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Abstract: We presented an improved method for estimation of regional surface mass variations from
the Gravity Recovery and Climate Experiment (GRACE)-derived precise intersatellite geopotential
differences using a priori constraints. An alternative analytic formula was proposed to incorporate the
K-band ranging (KBR) range rate into the improved energy balance equation, and precise geopotential
differences were estimated from GRACE Level-1B data based on the remove-compute-restore (RCR)
technique, which avoids the long-wavelength gravity signals being absorbed by empirical parameters.
To reduce the ill condition for inversion of regional mass variations from geopotential differences, a
priori information from hydrological models was used to construct the constraint equations, and
the optimal regularization parameters were adaptively determined based on iterative least-squares
estimation. To assess our improved method, a case study of regional mass variations’ inversion
was carried out over South America on 2◦ × 2◦ grids at monthly intervals from January 2005
to December 2010. The results show that regional mascon solutions inverted from geopotential
differences estimated by the RCR technique using hydrological models as a priori constraints can
retain more signal energy and enhance regional mass variation inversion. The spatial distributions
and annual amplitudes of geopotential difference-based regional mascon solutions agree well with
the official GRACE mascon solutions, although notable differences exist in spatial patterns and trends,
especially in small basins. In addition, our improved method can robustly estimate the mascon
solutions, which are less affected by the a priori information. The results from the case study have
clearly demonstrated the feasibility and effectiveness of the proposed method.

Keywords: regional surface mass variations; intersatellite geopotential differences; GRACE; mascon
solutions; a priori constraints; improved energy balance equation

1. Introduction

Over the past 16 plus years, surface mass variations derived from the Gravity Recovery and
Climate Experiment (GRACE) satellite gravimetry has significantly improved our ability to study
the terrestrial water cycle, ice sheets and mountain glacier mass balance, sea level change, and
ocean bottom pressure variations, as well as to understand responses to changes in the global climate
system [1,2]. The traditional approach for modeling surface mass variations is based on the time-variable
gravity field, which is represented by spherical harmonic (SH) basis functions [3,4], and surface mass
variations obtained from GRACE Level-2 monthly SH solutions, e.g., the Center for Space Research
(CSR), Geoforschungszentrum (GFZ), and Jet Propulsion Laboratory (JPL) published RL05/06 SH
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solutions [5–9] can reach a spatial resolution of ~300 km [10,11], or even better than 300 km through
enhanced processing techniques [12,13]. However, without using constraints or a priori information,
GRACE SH solutions have typically suffered from poor observability of east-west gradients, resulting in
the longitudinal stripes that are conventionally removed by spatial filtering [14,15]. Spatial smoothing
and filtering have a tendency to attenuate the real geophysical signals, which further degrades the
spatial resolution of GRACE-estimated surface mass variations [16–18]. Therefore, several dedicated
correction methods [17,19–21] were developed for improving the effective spatial resolution of GRACE
SH solutions, which can help detect surface mass variations at small regional scales [13].

In addition to the traditional SH basis functions approach, an alternative way to estimate surface
mass variations from GRACE is to use the mass concentration (mascon) approach. The mascon approach
can estimate surface mass variations directly from intersatellite K-band ranging (KBR) measurements
(Level-1B data), and the longitudinal stripes are suppressed by applying constraints [11,22–27]. Because
the mascon parameters are nonlinear functions of the KBR observations, the final mascon solutions
are conventionally estimated by the least-squares iterative algorithm, in which the partial derivatives
of the KBR observations with respect to mascon parameters are computed by the dynamic method.
Theoretically, unconstrained global mascon solutions are equivalent to unconstrained SH solutions, but
mascon parameters are particularly easy to use with various types of constraints, which result in less
signal loss and spatial leakage [11,22,25]. Several institutes, including JPL, CSR and the Goddard Space
Flight Center (GSFC), have generated global GRACE mascon solutions (e.g., JPL and CSR RL05/06
mascon solutions [24–26,28], and GSFC mascon solutions [11,29]) based on the dynamic method,
which can be directly applied to the analysis of surface mass variations. In addition, several studies fit
mascon parameters to SH coefficients from monthly GRACE SH solutions [30–33], but these are not
true mascon solutions in the sense that there are no direct connections between mascon parameters
and KBR observations [24,26].

