131 A132 A211 A212 A213 A214 A221 A222 A223 A231 A232 A233 A311 A312 A321 A322 A331 A332 A333 Sum PA (%)

A111 250 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 0 278 89.9
A112 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 19 0
A121 20 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 27 0
A122 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0
A131 47 0 0 0 194 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 241 80.5
A132 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 7 0
A211 14 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0
A212 50 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 71 0
A213 7 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0
A214 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A221 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0
A222 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A223 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
A231 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 0
A232 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
A233 4 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0
A311 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 66 0 0 0 0 1 0 71 93
A312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A321 4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 11 9.09
A322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0
A331 13 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 0 22 0
A332 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58 0 62 93.5
A333 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 0
Sum 448 0 0 0 262 0 0 0 0 0 0 0 0 0 0 0 69 0 1 0 0 85 0 865

UA (%) 55.8 0 0 0 74 0 0 0 0 0 0 0 0 0 0 0 95.7 0 1 0 0 68.2 0
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Table 8. Confusion matrix of LC-II-01 scheme-based new land cover map.

LC-II-01 A111 A121 A131 A211 A212 A213 A231 A232 A233 A311 A321 A332 A333 Sum PA (%)

A111 250 0 23 0 0 0 0 0 0 1 0 4 0 278 89.9
A121 20 0 5 0 0 0 0 0 0 0 0 2 0 27 0
A131 47 0 194 0 0 0 0 0 0 0 0 0 0 241 80.5
A211 14 0 2 0 0 0 0 0 0 0 0 0 0 16 0
A212 50 0 20 0 0 0 0 0 0 0 0 1 0 71 0
A213 7 0 3 0 0 0 0 0 0 0 0 0 0 10 0
A231 3 0 0 0 0 0 0 0 0 0 0 1 0 4 0
A232 4 0 0 0 0 0 0 0 0 0 0 0 0 4 0
A233 4 0 5 0 0 0 0 0 0 0 0 0 0 9 0
A311 2 0 2 0 0 0 0 0 0 66 0 1 0 71 93
A321 4 0 4 0 0 0 0 0 0 1 1 1 0 11 9.09
A332 4 0 0 0 0 0 0 0 0 0 0 58 0 62 93.5
A333 1 0 0 0 0 0 0 0 0 0 0 2 0 3 0
Sum 410 0 258 0 0 0 0 0 0 68 1 70 0 807

UA (%) 61 0 75.2 0 0 0 0 0 0 97.1 1 82.9 0

Table 9. Confusion matrix of LC-II-02 scheme-based new land cover map.

LC-II-02 A111 A121 A131 A212 A213 A311 A321 A332 A333 Sum PA (%)

A111 250 0 23 0 0 1 0 4 0 278 89.9
A121 20 0 5 0 0 0 0 2 0 27 0
A131 47 0 194 0 0 0 0 0 0 241 80.5
A212 50 0 20 0 0 0 0 1 0 71 0
A213 7 0 3 0 0 0 0 0 0 10 0
A311 2 0 2 0 0 66 0 1 0 71 93
A321 4 0 4 0 0 1 1 1 0 11 9.1
A332 4 0 0 0 0 0 0 58 0 62 93.5
A333 1 0 0 0 0 0 0 2 0 3 0
Sum 385 0 251 0 0 68 1 69 0 774

UA (%) 0.65 0 0.773 0 0 0.971 1 0.841 0

Table 10. Confusion matrix of LC-II-03 scheme-based new land cover map.

LC-II-03 A111 A121 A131 A212 A311 A321 A332 A333 Sum PA (%)

A111 250 0 23 0 1 0 4 0 278 89.9
A121 20 0 5 0 0 0 2 0 27 0
A131 47 0 194 0 0 0 0 0 241 80.5
A212 50 0 20 0 0 0 1 0 71 0
A311 2 0 2 0 66 0 1 0 71 93
A321 4 0 4 0 1 1 1 0 11 9.1
A332 4 0 0 0 0 0 58 0 62 93.5
A333 1 0 0 0 0 0 2 0 3 0
Sum 378 0 248 0 68 1 69 0 764

UA (%) 66.1 0 78.2 0 97.1 1 84.1 0

Table 11. Confusion matrix of LC-II-04 scheme-based new land cover map.

