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Abstract: The suboptimal management and utilization of water resources from the “Asian water
towers” contributed to serious ecological crises in river basins along the arid Silk Road, such as the
Aral Sea and the Heihe River in the 20th century. To improve the ecological resilience of the Ejina Oasis
in the Heihe River downstream basin, the Chinese government implemented the ‘Ecological water
dispatching project’ in 2000. However, it is still unclear what the optimal rational water allocation is
for the sustainable development of economic, social, and ecological environments (so called “triple
bottom line”) in these inland river basins. This study presents a decision-tree-based methodology
for ecological monitoring and restoration strategies for Silk Road’s oasis eco-system. Using Landsat
TM/OLI data as well as meteorological, hydrological, and water utilization data, we show that ~69% of
the originally degraded land has been restored since 2000. Previously dry tail-end lakes in the Heihe
River downstream basin have been rejuvenated, and the precipitation has also significantly improved
(ρ = 0.047). We propose that the downstream water allocation should be no more than ~11 × 108 m3

and that the optimal ratio between downstream and midstream allocation is 0.4–1.7. This study
provides an excellent example for ecological monitoring and assessment in the optimization of
strategies for the restoration of Silk Road’s oasis eco-system.

Keywords: oasis ecosystem resilience; water allocation; desertification assessment; multi-source
remote sensing; Silk Road

1. Introduction

Water management [1] is critical for improving ecological resilience [2] in arid oases along the
Silk Road, a historically important trade route of central Asia [3,4]. The term “Asian water towers”
(AWT) encompasses the mountain river systems in Asia that drain the Tibetan Plateau fed by snow
and melting glaciers. The AWT supplies a substantial part of the water demands of nature and people
in Asia [1,5]. In the 20th century, the vulnerability of AWT [5] to the mismanagement of water led to
environmental crises [2] in downstream oases such as the Aral Sea basin and the Heihe River basin.
In central Asia, the Aral Sea water crisis reflects the overconsumption of water for agricultural purposes
and energy production since the 1960s [6]. Similarly, the Heihe River downstream basin (HRDB) also
faces serious desertification and salinization due to the excessive use of water for the expansion of
agriculture and population growth within the midstream along the Hexi Corridor since the 1950s [7].

The Heihe River basin, covering 130,000 km2, originated from the Qilian Mountain range in
the northeastern Tibetan Plateau and is the second largest inland river basin in China [8] (Figure 1).
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As an important part of AWT, the Qilian Mountain contributes to 80.2% of the total upstream flow of
the Heihe River [8,9]. In the northern piedmont of Qilian Mountain, the midstream, socio-economic
development is estimated to have diverted 86% of the total water of the Heihe River basin [10]
since the 1950s, with serious ecological problems for the HRDB [8]. For example, Advanced Very
High-Resolution Radiometer (AVHRR) time series data indicated a sharp vegetation decrease of
3240 km2 in the HRDB from the 1980s to 1990s [11]. The tail-end lake of the Heihe River (East Juyan
lake) dried up in the early 1990s [12]. Spatio-temporal changes in the Normalized Difference Vegetation
Index (NDVI) indicated that the average groundwater table-level fell by about 3.5 m from 1989 to 2000
in the Ejina oasis of the HRDB [13].

Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 18 

 

HRDB is arid with a mean annual precipitation of only 34–47 mm and an average annual temperature 
of nearly 10 °C [12]. The Ejina oasis is an isolated oasis located at the north end of the HRDB, acting 
as a barrier to the desert transition [34]. Vegetation is dominated by Populus diversifolia and Sacsaoul, 
both of which are tolerant to aridity and therefore play a key role in impeding desertification. 

 
Figure 1. Satellite images showing the location of the study area. HRDB—Heihe River downstream 
basin. 

2.2. Processing of Landsat Data for Desertification Assessment. 

Landsat-5 (TM) and Landsat-8 (OLI) level-1 terrain corrected (L1T) images with a spatial 
resolution of 30 m acquired in 1995, 2000, 2005, 2010, and 2015 were downloaded from the Geospatial 
Data Cloud (GDC) (http://www.gscloud.cn) and the United States Geological Survey (USGS) 
(http://glovis.usgs.gov). Four Landsat scenes cover the study area with a path/row of 133/31, 133/32, 
134/31, and 134/32 (Table 1). The cloud-free satellite data obtained from July to September were 
chosen because this is when the vegetation generally reaches the maximum coverage. The 
radiometric, geometric, and atmospheric correction and clipping processing of these images for each 
period were carried out in the Environment for Visualizing Images (ENVI) software.  

Table 1. Basic information of Landsat imagery. 