Due to the nonlinear relationship between mascon parameters and KBR observations, as well
as the time-consuming calculations of the dynamic method, an alternative estimation of mascon
parameters from GRACE intersatellite geopotential differences based on the energy balance approach
was widely studied in the past decade [34–38]. The advantages of this method are twofold. First,
the mascon parameters are linear functions of the geopotential differences, and can be conveniently
estimated in least-squares solutions without any iterative corrections. Second, the GRACE intersatellite
geopotential differences are in situ gravimetric observables, as a quantity with explicit geophysical
interpretation [34,39], which can directly reflect surface mass variations compared with that of geometric
KBR data. In general, there are two steps for inferring these mascon solutions. The first step is to
estimate intersatellite geopotential differences from GRACE KBR observations and global positioning
system (GPS) orbits, along with non-gravitational accelerations using the energy balance equation.
The second step is to convert intersatellite geopotential differences into surface mass variations,
which are usually expressed in terms of the equivalent water height (EWH) through a downward
continuation process.

Some previous studies have been done on precise estimation of in situ intersatellite geopotential
differences from GRACE Level-1B data. Based on numerical approximation of the energy balance
equation presented by Jekeli [40], Han et al. [41] attempted to adjust the KBR range-rate, GPS
orbit, and accelerometer data simultaneously through a non-linear least-squares estimation with
fixed constraints; Tangdamrongsub et al. [38] employed the same strategy to estimate geopotential
differences but via stochastic constraints. In order to further improve the accuracy of geopotential
differences, Ramillien et al. [36] computed the potential rotation term by considering the static part of
the gravitational; Guo et al. [42] presented a more accurate formulation of the potential rotation term,
which includes the contributions of time-variable components of the gravitational potential. As the
energy integral does not explicitly contain the precise KBR range-rate measurements, Shang et al. [39]
introduced an analytic alignment equation to incorporate the residual KBR range-rate into the
energy balance equation based on the reconstruction of the related reference orbit, which is more
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accurate than using the approximate correction terms presented by Jekeli [40]. However, intersatellite
geopotential differences estimated from the above procedures may still contain systematic errors
from the KBR measurements. The most common method to reduce the systematic errors is to absorb
these errors by using empirical parameters (e.g., two cycle-per-revolution (CPR) parameters used in
Han et al. [41] and Tangdamrongsub et al. [38], four CPR parameters used in Ramillien et al. [37]),
but these empirical parameters would also weaken the temporal gravity signals, especially the
long-wavelength components [37,39,43,44]. For example, several studies (e.g., Ramillien et al. [37],
Frédéric Frappart et al. [43], and Ramillien et al. [44]) used the low degrees of SH solutions to
complement the missing long-wavelength information of surface mass variations. Unlike the previous
studies, we will employ the remove-compute-restore (RCR) technique to retain the temporal gravity
signals to the full extent, and extract precise intersatellite geopotential differences based on an improved
energy balance equation.

In the second step, the intersatellite geopotential differences are expressed as a function of surface
mass variations, and are conventionally downward-continued from satellite altitude to the Earth’s
surface by Newton’s formula of gravitational potential [34–38]. However, the noises in intersatellite
geopotential differences will be amplified, and the estimation of mascon parameters is a well-known
ill-posed problem. Therefore, regularization strategies have been employed to find numerically
stable mascon solutions from intersatellite geopotential differences, either based on singular value
decomposition (SVD) and L-curve analysis [36], or by introducing spatial constraints [37], and these
regularization methods were verified from the inversion of surface mass variations over South America
at 10- to 30-day intervals using different sizes of blocks. Besides, Han et al. [34] introduced a priori
information equation to estimate the mascon parameters by an iterative least-squares estimation.
Tangdamrongsub et al. [38] constructed space-domain and space-time covariance functions using a
priori hydrological knowledge to obtain stable mascon solutions, in which the optimal regularization
parameters were determined based on the L-curve criterion. Because the L-curve criterion is an
empirical method to find the optimal regularization parameters, it is often a tedious job to solve for the
mascon solutions with certain time intervals from a long period of GRACE data. In order to adaptively
determine the optimal regularization parameters according to the data themselves, inspired by the
work of Han et al. [34], we will make full use of a priori information to obtain the stable mascon
solutions based on the iterative least-squares estimation.