LC-II-04 A111 A121 A131 A311 A321 A332 A333 Sum PA (%)

A111 250 0 23 1 0 4 0 278 89.9
A121 20 0 5 0 0 2 0 27 0
A131 47 0 194 0 0 0 0 241 80.5
A311 2 0 2 66 0 1 0 71 93
A321 4 0 4 1 1 1 0 11 9.1
A332 4 0 0 0 0 58 0 62 93.5
A333 1 0 0 0 0 2 0 3 0
Sum 328 0 228 68 1 68 0 693

UA (%) 76.2 0 85.1 97.1 1 85.3 0
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Table 12. Comparison of the producer’s accuracy and user’s accuracy of unaggregated and combined LCLU classes.

LC-I LCLU-I LC-II LCLU-II LC-II-01 LCLU-01 LC-II-02 LCLU-02 LC-II-03 LCLU-03 LC-II-04 LCLU-04

PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA PA UA
A11 0.88 0.59 0.70 0.32 A111 0.9 0.56 0.73 0.29 A111 0.90 0.61 0.73 0.32 A111 0.90 0.65 0.73 0.35 A111 0.90 0.66 0.73 0.36 A111 0.90 0.76 0.73 0.42
A12 0 0 0 0 A112 0 0 0 0 A121 0 0 0 0 A121 0 0 0 0 A121 0 0 0 A121 0 0 0 0
A13 0.78 0.74 0.79 0.74 A121 0 0 0 0 A131 0.81 0.75 0.82 0.75 A131 0.81 0.77 0.82 0.77 A131 0.81 0.78 0.82 0.78 A131 0.81 0.85 0.82 0.85
A21 0.01 1 0.02 1 A122 0 0 0 0 A211 0 0 0 0 A212 0 0 0 0 A212 0 0 0 0 A311 0.93 0.97 0.93 0.97
A22 0 0 0 0 A131 0.81 0.74 0.82 0.74 A212 0 0 0 0 A213 0 0 0 0 A311 0.93 0.97 0.93 0.97 A321 0.09 1 0.1 1
A23 0 0 0 0 A132 0 0 0 0 A213 0 0 0 0 A311 0.93 0.97 0.93 0.97 A321 0.09 1 0.1 1 A332 0.94 0.85 0.93 0.84
A31 0.93 0.96 0.93 0.96 A211 0 0 0 0 A231 0 0 0 0 A321 0.09 1 0.1 1 A332 0.94 0.84 0.93 0.83 A333 0 0 0 0
A32 0.08 1 0.08 1 A212 0 0 0 0 A232 0 0 0 0 A332 0.94 0.84 0.93 0.83 A333 0 0 0 0 B11 0.62 0.73
A33 0.74 0.74 0.9 0.72 A213 0 0 0 0 A233 0 0 0 0 A333 0 0 0 0 B11 0.59 0.79 B21 0 0
B11 0.58 0.78 A214 0 0 0 0 A311 0.93 0.97 0.93 0.97 B11 0.58 0.78 B21 0 0 B31 0 0
B21 0 0 A221 0 0 0 0 A321 0.09 1 0.1 1 B21 0 0 B22 0 0 B32 0 0
B22 0 0 A222 0 0 0 0 A332 0.94 0.83 0.93 0.81 B22 0 0 B31 0 0
B31 0 0 A223 0 0 0 0 A333 0 0 0 0 B31 0 0 B32 0 0
B32 0 0 A231 0 0 0 0 B11 0.58 0.79 B32 0 0

A232 0 0 0 0 B21 0 0
A233 0 0 0 0 B22 0 0
A311 0.93 0.95 0.93 0.95 B31 0 0
A312 0 0 0 0 B32 0 0
A321 0.09 1 0.1 1
A322 0 0 0 0
A331 0 0 0 0
A332 0.94 0.68 0.93 0.67
A333 0 0 0 0
B11 0.58 0.78
B21 0 0
B22 0 0
B31 0 0
B32 0 0