Type Dates Path/Row Spatial Resolution Source 

Landsat-5 TM 

19950821 
133/31 
133/32 30 m USGS 

19950913 
134/31 
134/32 30 m USGS 

20000708 134/31 
134/32 30 m GDC 

20000818 133/31 
133/32 30 m GDC 

20050816 133/31 
133/32 30 m USGS 

20050908 134/31 
134/32 

30 m USGS 

Figure 1. Satellite images showing the location of the study area. HRDB—Heihe River downstream basin.

To improve the ecological resilience of the Ejina oasis, the Chinese government resolved to invest
2.35 billion RMB Yuan to implement the ‘Ecological Water Dispatching Project’ in 2000 [8], allowing the
midstream dispatch of 9.5 × 108 m3 of water to the HRDB each year [14]. This water dispatching has
seen the substantial recovery of the Populus euphratica, desert shrubberies, and meadow grasses in the
HRDB [15], as well as a rise of the groundwater table level by 0.5–1.6 m [16,17]. Meanwhile, there has
been an intense salinization of the soil in the HRDB from slightly saline to moderately and intensely
saline [18]. In addition, it has been argued that the over-diversion of water has resulted in an imbalance
in the midstream, resulting in desertification along the whole river basin [8]. Consequently, a current
estimate of the optimal water allocation for sustainable development along the Heihe River basin
remains pressing and is as-of-yet undetermined for the “triple bottom line” [19] (i.e., economic, social,
and ecological development) in the oases along the Silk Road.

Remote sensing technology has proven to be a cost-effective approach for the assessment of
desertification [20–23] and ecological restoration [24,25]. Examples include: (1) the application of
Spectral Mixture Analysis (SMA) to Landsat images for land degradation in Argentina [26]; (2) the
use of Landsat, AVHRR, and Indian Remote Sensing Satellite (IRS)-1C data to assess the impacts
of climate and humans on rangeland desertification, which were distinguished based on NDVI in
Syria [27]; (3) the use of AVHRR for the calculation of Rain Use Efficiency (RUE), which suggested
that constant RUE was the preliminary evidence in assessing land degradation [28]; (4) the use of
250-m MODIS NDVI and GIS, which indicated that an area of approximately 161,000 ha suffered
desertification at different levels in Central Asia, associated with Aral Sea Basin shrinkage due to
irrational over-irrigation [29]; and (5) the use of multi-Landsat images from 1975 to 2010 to assess
human impacts on 47,833 km2 of aeolian deserted land in northwest China [22].
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Because desertification not only causes serious ecological feedback but also leads to major social
problems [30], remote sensing monitoring studies such as those listed above can have important
social policy ramifications. While remote sensing data have been previously employed to monitor
the dynamics of vegetation, water, soil, and evapotranspiration in the Heihe River basin [11,12,31–34],
there is still a lack of comprehensive monitoring and assessment of spatio-temporal desertification
status and ecological dynamics in the HRDB.

In order to determine the impact of water dispatching on the ecological environment and climate
changes in HRDB, this study employed the multi-temporal Landsat satellite data and decision tree
to assess the desertification dynamics in HRDB before and after water dispatching (from 1995 to
2015). Accordingly, a rational water dispatching threshold is proposed for maintaining and improving
ecological resilience in the oases along the Silk Road.

2. Materials and Methods

2.1. Study Area

The HRDB (between 98◦30′–102◦53′ E and 39◦47′–42◦37′ N) is located to the north of the
Zhengyixia hydrological station, west of the Badain Jaran Desert and in the northern front of Qilian
Mountain, covering an area of approximately 66,574.9 km2 (Figure 1). In the HRDB, the Heihe River is
approximately 333 km long, with sand and gravel desert on both its banks [35]. The climate in the
HRDB is arid with a mean annual precipitation of only 34–47 mm and an average annual temperature
of nearly 10 ◦C [12]. The Ejina oasis is an isolated oasis located at the north end of the HRDB, acting as
a barrier to the desert transition [34]. Vegetation is dominated by Populus diversifolia and Sacsaoul, both
of which are tolerant to aridity and therefore play a key role in impeding desertification.

2.2. Processing of Landsat Data for Desertification Assessment

Landsat-5 (TM) and Landsat-8 (OLI) level-1 terrain corrected (L1T) images with a spatial resolution
of 30 m acquired in 1995, 2000, 2005, 2010, and 2015 were downloaded from the Geospatial Data Cloud
(GDC) (http://www.gscloud.cn) and the United States Geological Survey (USGS) (http://glovis.usgs.gov).
Four Landsat scenes cover the study area with a path/row of 133/31, 133/32, 134/31, and 134/32 (Table 1).
The cloud-free satellite data obtained from July to September were chosen because this is when the
vegetation generally reaches the maximum coverage. The radiometric, geometric, and atmospheric
correction and clipping processing of these images for each period were carried out in the Environment
for Visualizing Images (ENVI) software.