Mascon solutions do not suffer from spectral truncation effects like in GRACE SH solutions, and can
offer surface mass variations with higher spatio-temporal resolution at the regional scale [25,34,36,38].
Compared with the inversion of global mascon solutions, estimation of regional surface mass variations
in the form of regional mascon solutions are computationally convenient because they can be estimated
from a small subset of the global GRACE KBR data. In this study, we focused on the inversion of
regional mascon solutions from GRACE intersatellite geopotential differences using a priori constraints.
Firstly, we present an alternative analytic formula to incorporate the KBR range-rate into the energy
balance equation, and estimate the precise in situ intersatellite geopotential differences from GRACE
Level-1B data based on the RCR technique using the energy integral. Secondly, we employ an adaptive
algorithm to determine the optimal regularization parameters based on the iterative least-squares
method using hydrological model outputs as a priori constraints. Finally, a case study of regional
mass variations’ inversion over South America on 2◦ × 2◦ geographic grids at monthly intervals from
January 2005 to December 2010 is presented, and our solutions are compared to the official GRACE
mascon solutions to demonstrate the feasibility of the proposed methods.

2. Methods and Data

2.1. Improved Energy Balance Equation

Due to the approximation of the potential rotation term in the energy integral developed by
Jekeli [40], we follow a more accurate formulation of the potential rotation term presented by
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Guo et al. [42], and an improved energy balance equation can be formulated in the geocentric inertial
frame for a single satellite as follows [39]:
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frame; w is the angular velocity vector of the Earth-fixed frame with respect to the inertial frame;
a = ∇VT + f includes the non-conservative force f, as well as the forces derived from high-frequency
time-variable gravitational potential VT (due to N-body perturbation, solid Earth tides, ocean tides,
pole tides, atmosphere and ocean signals, etc.); the integration in Equation (1) is from the initial time t0
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where the subscripts represent two GRACE satellites (‘1’, ‘2’) and their difference (‘12’). Because
the energy integral in Equation (2) does not explicitly contain the KBR range-rate measurements,
Shang et al. [39] introduced an alignment equation to update the relative velocity vector

.
r12 by using

the precise range-rate
.
ρ. Unlike the alignment equation, we simply decompose the relative velocity

vector
.
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containing the relative position vector r12 and relative velocity vector
.
r12, and the range-rate

.
ρ can be

incorporated into the first term on the right side of Equation (2) (called kinetic energy term) as follows:
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where Ek
12 is the difference of the kinetic energy between the two satellites, the range-rate

.
ρ =

.
r12·e12,

and e12 = r12
|r12 |

is the LOS unit vector. Our numerical test based on one month of GRACE data showed
that the root-mean-square (RMS) difference between Equation (3) and the alignment equation [39]
for estimation of Ek

12 is less than 5.0 × 10−7 m2/s2, which is negligible compared with the GRACE
measurement accuracy.

2.2. Inversion Method of Regional Surface Mass Variations

The intersatellite geopotential difference VE
12 obtained from Equation (2) mainly includes static

gravitational potential due to the solid Earth and time-variable part due to mass redistributions
(including continental hydrology, postglacial rebound, earthquake, etc.). Here, we introduce a static
reference geopotential U, and intersatellite geopotential difference due to mass changes, which is
estimated from T12 = VE

12 −U12, and U12 is the geopotential difference computed by the reference
geopotential U. Then, the residual geopotential difference T12 can be used to invert regional surface
mass variations. The study area can be divided into regular geographical grids, and the center of the jth
block is located at the colatitudes θ j and the longitude λ j, and its surface area is δS j = R2∆θ∆λ sinθ j,
in which R is the mean Earth’s radius, and ∆θ and ∆λ are the sampling angle intervals along the
latitude and the longitude, respectively. For a given period ∆t = t− t0, the surface mass change of the
j th block δm j can be expressed as:

δm j
(
θ j,λ j, ∆t

)
= ρwδS jδh j

(
θ j,λ j, ∆t

)
, (4)

where ρw is the mean density of water (1000 kg/m3), and δh j is the unknown EWH at location
(
θ j,λ j