Red numbers represent the decrease in accuracy compared to unaggregated land-cover and land-use classification scheme, while blue numbers represent the increase in accuracy.
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The mosaic area classes (A21, A22, A23, A211, A212, A213, A214, A221, A222, A223, A231, A232
and A233) show the lowest PAs and UAs. The error matrix (Tables 5–11) indicates that most of
the commission errors result from confusion with the grassland classes. This is mainly due to the
ambiguities in the definition of mosaic classes between the DCP validation data and the existing maps.
For example, both MODIS Collection 5 2005 and GLNMO 2005 contains the class of wetland, while in
the DCP validation scheme, wetlands were labeled as the water and vegetation class. Furthermore,
the DCP classification scheme contains both sparse vegetation classes (sparse grassland, sparse
shrubland and sparse tree) and the mixed barren and vegetation classes (barren and grassland, barren
and shrubland, barren and tree), while there is a single class of sparse vegetation in the three existing
classification schemes.

Similarly, an accuracy assessment was performed for the combined LC and LU classification
schemes. The six classification schemes created were LCLU-I, LCLU-II, LCLU-01, LCLU-02, LCLU-03
and LCLU-04. Figure 5 shows the overall accuracy of the combined LCLU classification scheme-based
integrated global land cover maps. The overall accuracy of all maps decreased compared to the
unaggregated land-cover and land-use classification scheme-based maps (Figure 6). However, Table 12
indicates that as the LCLU classes were combined, the PA and UA of grassland classes (A11 and
A111) decreased. The confusion matrix analysis of the combined LCLU classification maps indicated
the high degree of confusion between the grassland classes (A11 and A111) and the herbaceous
planted/cultivated class (B11).

Figure 6. The overall accuracy of six new integrated global land-cover maps with combined LCLU
classification schemes.

4. Discussion

4.1. Analysis of Validation Data Uncertainty

One of the concerns with the use of DCP-derived validation information is the quality and quantity
of the referenceable information provided by volunteers. First, this limitation can be explained by
the frequency and intervals of the visits at some sites where the vegetation phenology parameters
vary with seasonal changes (generally, multitemporal visits would improve the accuracy of referenced
information). Second, the temporal gap between the land-cover maps and referenced field photographs
can reduce the amount of useful reference data. Third, volunteers’ backgrounds, such as culture,
field experience, and local environment knowledge, will be reflected in their term preference for site
description, thus affecting the interpretation. Another source of concern is that the restriction of visual
availability (the range, extent, and clearness) in the DCP-referenced photographs made it difficult
to determine the most populous class categories at field sites with mixed land-surface features and
can cause an error of the estimated cover percentage of a component. Moreover, the anthropogenic
component and the spatial distribution pattern cannot be directly captured. Identification of the
managed land through photographs, such as grazing land, was challenging. These outcomes are
consistent with the findings of Xiong et al. [42], who reported that in many map products, croplands
contained within mosaicked land classes lead to substantial uncertainties in cropland assessment.
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Ideally, UAV (Unmanned Aerial Vehicles) can be an efficient tool in capturing the spatial distribution
pattern of such anthropogenic land types. However, the cost and laws/regulations of UAV limited its
spread use by volunteers. High resolution and full coverage images, such as Google Earth® images,
are essential for facilitating visual interpretation. The final concern is that the positional accuracy
of the DCP sites limited the quantity of useful referenced data. During the preparation of the DCP
dataset, we found that the number of visited sites tended to be randomly distributed in locations that
are close to, but not exactly on, the confluence points. One reason could be the poor accessibility of
the terrain of the target confluence points. For example, some confluence points need permission to
access are in private farms or protected areas, such as nature reserves.. Similarly, confluence points
located at water bodies, such as the ocean, which raises challenges due to its accessibility. Therefore,
manually inspecting these photos and their description for the accurate location and the target location
is essential. This is in line with the findings of Bai et al. [43], who reported that the sites do not always
yield interpretable or proper scenes right at the confluence points. This issue restricts the utilization of
DCP data for smaller- or regional-scale land-cover mapping or validation.