Table 1. Basic information of Landsat imagery.

Type Dates Path/Row Spatial Resolution Source

Landsat-5 TM

19950821 133/31
133/32 30 m USGS

19950913 134/31
134/32 30 m USGS

20000708 134/31
134/32 30 m GDC

20000818 133/31
133/32 30 m GDC

20050816 133/31
133/32 30 m USGS

20050908 134/31
134/32 30 m USGS

20100814 133/31
133/32 30 m GDC

20100821 134/31
134/32 30 m GDC

Landsat-8 OLI
20150718 134/31

134/32 30 m USGS

20150828 133/31
133/32 30 m USGS

http://www.gscloud.cn
http://glovis.usgs.gov
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2.3. Indicative Index and Decision Tree for Desertification Assessment

The Food and Agriculture Organization (FAO) and the United Nations Environment Programme
(UNEP) developed a methodology with 22 indicators to assess desertification [21,36]. Water, vegetation
coverage, and soil status are the key factors reflecting the desertification conditions in arid and semi-arid
regions [37,38]. The NDVI, SMA, and RUE are indices frequently used to quantify the dynamics of
vegetation, soil, and rainfall use for desertification assessment [20,21,28,39,40]. However, the NDVI
is seriously affected by the rainfall and background value of the soil [40,41]. The use of SMA is
a precise approach for quantitative measurements of vegetation and soil land but shows limitation
in areas covered with sparse vegetation [38]. The accuracy of RUE strongly depends on the NDVI,
which is suitable for areas with annual rainfall of more than 100 mm [20,28]. Therefore, in this study,
three indicators—(1) the Modified Normalized Difference Water Index (MNDWI) [42], (2) the Modified
Soil Adjusted Vegetation Index (MSAVI) [41], and (3) the Bare Soil Index (BSI) [43]—were combined
to comprehensively reflect water, vegetation, and soil status for the assessment of the desertification
dynamics in the HRDB, where vegetation is sparse and the annual rainfall is less than 50 mm/a.

The MNDWI is applied to extract water in arid and semi-arid regions, particularly in the HRDB,
where runoff has a greater impact than rainfall [8]. The MNDWI provides an effective means for
analyzing areas that are sensitive to changes in ground water, such as lakes, rivers, and reservoirs,
which can be calculated as the following [42]:

MNDWI =
ρG − ρNIR

ρG + ρNIR
(1)

To minimize the soil background’s impacts and increase the vegetation sensitivity, the MSAVI
was selected to monitor the vegetation dynamics and calculated as follows [41]:

MSAVI = (2ρNIR + 1−
√
(2ρNIR + 1)2

− 8(ρNIR − ρR))/2 (2)

It is worth noting that the value of the vegetation index may not be reliable if the vegetation is
sparse [43]. Therefore, the BSI was proposed to improve the evaluation of the vegetation status, as the
lower the vegetation value, the higher the BSI value [43]. The BSI is obtained using [43]:

BSI =
(ρSWIR + ρR) − (ρNIR + ρB)

(ρSWIR + ρR) + (ρNIR + ρB)
(3)

In Equations (1)–(3), ρB, ρG, ρR, ρNIR, and ρSWIR represent spectral bands 1, 2, 3, 4, and 5 for
Landsat-5 TM imagery and bands 2, 3, 4, 5, and 6 for Landsat-8 OLI imagery, respectively.

Decision trees [44] have been used in a number of studies to assess desertification [20,21,45,46].
Generally, the degree of desertification is classified into five categories: Non-degraded, Low, Moderate,
High, and Severe desertification [47,48]. To obtain the thresholds for each of these five grades,
each index was firstly extracted according to spectral calculation Equations (1)–(3) for processed
the Landsat imagery of each period in ENVI. Then, a total of 1500 training samples for each
index, including 300 training samples of each grade, were selected, referring to GlobeLand30 data
(http://www.globallandcover.com/GLC30Download/) and ground features according to Google Maps.
Among the processed Landsat images for five periods, a total of 1500 inspection points were selected
for each period, including 300 random validation points of each grade. The decision tree rule for all
the thresholds was obtained by using the ENVI see 5.0 model [20]. Figure 2 indicates the range of
values for each index for each desertification degree. Finally, the decision tree was applied to classify
the desertification of each period. The overall accuracy of the classification results was verified by
using the inspection points of each period.

http://www.globallandcover.com/GLC30Download/
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Figure 2. Decision tree for the assessment of the desertification situation. There are five grades of
desertification degree, including Non-Degraded, Low, Moderate, High, and Severe desertification.
The three indices are the MNDWI—Modified Normalized Difference Water Index, MSAVI—Modified
Soil Adjusted Vegetation Index, and BSI—Basic Soil Index. The decision tree rule shows the range
values of each index for determining grades of desertification.