)
during the period ∆t.
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Based on Newton’s law of gravitation, the relationship between surface mass variations and
geopotential difference at the satellite’s altitude can be expressed as follows [34,36,38]:

T12 = G
M∑

j=1

(
1

l j
2

−
1

l j
1

)δm j, (5)

in which G is the Newtonian constant (6.673 × 10−11 m3kg−1s−2), M is the total number of blocks in the
study area, and l j

1 and l j
2 are distances between each GRACE satellite (‘1’, ‘2’) and the center of the jth

block, which can be expressed as [36]:
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where Pn is the Legendre polynomial of order n, and cosψ j
1,2 = cosθ jcosθ1,2 + sinθ jsinθ1,2cos(λ j − λ1,2),

(r1,θ1,λ1), and (r2,θ2,λ2) are the geocentric radius, geocentric co-latitude, and longitude for each
GRACE satellite (‘1’, ‘2’). Substituting Equation (4) and Equation (6) into Equation (5), and considering
the load effects caused by the surface mass variations, we can obtain the observation equations to
estimate regional mass variations from geopotential difference observables as follows:
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Gρw
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where kn are the load Love numbers that account for the elastic deformation potential for a viscoelastic
Earth, and the values of load Love numbers were adopted from Wahr et al. [3]. It should be pointed
out that in order to avoid the influence of edge effects on the regional mascon solutions, the boundary
of calculation region should be expanded appropriately.

2.3. Adaptive Estimation Method Using a Priori Constraints

As it is known, recovering surface mass variations from geopotential differences based on
Equation (7) is an ill-posed problem, because the noises will be amplified when geopotential difference
data are downward continued from the satellite altitude to the Earth’s surface. Several studies employed
regularization techniques (e.g., SVD, L-curve) [36], spatial constraints [37] and a priori constraints [38]
to reduce the ill condition in the regional mass variation solution from GRACE. However, it is a tedious
job to find the optimal regularization parameters for massive GRACE data processing. In this study,
we used a priori constraints based on geophysical information (e.g., hydrological models) to stabilize
the ill-posed problem, and adaptively determined the optimal regularization parameters from the data
themselves based on the iterative least-squares estimation method.

The linear observation equation from Equation (7) for estimating surface mass variations can be
expressed as follows:

y = Ax + e, e ∼
(
0, σ2

yI
)
, (8)

where y is the observation vector of residual geopotential differences, A is the design matrix, x is the
EWH parameter vector to be estimated, e is the residual vector with zero expectation and identity
cofactor matrix, and σ2

y is the error variance of geopotential differences.
In order to stabilize the solutions, a stochastic model for the unknown parameter vector x is

introduced based on the use of a priori information. Here, assuming that we have an a priori expectation
x0 and covariance matrix Cx for the parameter vector x, the a priori information equations can be
expressed as follows:

x0 = Ixx + e0, e0 ∼ (0, Cx), (9)
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where e0 is the residual vector with zero expectation and covariance matrix Cx, Ix is the identity matrix
associated to the parameter vector x.

The idea of regularization is to find the balance between the minimum norm of the residuals
and that of the vector of unknown parameters relative to the a priori values. By minimizing
‖Ax− y2

‖+ α‖x− x0‖
2 = min, the optimal solution can be determined as:

x̂ = (ATA + ασ2
yC−1

x )
−1(

ATy + ασ2
yC−1

x x0
)
, (10)

in which α is a regularization parameter to balance the weights between the observations and the a
priori information. Because both the regularization parameter α and error variance σ2

y are unknown in
Equation (10), we can estimate them together through variance component estimation [45] as follows:

α̂σ̂2
y =

yTy− x̂T(2ATy) + x̂T(ATA)x̂

nobs − (x0 − x̂)TC−1
x (x0 − x̂)

, (11)

in which nobs is the number of observations.
As a result, we need to solve for x̂ and α̂σ̂2

y iteratively using Equation (10) and Equation (11),
respectively, starting with an initial value of ασ2

y. In general, it is impossible to obtain the accurate a
priori covariance matrix Cx in Equation (10) and Equation (11), but it can be iterated starting from an
initial covariance matrix. Here, we assume a stationary stochastic process for x, and the covariance
matrix Cx can be obtained from the empirical covariance function as follows:

Cx
(
di j

)
= σ2

xe−βdi j , (12)

where σ2
x and β are the variance and correlation distance of the covariance function, and di j is the

distance between the centers of the ith block and the jth block. The empirical values of the covariance
function are computed from the gridded values (e.g., a priori hydrological models) in the studied area
as follows [38]:

Cx
(
di j

)
=

1
N

N∑
i, j

fi f j, d−
∆d
2
≤ di j ≤ d +

∆d
2

, (13)

where fi and f j are two surface mass variation values on two grid blocks separated by the distance di j,
N is the number of such pairs, and ∆d is an interval range (e.g., with a 2◦ grid interval). Then, σ̂2

x and β̂
can be estimated after linearization of Equation (12) based on the least-squares estimation.

Therefore, during the iterative process of solving for x̂ and α̂σ̂2
y, we need to add one more step

for Cx in Equation (12), and the empirical values of covariance in Equation (13) for each iteration are
computed from the intermediate estimates of x̂. When the covariance matrix Cx is updated using
the intermediate estimates of x̂, the next iteration of solving for x̂ and α̂σ̂2

y is followed, and the final
estimated x̂ can be obtained until the solutions converge.

2.4. Datasets Used in Our Study

2.4.1. GRACE Level-1B Data and Background Models

The GRACE Level-1B RL03 data (ftp://isdcftp.gfz-potsdam.de/grace/Level-1B/JPL/) from January
2005 to December 2010 were used to invert regional surface mass variations in this paper. The GRACE
Level-1B data used in our study include KBR range-rate measurements (KBR1B) with a sampling rate of
5 s, satellite positions, and velocities (GNV1B) with a sampling rate of 5 s, accelerometer measurements
(ACC1B) with a sampling rate of 1 s, and satellite attitude measurements (SCA1B) with a sampling rate
of 1 s. To keep the sampling rate consistent with other data, ACC1B and SCA1B data were re-sampled
to 5 s before the inversion of surface mass variations. It should be noted that the GRACE Level-1B

ftp://isdcftp.gfz-potsdam.de/grace/Level-1B/JPL/


Remote Sens. 2020, 12, 2553 7 of 28

RL03 data are identical to the data used for solving the GRACE RL06 SH solutions (e.g., GFZ, CSR, and
JPL RL06 SH solutions) and the GRACE RL06 mascon solutions (e.g., JPL RL06M and CSR RL06M).

The background models used for estimating intersatellite geopotential differences are summarized
in Table 1. These background models are basically consistent with GRACE Level-2 Processing Standards
Document (for Level-2 Product Release 06) [6–8]. For instance, the static earth gravity filed was modeled
by the GGM05C model [46], the third-body perturbations were computed based on JPL planetary and
lunar ephemeris DE430 [47], and the solid earth tide, solid earth pole tide, and the contribution of
general relativity were calculated according to International Earth Rotation Service (IERS) Conventions
(2010) [48]. The EOT11 model [49] was employed to calculate the dynamic effects of ocean tide, and the
Ray/Ponte model [50] was used to compute S1 and S2 air tidal contributions. The ocean pole tide was
evaluated by the self-consistent equilibrium model of Desai [51]. In addition, the short period non-tidal
variability in the atmosphere and oceans was reduced using the Atmosphere and Ocean De-aliasing
Level-1B (AOD1B) RL06 products (ftp://isdcftp.gfz-potsdam.de/grace/Level-1B/GFZ/AOD/RL06/).

Table 1. Summary of the background models used for estimating geopotential differences.