4.2. Analysis of Classification Schemes

Unification of classification schemes between validation data and mapping could result in reduced
accuracy of the thematic information content. However, this study introduced a classification scheme
containing hierarchically matrix-structured groups of classes with unaggregated land-cover and
land-use classes, through which the possible accuracy loss stemming from such a unification process
might be avoided. Additional sub-legends were provided to meet detailed validation requirements.
Because most of the existing classification schemes can be explained by the land-cover or land-use
types within our matrix legend, by adopting it, the comparison of maps could be directly performed
without class conversion or the resampling process. Moreover, the unaggregated land-cover and
land-use schemes could facilitate the identification of detailed land-use types, such as whether the
land-cover types are natural or under human management. For example, in Table A1, 200 points were
classified as the trees class based on the LC-I legend. Meanwhile, according to the LU legend, 120 out
of 200 points were cultivated areas, which indicates a 60% possibility of artificial trees. Common
low agreement rates existed in several classes among the datasets, which were mainly caused by the
ambiguity between the classification schemes of the DCP data and the existing maps. For example,
there was confusion between the grassland and cropland-related classes. One reason for this could
be the classification scheme or the definition differences between cropland and grassland classes.
The matrix legend used the unaggregated land-cover and land-use classification scheme in which the
cropland was classified as grassland (A11) and herbaceous planted/cultivated class (B11), while the
land surface was covered by grass-like vegetation. Another example is that even though there was less
confusion between the urban classes and the barren-and-vegetation-related classes among the maps,
unlike the other two maps, vegetated urban areas were included in the urban class in GLNMO 2005,
which led to a 36.4% overlap of confusion between these two classes. To reduce the uncertainty and
disagreement in land-cover class definitions, further effort is necessary. [44]. Special attentionshould
be paid to the definition of mosaic classes.

4.3. Suggestions and Future Research Directions

Regarding the suggestion for possible improvement in DCP, one approach is to provide
standardized rules and instructions in a consistent framework that guides the volunteers on how to
properly record and describe the site scenes. However, this approach should be used carefully as the
increase in difficulties of recording tasks will attract fewer volunteers. DCP-data users should adopt
a consistent protocol and a case-specific classification scheme for interpretation. The unaggregated
land-cover and land-use classification scheme proposed in this study would be a good option as
(1) the unaggregated land-cover and land-use could avoid the confusion between ambiguous classes
(such as grassland and cropland) and (2) the hierarchical structure (LC, LC-I and LU) is efficient to
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describe and to label the sites for both volunteers (avoid the need to decide the labels of sites) and users
and (3) it meets various needs for application ranging from general (LC and LU) to specific (LC-I and
LU) mapping/validating. DCP users should flexibly integrate information (including site information
and the available volunteers’ background information) provided by volunteers with various sources,
such as Google Earth® and other citizen sensing platforms, to assist in interpretation. Moreover,
given that increasing numbers of reference datasets are being created and shared freely by various
institutions and communities, building a connected global network platform to share the available
data will facilitate the extension of the reference database quantitatively and qualitatively [45,46].

Future research directions will focus on (1) further assessing the impact of uncertainty in DCP-based
validation data by dividing the validation data into a primary and a secondary labeled group, (2) assessing
the impact of consistency of interpretation on map accuracy by including the interpreter’s confidence
level of labeling for each sample, and (3) assessing the map accuracy using the method proposed by
Stehman and Foody [47] by estimating area of each class using the reference classification.

5. Conclusions

In this paper, we assessed the impact of reference data uncertainty on map accuracy by comparing the
created reference classification under a matrix-structured classification scheme with the existing global
land-cover maps. We proposed a workflow to create a reference classification based on volunteer-reported
reference data to facilitate accuracy assessment and impact analysis. A matrix-structured classification
scheme with unaggregated land-cover and land-use legends was created for interpretation and
classification, which makes the comparison of land cover maps easier; moreover, it requires no
processing of class conversion and resampling, and can be applied to specified accuracy objectives.