2.4. Meteorological, Hydrological and Water Utilization Data

The meteorological data of the monthly average precipitation and temperature acquired from
12 meteorological stations in and around the Heihe River area from 2000 to 2015 were downloaded
from the China Meteorological Administration (http://data.cma.cn/) for the spatial analysis of climate
change in the HRDB. The TerraClimate monthly datasets [49] downloaded from the Climatology
Lab (http://www.climatologylab.org/terraclimate.html/) were used to determine the spatial annual
precipitation of Heihe River area from 2000 to 2015. Additionally, the hydrological data of the upstream,
midstream, and downstream runoff of the Heihe River recorded at the Yingluoxia, Zhengyixia,
and Langxinshan hydrological stations, respectively, were obtained from the Ministry of Water
Resources the People’s Republic of China (http://www.mwr.gov.cn/sj/). Water utilization data for
industrial and domestic use were calculated using data from the Bulletin of Water Resources of Inner
Mongolia Autonomous Region from 2000 to 2015, downloaded from the Water Resources Department
of Inner Mongolia Autonomous Region (http://slt.nmg.gov.cn/).

2.5. Spatio-Temporal Analyses of Meteorological Data

Kriging interpolation is a well-established and important method for the spatial analyses of
meteorological data [50]. The advantage of Kriging is that it couples with a linear combination of the
weighted spatial structure changes and spatial autocorrelation [50,51]. Interpolation can be conducted
in the Kriging spatial analyst module in the ArcGIS 10.2 software. The average annual temperature
and precipitation data for the HRDB were calculated from the monthly climate meteorological dataset
with interpolation using ordinary Kriging with Spherical semivariogram models applied to annual
spatial temperature and precipitation.

Cross validation used to estimate the Mean Error (ME), Root-Mean-Square Error (RMSE),
Mean Standardized Error (MSE), and Root-Mean-Square Standardized Error (RMSSE) of the Kriging
interpolation results [50]. To improve the reliability of the Kriging interpolation results, the TerraClimate
monthly datasets were calculated to obtain annual data in ArcGIS 10.2, which provided evidence
of the spatial variations in precipitation over the period 2000–2015 [49]. The temporal trend of the
changes in precipitation and temperature was tested using non-parametric Mann–Kendall tests [52,53].

http://data.cma.cn/
http://www.climatologylab.org/terraclimate.html/
http://www.mwr.gov.cn/sj/
http://slt.nmg.gov.cn/
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The correlation of the precipitation and temperature data with the annual runoff was calculated to
explore the impact of the runoff on the spatio-temporal variations in the climate of the HRDB.

2.6. Water Balance between Downstream and Midstream

To determine the water balance between the downstream and midstream of the Heihe River,
water allocation thresholds for the downstream and midstream were calculated using the equations
documented below [37,54,55].

The estimation of thresholds requires the average annual runoff water consumed by downstream
and midstream, respectively, and takes the proportion of each type of water consumption from the
total runoff into consideration.

WT = WD + WM = p×WT + q×WT (4)

The average annual runoff water demand is calculated by subtracting the total water consumption
from precipitation.

WD/M = PD/M ×A−W (5)

The total water consumption consists of the average annual evapotranspiration of ground and
vegetation, industrial water use, and domestic water use.

W = ET × a + WInd + WDom (6)

The variables in the equations above are defined as follows: WT is the average annual total
runoff, WD is the average annual runoff demand for downstream, WM is the average annual runoff

demand for midstream, PD is the average annual precipitation of downstream, PM is the average
annual precipitation of midstream, W is the total water consumption, ET is the average annual
evapotranspiration value, WInd is the average annual water demand for industrial use, WDom is the
average annual water demand for domestic use, A is the total area of the midstream or downstream
region, a is the area of the oasis including vegetation coverage and lakes, p is the percentage of WD in
WT, and q is the percentage of WM in WT.

The total runoff is the long-term average annual runoff calculated from the data of Yingluoxia.
The water demand amounts of the midstream are based on data from previous studies [56,57].
The water needed from the downstream is designed as the total water consumption excluding the
precipitation in the HRDB. The total water consumption of the HRDB consists of the ET of the
ecological and socio-economic water demand. The ET values from 2000 to 2015 were collected from
previous studies [12,31,55,58,59]. The socio-economic water consumption includes the water demand
for industrial and domestic use but excludes the agricultural water demand because the total ET
includes the water use of crops. The precipitation was obtained by combining the records from
12 meteorological stations. The minimum and maximum water demands in the midstream and
downstream are calculated based on the model. The water allocation threshold is determined as the
ratio of downstream and midstream (p/q). The verification was based on the true value of the runoff in
midstream and downstream from 2000 to 2015.