Force Model Source Description

Static earth gravity field GGM05C Degree/order 360

Third-body perturbation JPL DE430 Newtonian point mass model for the Sun,
Moon and planets

Solid earth tide IERS 2010 Degree 2, 3, and 4, including frequency
independent and frequency dependent terms

Ocean tide EOT11a Degree/order 120, including 18 major waves
and 238 secondary waves

Air tide Ray and Ponte [50] S1 and S2, degree/order 30
Solid earth pole tide IERS 2010 C21 and S21, linear model for the mean pole

Ocean pole tide Desai [51] Degree/order 100
General relativity IERS 2010 Sun and Moon

Non-tidal atmosphere and ocean dealiasing AOD1B RL06 3 h data, degree/order 180

2.4.2. Global Land Data Assimilation System (GLDAS) Models

The Global Land Data Assimilation System (GLDAS) is a global hydrological model [52], jointly
developed by the National Aeronautics and Space Administration’s (NASA) GSFC and the National
Oceanic and Atmospheric Administration’s (NOAA) National Centers of Environmental Prediction
(NCEP). The GLDAS model uses land surface modeling and data assimilation technology, and the
published data mainly include the inputs and outputs of land surface parameters (soil moisture, soil
temperature, evaporation, rainfall, runoff, and snow), and then obtain the near real-time information
of land surface variations. In this study, soil moisture (0–200 cm), snow melt water, and plant canopy
surface water estimates from the GLDAS Noah model (https://disc.gsfc.nasa.gov/datasets/GLDAS_
NOAH10_M_2.1/summary?keywords=GLDAS) at monthly intervals with a spatial resolution of 1◦ ×
1◦ were used to obtain the changes of terrestrial water storage (TWS). GLDAS-derived TWS changes
were used as a priori information to reduce the ill condition for solving regional surface mass variations.

2.4.3. GRACE Mascon Solutions

In order to assess our inversion results, three GRACE mascon solutions, i.e., the CSR RL06 mascon
solutions (CSR RL06M, http://www2.csr.utexas.edu/grace/RL06_mascons.html), JPL RL06 mascon
solutions (JPL RL06M, https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/), and GSFC mascon
solutions (https://earth.gsfc.nasa.gov/geo/data/grace-mascons/), were used for comparisons. All these
mascon solutions are presented as surface mass variations in terms of EWH, and mass variations in
each mascon block are computed from KBR range-rate observations via partial derivatives with respect
to SH expansion using the dynamic method [11,24–26]. Among them, CSR RL06M and JPL RL06M are
estimated from GRACE Level-1B RL03 data, while GSFC mascon solutions are recovered from GRACE
Level-1B RL02 data.

ftp://isdcftp.gfz-potsdam.de/grace/Level-1B/GFZ/AOD/RL06/
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH10_M_2.1/summary?keywords=GLDAS
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH10_M_2.1/summary?keywords=GLDAS
http://www2.csr.utexas.edu/grace/RL06_mascons.html
https://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/
https://earth.gsfc.nasa.gov/geo/data/grace-mascons/
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However, the data processing strategies of these three GRACE mascon solutions are different
from each other. CSR RL06M are provided on 0.25◦ × 0.25◦ grids but computed on an equal area
geodesic grid comprised of hexagonal tiles approximately 120 km wide (~1◦ × 1◦ at the equator).
Constraints on the CSR mascons include the application of a time-variable regularization matrix from
200-km Gaussian smoothed regularized SH solutions, and separation of land and ocean signals to
reduce leakage [26,28]. JPL RL06M are provided on 0.5◦ × 0.5◦ grids but estimated on a series of
equal area 3◦ × 3◦ spherical caps, and the scale factors are provided to infer spatial variations among
the 0.5◦ × 0.5◦ sub-blocks within each 3◦ × 3◦ block. The JPL mascons are constrained by a priori
information from geophysical models, such as global hydrological model, ocean models, and altimetry
data [24], and a coastline resolution improvement (CRI) filter is applied to reduce spatial leakage from
land to oceans [25]. The GSFC mascon solutions are estimated on a global set of 1◦ arcdeg equal-area
blocks, which are the same size of blocks as the final solutions provided. GSFC mascons employed the
regularization constraint in the form of the signal auto-covariance matrix, which is constructed by
spatio-temporal constraint equations [11,23].

It should be noted that the effective resolution of these mascon solutions is still limited by the
native GRACE resolution (i.e., ~300 km), although high-resolution interpolated products are provided,
spatial leakage will also be present in mascons [53]. In addition, the above three mascon solutions
were applied several corrections, e.g., the C20 term replacement with Satellite Laser Ranging (SLR)
estimates, geocenter correction with the degree-1 coefficients, and the glacial isostatic adjustment
(GIA) correction.