This study confirmed the potential of volunteer-reported reference data, such as the DCP, to serve
as validation data for map accuracy assessment. However, special care should be taken when using
uncertain reference data and choosing/defining an appropriate classification scheme. The results
confirmed that the number of classes affects the accuracy of land-cover maps negatively by comparing
the overall accuracies of seven newly integrated maps. The more detailed the classes are given by the
classification scheme, the probability of misclassification tends to be higher. Through the analysis
of producer and user accuracies of seven newly integrated global land-cover maps, ambiguity was
found to mainly exist in the classification of mosaic areas (grasses, shrubs and trees; water bodies and
vegetation; barren and vegetation). Clear rules should be made to solve the ambiguous labeling issue.
The uncertainty analysis results, as well as their suggestion, will also serve as reference protocol for
choosing reliable reference data, and the proposed analysis workflow will assist in land-cover map
validation and yield rigorous accuracy estimates.
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Appendix A

Table A1. Agreement number between MCD12Q1 2005 and DCP-based ground truth dada.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SUM

A11 1 0 2 0 1 3 15 71 23 8 141 3 219 0 50 0 18 555
A12 0 0 1 0 0 0 6 19 8 6 11 0 4 0 2 0 1 58
A13 0 78 36 9 27 119 3 20 52 39 16 1 16 2 56 0 0 474
A21 1 0 5 0 0 1 5 40 25 28 24 1 27 4 45 0 1 207
A22 1 1 0 0 0 0 0 2 1 0 1 0 6 2 1 0 0 15
A23 0 1 0 0 0 0 1 8 4 0 3 1 4 2 5 0 2 31
A31 122 3 0 1 0 0 0 1 2 0 1 1 1 0 2 2 3 139
A32 3 3 0 0 0 0 0 10 1 0 2 1 6 0 2 6 3 37
A33 1 0 0 0 1 0 1 25 2 2 8 1 15 3 5 5 116 185
SUM 129 86 44 10 29 123 31 196 118 83 207 9 298 13 168 13 144 1701

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SUM

A111 1 0 2 0 1 3 14 62 23 8 136 3 214 0 50 0 6 523
A112 0 0 0 0 0 0 1 9 0 0 5 0 5 0 0 0 12 32
A121 0 0 1 0 0 0 7 19 8 5 8 0 4 0 2 0 1 55
A122 0 0 0 0 0 0 0 1 0 1 3 0 0 0 0 0 0 5
A131 0 78 36 9 27 119 3 13 52 38 10 1 15 2 55 0 0 458
A132 0 0 0 0 0 0 0 6 0 1 5 0 1 0 1 0 0 14
A211 0 0 1 0 0 0 1 15 3 5 5 1 2 0 2 0 0 35
A212 1 0 2 0 0 1 3 20 16 21 13 0 25 3 40 0 1 146
A213 0 0 2 0 0 0 0 5 6 2 5 0 0 1 3 0 0 24
A214 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A221 0 0 0 0 0 0 0 2 1 0 1 0 5 1 0 0 0 10
A222 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A223 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 5
A231 0 0 0 0 0 0 0 3 1 0 0 1 1 0 0 0 2 8
A232 0 0 0 0 0 0 1 3 0 0 0 0 2 0 0 0 0 6
A233 0 1 0 0 0 0 0 2 3 0 5 0 1 2 5 0 0 19
A311 122 3 0 1 0 0 0 0 2 0 1 1 1 0 2 2 3 138
A312 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
A321 3 3 0 0 0 0 0 9 1 0 2 1 6 0 2 6 1 34
A322 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 3
A331 0 0 0 0 1 0 1 9 2 2 2 1 13 2 5 1 6 45
A332 1 0 0 0 0 0 0 10 0 0 5 0 2 1 0 1 109 129
A333 0 0 0 0 0 0 0 6 0 0 1 0 0 0 0 3 1 11
SUM 129 86 44 10 29 123 31 196 118 83 207 9 298 13 168 13 144 1701

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 SUM

B11 2 0 8 0 1 1 6 14 30 12 63 3 209 2 79 0 3 433
B21 0 1 0 0 0 0 0 0 2 0 0 0 2 0 3 0 0 8
B22 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 2
B31 0 0 0 0 0 0 0 0 1 1 1 1 4 5 6 0 2 21
B32 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 4
B4 127 85 36 10 28 122 24 181 85 69 142 5 81 6 80 13 139 1233

SUM 129 86 44 10 29 123 31 196 118 83 207 9 298 13 168 13 144 1701
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Table A2. Agreement number between GlobCover 2009 and DCP-based ground truth dada.