3. Results

3.1. Spatio-Temporal Variations in HRDB Ecological Environment from 1990 to 2015

The spatio-temporal dynamics of desertification in the HRDB are presented in Figure 3a,b. In total,
from 1995 to 2015, the statistical results show significant increases in the area Non-Degraded (+1523 km2,
+182.4%) and with Low (+816 km2, +78.7%), Moderate (+3461 km2, +135.7%), and High desertification
(+20,319 km2, +84.4%). By contrast, the area of Severe desertification clearly reduced (−26,119 km2,
−68.6%) (Tables 2 and 3).
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Figure 3. Desertification assessment results and spatio-temporal changes in vegetation and tail-end
lakes in the HRDB from 1995 to 2015. (a) Desertification status of the HRDB from 1995 to 2015.
(b) Spatial desertification dynamics of the HRDB in 1995–2000, 2000–2005, 2005–2010, and 2010–2015,
respectively. Red rectangles present the dynamics of vegetation and tail-end lakes in the Ejina oasis
during this period: (c) 1995; (d) 2000; (e) 2005; (f) 2010; (g) 2015. (h) Broken line and histogram graph
showing the area variation of vegetation and lakes.

Table 2. The situation of desertification in the HRDB from 1995 to 2015.

Desertification
Degree

1995 2000 2005 2010 2015

Area
(km2) % of HRDB Area

(km2) % of HRDB Area
(km2) % of HRDB Area

(km2) % of HRDB Area
(km2) % of HRDB

Non-Degraded 835.38 1.25 1465.59 2.20 1306.65 1.96 1678.70 2.52 2359.10 3.54
Low 1036.36 1.56 1203.17 1.81 1474.89 2.22 971.61 1.46 1851.86 2.78

Moderate 2550.70 3.83 4431.80 6.66 6421.46 9.65 2953.46 4.44 6011.93 9.03
High 24,063.91 36.15 38,222.18 57.41 44,446.15 66.76 45,156.20 67.83 44,383.14 66.67

Severe 38,088.54 57.21 21,252.16 31.92 12,925.75 19.42 15,814.93 23.76 11,968.87 17.98

Overall Accuracy 0.87 0.92 0.86 0.85 0.90

Table 3. Dynamic changes of the land in the HRDB from 1995 to 2015.

Desertification
Degree

1995–2000 2000–2005 2005–2010 2010–2015 Total (1995–2015)

Area
(km2) % of 1995 Area

(km2) % of 2000 Area
(km2) % of 2005 Area

(km2) % of 2010 Area
(km2) % of 1995

Non-Degraded +630.21 +75.44 −158.94 −10.84 +372.05 +28.47 +680.40 +40.53 +1523.72 +182.40
Low +166.81 +16.10 +271.72 +22.58 −503.28 −34.12 +880.25 +90.60 +815.50 +78.69

Moderate +1881.10 +73.75 +1989.66 +44.90 −3468.01 −54.01 +3058.47 +103.56 +3461.23 +135.70
High +14,158.27 +58.84 +6223.98 +16.28 +710.05 +1.60 −773.06 −1.71 +20,319.23 +84.44

Severe −16,836.38 −44.20 −8326.42 −39.18 +2889.18 +22.35 −3846.06 −24.32 −26,119.67 −68.58

The spatial dynamics of the vegetation coverage and lake water extent in the HRDB from 1995 to
2015 (Figure 3 and Table 4) were determined with the MSAVI and MNDWI. The extent of vegetation
coverage was low before 2000. After water dispatching, it showed a significant upward trend (from
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2591 to 5757 km2) with an increase of 158 km2/a. The results prove that the approach is a feasible way
to monitor land cover through vegetation dynamics over large areas using Landsat images.

Table 4. Areas of and changes in vegetation in the HRDB and tail-end lakes of the Heihe River from
1995 to 2015.

Year
Vegetation (MSAVI > 0.08) Lakes (MNDWI > 0.8)

Area (km2) Variation Area (km2) Area (km2) Variation Area (km2)

1995 2591.59 0 0 0
2000 3984.41 1392.82 0 0
2005 4380.84 396.43 38.93 38.93
2010 3947.32 −433.52 70.13 31.20
2015 5757.40 1810.08 70.73 0.60

Annual average increase 158.29 3.54

It is noticeable that all the tail-end lakes were dry from 1995 to 2000. Figure 3 shows that the
East Juyan Lake has been restored since 2005. To the east, another lake was also partially filled by
2010. In total, the areas of these lakes reached 70.73 km2 in 2015. These results imply a significant
restoration of the vegetation coverage and water resources in the HRDB following the implementation
of ecological water dispatching in 2000.