2.4.4. GRACE Spherical Harmonic (SH) Solutions

The GRACE SH solutions were also used for comparisons. The CSR RL06 SH solutions (CSR
RL06SH) up to the degree and order 96 (ftp://isdcftp.gfz-potsdam.de/grace/Level-2/CSR/RL06/) were
used to infer regional surface mass variations, in which Gaussian filtering [3] with the averaging radius
of 300 km and the decorrelation filter with P3M6 [14] were employed to mitigate the longitudinal
stripes. In order to be consistent with the GRACE mascon solutions for later comparisons, the C20

term replacement, geocenter correction, and GIA correction were applied to GRACE SH solutions.
Specifically, the C20 coefficients were replaced by the SLR solutions provided by the GRACE Science
Data System (SDS) team [54], the degree-1 SH coefficients were added back to the GRACE SH solutions
using the degree-1 components provided by the GRACE project as supplementary datasets (GRACE
Technical Note 13) [55], and the GIA correction was applied based on the ICE6G-D model from
Peltier et al. [56].

3. Geopotential Differences Estimation Based on the RCR Technique

The geopotential difference T12 in Equation (7) due to surface mass changes can be obtained after
the static geopotential and other high-frequency time-variable gravitational potential (listed in Table 1)
are removed based on the energy balance Equation (2). However, the derived residual geopotential
differences are contaminated by systematic errors, which are mainly caused by the KBR instrument
and orbit errors [41,57,58], as well as the background model errors [39,59].

Because the orbit and background models used in Equation (2) are critical inputs, how to reduce
the influences of orbit and background model errors is a key issue for precise estimation of geopotential
differences. In this study, we treated the GNV1B orbit data as pseudo observations, and estimated
purely dynamic orbits based on the dynamic integral approach. With the background models listed
in Table 1, the dynamic orbits of two GRACE satellites were independently integrated every day.
Meanwhile, the accelerometer data were simultaneously calibrated with respect to purely dynamic
orbits. For each satellite, the estimated parameters include the initial state vectors (three positions
and three velocities) and the accelerometer parameters (three biases and three scales in the three
directions). When the purely dynamic orbits computed from the known background models were
used as the input for energy integral Equation (2), the output geopotential differences would only

ftp://isdcftp.gfz-potsdam.de/grace/Level-2/CSR/RL06/
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contain time-variable gravity information contributed from the KBR range-rate measurements. The
above similar technique had been used in previous studies on GRACE, such as Shang et al. [39],
Zhao et al. [59], and Liu et al. [60].

In order to reduce systematic errors, especially at the low-frequency band (mainly due to KBR
instrument errors), empirical parameters (i.e., bias, drift, and periodic components) are widely
employed as follows [38,41]:

∆T12 = p0 + p1t + p2cos
( 2πt

Trev

)
+ p3 sin

( 2πt
Trev

)
+ p4cos

( 4πt
Trev

)
+ p5sin

( 4πt
Trev

)
, (14)

where ∆T12 are the systematic errors; Trev is the revolution period (~5400 s); p0, p1, p2, p3, p4, and p5 are
empirical parameters to be estimated, in which p0 contains integration constant and system bias error,
p1 accounts for the drift error, p2 and p3 absorb the 1 CPR systematic errors, while p4 and p5 absorb the
2 CPR systematic errors. The parameters p0, p1, p2, and p3 are estimated for every revolution, while p4

and p5 are estimated for every half revolution.
Unfortunately, the above empirical parameters used for mitigating systematic errors may absorb

part of the temporal gravity signals as well, especially for the long-wavelength components [37,39,41,43].
In order to show the weakening effects of empirical parameters on temporal gravity signals, we did a
simulation experiment as follows: First, 1 day of GRACE Level-1B data (e.g., 1 September 2005) were
used to compute geopotential differences, and then the systematic errors were estimated through the
empirical Equation (14); second, simulated geopotential differences (as the true values) for the day of 1
September 2005 were calculated using CSR RL06 SH solutions (truncated to degree and order 96 with
the GGM05C static Earth gravity field removed); third, simulated geopotential differences were added
with systematic errors that were estimated in the first step, then the above sum values were used to
estimate the systematic errors again by using the empirical Equation (14), and the final estimated
geopotential differences were obtained by subtracting the re-estimated systematic errors from the sum
values. The two panels of Figure 1 show the (a) time series and (b) power spectral density (PSD) of the
simulated geopotential difference using the CSR RL06 SH solutions (black solid curves), estimated
geopotential difference using empirical parameters (blue solid curves), and geopotential difference
residuals (red solid curves) for the day of 1 September 2005.