11 14 20 30 40 50 60 70 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 SUM

A11 22 108 73 83 5 20 0 13 2 2 17 17 55 52 53 0 1 4 3 25 1 0 0 556
A12 1 5 5 3 1 1 2 1 0 0 3 5 13 11 3 0 0 0 0 4 0 0 0 58
A13 2 14 18 32 35 97 9 56 51 58 12 17 26 18 25 0 0 1 0 1 2 0 0 474
A21 7 20 32 22 12 8 7 3 2 1 11 11 22 16 26 0 1 0 0 4 2 0 0 207
A22 0 2 3 1 0 1 0 1 1 1 2 0 0 1 1 0 0 0 0 0 1 0 0 15
A23 1 3 3 2 0 3 1 3 0 1 1 1 3 4 3 0 0 0 0 1 0 0 0 30
A31 0 0 0 2 0 0 0 0 2 0 0 0 0 1 2 0 0 0 0 1 131 0 0 139
A32 0 1 2 0 0 1 0 0 1 0 0 2 0 3 10 0 0 1 0 4 4 4 0 33
A33 2 10 3 5 0 2 0 2 0 0 0 2 4 2 9 0 0 0 2 137 2 2 0 184
SUM 35 163 139 150 53 133 19 79 59 63 46 55 123 108 132 0 2 6 5 177 143 6 0 1696

11 14 20 30 40 50 60 70 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 SUM

A111 22 104 72 82 5 20 0 13 2 2 17 17 50 48 49 0 1 4 3 12 1 0 0 524
A112 0 4 1 1 0 0 0 0 0 0 0 0 5 4 4 0 0 0 0 13 0 0 0 32
A121 1 5 4 3 1 1 3 1 0 0 2 5 12 11 2 0 0 0 0 4 0 0 0 55
A122 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 5
A131 2 13 18 28 35 97 9 56 51 58 12 16 24 16 20 0 0 1 0 0 2 0 0 458
A132 0 1 0 4 0 0 0 0 0 0 0 0 2 2 5 0 0 0 0 1 0 0 0 15
A211 2 0 1 3 0 1 1 0 0 0 5 0 4 7 7 0 0 0 0 3 1 0 0 35
A212 4 19 28 16 12 6 3 3 2 1 4 8 14 8 16 0 1 0 0 1 1 0 0 147
A213 1 1 3 3 0 1 2 0 0 0 2 3 4 1 3 0 0 0 0 0 0 0 0 24
A214 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A221 0 2 1 1 0 1 0 1 0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 10
A222 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A223 0 0 2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 5
A231 0 0 1 0 0 0 0 0 0 0 0 0 2 1 2 0 0 0 0 1 0 0 0 7
A232 0 1 0 2 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 6
A233 1 2 2 0 0 3 1 3 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 17
A311 0 0 0 2 0 0 0 0 2 0 0 0 0 1 2 0 0 0 0 0 131 0 0 138
A312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
A321 0 1 2 0 0 1 0 0 1 0 0 2 0 3 9 0 0 1 0 3 4 3 0 30
A322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 3
A331 1 10 3 4 0 2 0 2 0 0 0 2 2 1 3 0 0 0 2 11 1 1 0 45
A332 1 0 0 1 0 0 0 0 0 0 0 0 2 1 2 0 0 0 0 121 1 0 0 129
A333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 5 0 1 0 10
SUM 35 163 139 150 53 133 19 79 59 63 46 55 123 108 132 0 2 6 5 177 143 6 0 1696

11 14 20 30 40 50 60 70 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 SUM

B11 30 121 73 70 14 18 3 11 2 2 2 8 17 37 16 0 0 1 0 4 4 0 0 433
B21 0 1 3 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 8
B22 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
B31 1 3 2 1 1 3 0 3 0 0 0 2 0 0 0 0 0 0 1 3 1 0 0 21
B32 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 4
B4 4 38 61 77 37 111 16 64 57 60 43 45 106 71 116 0 2 5 2 169 138 6 0 1228