In total, our ecological assessments indicate that approximately 26,119 km2 of the desertified land
was significantly restored due to water dispatching, accounting for 69% of the land that was degraded
in the HRDB.

3.2. Spatio-Temporal Changes in the HRDB’s Climate Since Water Dispatching was Implemented in 2000

The spatio-temporal changes in temperature and precipitation in the HRDB from 2000 to 2015
were analyzed based on meteorological data (Figure 4). The average annual temperature was 9.65 ◦C,
with an increase of 0.06 ◦C/a, and the average annual precipitation was 37.6 mm, with an increase of
1.22 mm/a (Table S1). The non-parametric Mann–Kendall tests quantify the fluctuation of the climate
change; the temperature had a consistent trend over this period, whereas the precipitation showed
significant variability that was higher than average in the first two years after water dispatching and
lower than average between 2003 and 2006, and it steadily increased from 2007 to 2015 (Figure S1).

As shown in Figure 4a, over the period of 2000–2005, the northeastern area became colder and
drier, while the southwestern area became warmer and wetter. From 2005 to 2010, the northeastern
area exhibited hotter and drier conditions than the southeastern area. Then, both temperature and
precipitation significantly increased in the northeastern area from 2010 to 2015. The cross validation
calculated the ME, RME, MSSE, and RMSSE of the Kriging interpolation of the precipitation and
temperature (Tables S2 and S3). The validation of both the precipitation and temperature shows ME
values of less than 1 except for the precipitation’s ME in 2015. In addition, for both, the MSSE values
are all approximately 0, with the RMSSE values approaching 1. These validation results imply that the
overall interpolation error is small, despite the high RME values for precipitation. The RME values for
temperature of ~3 reflect the limited number of meteorological stations (12) in and around this region.

Considering possible questions surrounding the reliability of the Kriging interpolation of
precipitation, we highlight the annual spatial precipitation calculated from the TerraClimate monthly
dataset [49] as auxiliary evidence; the TerraClimate annual estimations show a gradual increase in
rainfall from 2005 to 2015 (Figure 5). Regression analysis indicates a significantly positive correlation
between precipitation and runoff (R = 0.4259, ρ = 0.047), whereas there is no significant correlation
between temperature and runoff (R = 0.0366, ρ = 0.737), suggesting that the increase in runoff has
a bigger effect on precipitation than temperature (Figure 4c).
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Figure 4. Analyses of meteorology and runoff in the HRDB from 2000 to 2015. (a) Spatial variations
of temperature and precipitation in the HRDB obtained by Kriging interpolation. (b) Runoffs of the
Heihe River recorded by hydrological stations. (c) The correlations between the annual runoff and
climate factors (precipitation and temperature) in the HRDB. R: correlation coefficient; ρ: p-value of
t-test (ρ < 0.05 indicating a significant trend at 0.05 level).
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Figure 5. The spatial features of annual precipitation calculated from the TerraClimate monthly
dataset in the HRDB from 2000 to 2015. (a) The average annual precipitation in HRDB from
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and (d) 2010–2015. The TerraClimate monthly dataset was downloaded from the Climatology Lab
(http://www.climatologylab.org/terraclimate.html).
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3.3. Water Thresholds for Runoff Allocation along the Heihe River Basin

Runoff data from hydrological stations indicated changes in the upstream, midstream,
and downstream from 2000 to 2015 (Figure 4b and Table S4). The runoff data from the Zhengyixia
station, which recorded the amount of water dispatched from midstream to downstream (see the
location of the stations in Figure 1), show an upward trend from 6.6 × 108 to 12 × 108 m3 from 2000 to
2003. The average runoff is 10.6 × 108 m3 from 2000 to 2015. It is worth noting that the ratio between
the runoff from the Zhengyixia station and that from the Yingluoxia rose from 44.9% to 62.3% with
an average of 57.6%, suggesting a significant increase in the water amounts allocated to the HRDB.

The thresholds of the water balance between the downstream and midstream are determined based
on their water demands. Previous researchers have estimated the ET to be in the range of 611–978 mm/a
within the Heihe River Basin over the past 15 years [31,55,58,59] (Table 5). Although the precipitation
has increased by 26–52 mm/a, it is far below the levels needed to meet the ET consumption in the HRDB.
Accordingly, this study indicated an addition of at least ~5.06 × 108 m3 of water was needed from
runoff to both safeguard ecological resilience and meet socio-economic needs (Figure 6 and Table 5)
without serious degradation of the HRDB oases. In addition, Liu and Shen (2017) showed that the
midstream area required a minimum flow of ~6.83 × 108 m3 from the Heihe River, excluding the
discharge from other rivers, precipitation, and the use of groundwater. The average annual flow at the
Yingluoxia station of ~18.3 × 108 m3 is equal to the total water amount allocated to the midstream and
downstream [60,61]. Accordingly, the maximum thresholds of the downstream and midstream were
estimated to be ~11.49 × 108 m3 and ~13.26 × 108 m3, respectively (Figure 6).

Table 5. Water demand amounts in the HRDB.

Year
Average

ET 1

(mm/a)

Precipitation
(mm/a)

Total Area
(km2)

Vegetation Area
(km2)

Lake Area
(km2)

Industrial Water
(108m3)

Domestic Water
(108m3)

Water Demand
(108m3)

2000 796.69 27.05 66,574.9 3984.41 0.00 0.006 0.006 13.746
2005 611.40 26.80 66,574.9 4380.84 38.93 0.055 0.004 9.237
2010 978.2 51.61 66,574.9 3947.32 70.13 0.113 0.005 5.056
2015 850 46.60 66,574.9 5757.40 70.73 0.083 0.008 18.608

1 The average annual ET is obtained from previous results [31,55,58,59].

If the water flow exceeds the threshold either in downstream or midstream, either may suffer water
shortages. The green area in Figure 6a presents the rational water allocation values, within which the
downstream ecosystem can be well restored without causing water shortages in midstream. Meanwhile,
due to global warming, higher temperatures and more vegetation will increase evaporation [37],
and more glacier-snow-melting water will increase the total water amounts. As inferred by the blue
area in Figure 6a, the thresholds of water demand in the downstream and midstream may increase
if the total runoff is higher than the current average of 18 × 108 m3. Considering the fluctuation of
the thresholds, this study suggests the ratio of water dispatching to the downstream and midstream
should remain between 0.4 and 1.7, as an index to determine whether the water allocation is rational.

The verification of the water thresholds is based on the true runoff recorded from the Yingluoxia
and Zhengyixia stations from 2000 to 2015. Calculations show that the average annual water allocated
to the downstream is 10.6 × 108 m3, accounting for about p = 57.6% of the upstream flow, while the
midstream water accounts for q = 42.4% of the upstream flow. Together, these results prove that
the ecosystem of the HRDB has been effectively restored because the water allocation ratio, p/q,
is 1.4—which is between 0.4 and 1.7, consistent with the rational allocation ratio suggested by our
model (Figure 6b).
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Figure 6. Water balance model for the Heihe River basin. (a) The rational water thresholds allocated to
the downstream and midstream can restore the HRDB’s ecological resilience without water shortages
occurring in midstream when the runoff values are within the green areas. (b) The verification for the
ratio of downstream and midstream was based on their water discharge thresholds by using the true
runoff value from 2000 to 2015, showing that the ecosystem can be effectively restored when the runoff

ratio ranges from 0.4 to 1.7.

4. Discussion

Coupled with Landsat satellite data and a decision tree, we assessed the desertification dynamics
of five periods over 20 years. Our results highlight a significant reversion of desertification in the HRDB
since ecological water dispatching began in 2000. About 26,119 km2, or 20% of the total catchment
area, was restored from severe desertification. The areas of vegetation and lake were both recovered
in the HRDB. Meanwhile, considering that a ~1 ◦C increase in temperature can induce potential
evapotranspiration (ET) of around 75 mm/a [62], the ET increased by approximately 4.5 mm/a as
the temperature increased by 0.06 ◦C/a in the HRDB from 2000 to 2015. Although the increase in
precipitation (+1.22 mm/a) was far from satisfying the water requirements of ecosystem restoration,
spatio-temporal monitoring also indicated the positive impact of water dispatching on precipitation in
the HRDB from 2000 to 2015, which is helpful for improving the ecological resilience of oases.
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Water availability is crucial for oasis development [33,34]. It is necessary to consider the water
balance related to the ecological types of different oasis ecosystems for sustainable development within
inland river basins [8,63,64]. Field investigations indicate the changes in vegetation type with different
amounts of water along the Heihe River basin (Figure 7). In the upstream, the meadow and shrub are
the main plants nurtured by glacier-snow-melting water from “Asian water towers”. The recovery of
the meadow ecosystem plays an important role in the regulation of the hydrological change in the
frozen soil of the Tibetan Plateau [65]. In the midstream, the vegetation is characterized as arbor, shrub,
and crop. The cultivated lands consumed 80% of the oasis water, which had a negative impact on the
meeting of natural water demands [57]. Toward the downstream, the significant restoration of shrub
and meadow has been improved, though the vegetation is still sparse. The increase in vegetation also
plays a positive role in sand prevention and fixation.
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Figure 7. Field photographs showing the ecological features along Heihe River. (a) Photographs
of the field locations are presented. (b,c) Ecological features in the upstream of the Heihe River.
(d–f) Agricultural patterns in the midstream of the Heihe River. (g–i) Illustrations of ecological
restoration in the HRDB.