SUM 35 163 139 150 53 133 19 79 59 63 46 55 123 108 132 0 2 6 5 177 143 6 0 1696

Table A3. Agreement number between GLNMO 2005 and DCP-based ground truth dada.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 SUM

A11 4 14 3 2 0 44 60 119 4 39 193 10 43 0 5 7 5 1 0 3 556
A12 1 3 0 0 0 6 19 10 4 5 3 0 5 0 0 2 0 0 0 0 58
A13 31 70 73 20 59 93 30 24 2 6 31 0 25 0 4 2 0 1 0 3 474
A21 5 9 2 0 2 39 34 27 4 15 37 2 26 0 3 0 0 1 0 1 207
A22 0 1 1 0 1 1 0 4 0 0 2 0 3 0 1 0 0 1 0 0 15
A23 0 1 0 0 0 5 2 5 0 4 2 1 4 0 0 2 0 4 0 0 30
A31 0 0 1 1 1 1 0 1 0 1 0 0 2 0 1 1 1 0 0 128 139
A32 0 0 2 0 0 3 1 6 0 7 6 0 0 0 0 1 1 0 6 4 37
A33 0 1 0 0 0 4 9 9 0 26 7 1 5 0 2 48 66 3 2 2 185
SUM 41 99 82 23 63 196 155 205 14 103 281 14 113 0 16 63 73 11 8 141 1701
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Table A3. Cont.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 SUM

A111 0 14 3 2 0 44 58 112 4 30 189 10 41 0 5 3 1 1 0 3 520
A112 0 0 0 0 0 0 2 7 0 9 4 0 2 0 0 4 4 0 0 0 32
A121 1 3 0 0 0 5 20 9 4 6 1 0 5 0 0 1 0 0 0 0 55
A122 0 0 0 0 0 1 0 1 0 0 2 0 0 0 0 1 0 0 0 0 5
A131 31 70 73 20 59 93 28 18 2 1 30 0 24 0 4 1 0 1 0 3 458
A132 0 0 0 0 0 0 2 6 0 4 1 0 1 0 0 1 0 0 0 0 15
A211 3 0 0 0 0 4 10 5 2 7 3 0 1 0 0 0 0 0 0 0 35
A212 1 9 2 0 2 28 16 20 2 6 31 2 23 0 3 0 0 1 0 1 147
A213 1 0 0 0 0 7 7 2 0 2 3 0 2 0 0 0 0 0 0 0 24
A214 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A221 0 1 0 0 0 1 0 4 0 0 1 0 2 0 1 0 0 0 0 0 10
A222 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A223 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 5
A231 0 0 0 0 0 1 0 1 0 2 0 0 1 0 0 2 0 0 0 0 7
A232 0 0 0 0 0 1 2 2 0 1 0 0 0 0 0 0 0 0 0 0 6
A233 0 1 0 0 0 3 0 2 0 1 2 1 3 0 0 0 0 4 0 0 17
A311 0 0 1 1 1 1 0 1 0 1 0 0 2 0 1 1 0 0 0 128 138
A312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
A321 0 0 2 0 0 3 1 6 0 5 6 0 0 0 0 1 0 0 6 4 34
A322 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 3
A331 0 1 0 0 0 4 7 7 0 6 5 1 4 0 2 5 0 2 0 1 45
A332 0 0 0 0 0 0 1 1 0 16 2 0 1 0 0 41 65 1 0 1 129
A333 0 0 0 0 0 0 1 1 0 4 0 0 0 0 0 2 1 0 2 0 11
SUM 37 99 82 23 63 196 155 205 14 103 281 14 113 0 16 63 73 11 8 141 1697

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 SUM

B11 6 14 2 0 1 53 23 54 3 11 177 14 65 0 3 3 0 0 0 4 433
B21 0 0 0 0 0 2 0 1 0 0 3 0 1 0 0 0 0 1 0 0 8
B22 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2
B31 0 2 0 0 0 4 1 1 0 1 1 0 2 0 1 0 1 6 0 1 21
B32 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 4
B4 35 83 79 23 62 137 130 147 11 91 100 0 45 0 12 60 71 3 8 136 1233

SUM 41 99 82 23 63 196 155 205 14 103 281 14 113 0 16 63 73 11 8 141 1701
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