There is currently more glacier-snow melting from the AWT discharge to the upstream runoff

due to global warming [1,9,66], contributing to the ecosystem’s recovery in the HRDB. However,
long-term global warming may cause the volumes of glaciers to decline, leading to a potential decrease
in runoff and drought in the HRDB [1,66]. Besides, the continuous over-dispatching of water to the
HRDB probably results in water shortages in midstream [8,57]. Thus, rational water allocation is
critical for maintaining a long-term, sustainable “triple bottom line” and improving the ecological
resilience of the oasis. Accordingly, a reasonable water dispatching threshold is needed to balance
ecological resilience and socio-economic development along the Heihe River basin. As estimated above,
the current maximum threshold for water allocated to the HRDB should not exceed ~11 × 108 m3,
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and the ratio of water allocated to the downstream and midstream should remain at 0.4–1.7, which is
important for the balance of water consumption in the midstream and downstream.

According to the successful water dispatching along the Heihe River basin, we propose a conceptual
model to provide new insights into the water balance allocation in trans-provinces along the Silk
Road (Figure 8). As shown in Figure 8, the effective implementation of water dispatching requires the
consideration of different water resource problems among the upstream, midstream, and downstream.
In the upstream, snow- and glacier-melting from the Qilian Mountain contributed 28.5% of water to
the runoff, which is facing the negative impacts from long-term global warming [9]. In the midstream,
as a central area of the river basin, its highly efficient regulation and utilization of water are critical for
maintaining the “triple bottom line” within the whole drainage region, since the increasing urban,
industrial, and agricultural developments consume the greatest amounts of the available water. In the
downstream, the river runoff determines the vegetation restoration and wet-land recovery since there
has low precipitation and strong evaporation. This study suggests that water allocation between the
downstream and midstream accounting for 57.6% and 42.4% of the total upstream flow, respectively,
could balance the ecological and socio-economic water demands along the Heihe River basin.
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Figure 8. A three-dimensional conceptual model of a water balance diagram showing the pattern of
the inland river basin. Upstream flow is discharged from the Asian water tower. Water consumption
in the midstream and downstream accounts for 42.4% and 57.6% of the upstream flow, respectively.
The annual water dispatching threshold is 11 × 108 m3. The current water allocation ratio (1.4) between
the downstream and midstream can well balance the water requirements in oases along the Silk Road.

This experience can provide a useful reference for addressing the ecological problems in oases with
similar river patterns. For example, the over-consumption of water in the midstream of Amu Darya and
Syr Darya rivers had caused a drought in their terminal lake-Aral Sea basin since the 1960s, where the
water volume decreased by about 90% and lake areas had shrunk by 600–870 km2/a [6,63,67]. The lack
of an effective agreement among Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan
on the allocation of water resources from these two river basins has exacerbated the ecological crisis
of the Aral Sea basin. Trans-boundary coordination and cooperation among the five Central Asian
countries is needed to optimize the water utilization among different areas in the Aral Sea basin [68].
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As we have shown here, doing so will require the long-term, accurate assessment of desertification to
determine water thresholds for water allocation strategies.

5. Conclusions

To summarize, combining Landsat TM/OLI images analysis embedded in a decision tree
analysis informed by meteorological, hydrological, and water utilization data provide an effective
approach for the long-term monitoring and assessment of ecological dynamics in inland river basins.
The MNDWI, MSAVI, and BSI can synthetically reflect the ecological restoration of the Ejina oasis in
the HRDB from 1995 to 2015 due to the implementation of the ecological water dispatching project.
The assessment results show significant recovery of the degraded lands by ~69%, with a restoration
of vegetation coverage and lakes, as well as an increase in precipitation in the HRDB since 2000.
Furthermore, we estimate that maximum water amounts allocated to the downstream of ~11 × 108 m3,
with an allocation threshold between the downstream and midstream of 0.4–1.7, are required for a
sustainable “triple bottom line” water balance. Generally, the comprehensive remote-sensing-based
monitoring and assessment of ecological dynamics indicate that the ecological resilience of the oases
is improved by water dispatching, playing a key role in optimizing the decisions regarding and
implementation of water management policies in arid and semi-arid regions.
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precipitation in the HRDB1 from 2000 to 2015, Table S3: Cross validation of Kriging interpolation for temperature
in the HRDB1 from 2000 to 2015, Table S4: Runoffs of upstream, midstream and downstream of the Heihe River
from 2000 to 2015.
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