As shown in Figure 1a, compared with simulated geopotential differences, the variation ranges of
the estimated geopotential difference time series are notably decreased, and the RMS of geopotential
differences is reduced from 0.0015 to 0.0013 m2/s2, which means that about 13% of the geopotential
difference signals were absorbed by the empirical parameters. In addition, the residuals time series is
characterized by mostly low-frequency variations (due to the empirical parameters), and the influence
of geopotential difference residuals cannot be ignored. From Figure 1b, we can see that the PSD of the
estimated geopotential differences is decreased in the low-frequency band (especially at 1 CPR and 2
CPR), suggesting that the weakening effects of empirical parameters are mainly on long-wavelength
temporal signals. It should be noted that, compared with the PSD of estimated geopotential differences,
obvious decreases are observed in the simulated geopotential differences at the high-frequency band
(up to 96 CPR). This is because the truncated CSR RL06 SH solutions up to the degree and order 96
were used for computing the simulated geopotential differences, which do not contain high-frequency
temporal gravity signals.
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Figure 1. (a) Time series and (b) power spectral density (PSD) of simulated geopotential difference
using CSR RL06 SH solutions (black solid curves), estimated geopotential difference using empirical
parameters (blue solid curves), and geopotential difference residuals (red solid curves) on 1 September
2005. The green dashed lines in Figure 1b from left to right show the frequencies of 1, 2, and 96
cycle-per-revolution (CPR), respectively.

In order to extract precise geopotential differences, and with the aim to preserve both the
low- and high-frequency temporal gravity signals, the RCR technique was employed during the
estimation of geopotential differences. In the present study, geopotential differences were computed
in the following three steps. Firstly, the reference geopotential difference Tre f

12 was calculated by
using CSR RL06 SH solutions up to the degree and order 50 (corresponding to a 400-km spatial
resolution), in which the C20 coefficients were replaced by SLR solutions, and then Tre f

12 was removed
from the geopotential difference T12 that was computed based on the energy balance Equation (2).
Secondly, through the empirical parameters fitting (EPF) using Equation (14), the systematic errors
were estimated by using ∆TRCR

12 = EPF
[
T12 − Tre f

12

]
, and the corrected geopotential difference was

obtained by (T12 − Tre f
12 ) − ∆TRCR

12 . Thirdly, the reference geopotential difference Tre f
12 was added back

to the corrected geopotential difference (T12 − Tre f
12 ) − ∆TRCR

12 , and the final estimated geopotential
difference was T12 − ∆TRCR

12 .
Compared with the RCR technique, the traditional method for estimating the systematic errors

is ∆T12 = EPF[T12], and the estimated geopotential difference is T12 − ∆T12. In order to illustrate the
improvement of the RCR technique for estimation of the geopotential differences, Figure 2a,b show the
global map of geopotential differences estimated by the traditional method and RCR technique for the
month of September 2005 with the GGM05C static earth gravity field removed. Figure 2c shows the
geopotential difference residuals obtained by subtracting estimates of the traditional method from
those of the RCR technique. It can be seen from Figure 2a,b that geopotential differences are the direct
reflections of surface mass changes, and signals estimated based on the RCR technique are obviously
stronger than those of the traditional method in South America, Antarctic Peninsula, southern Africa,
and Australia. However, there are also some regions with weakened signals, such as eastern Asia and
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North Atlantic. The RMS of geopotential differences (outliers are removed according to a 3-sigma rule)
estimated by the traditional method and RCR technique are ~0.0022 and 0.0025 m2/s2, respectively.
Figure 2c shows that geopotential difference residuals are mainly characterized by low-frequency
gravity signals, which are absorbed by the empirical parameters used in the traditional method.
Therefore, the RCR technique is helpful to retain the low-frequency gravity signals, and the inversion
of surface mass variations at a full spectrum (both low and high frequency) can be obtained.
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Figure 2. Global map of geopotential differences estimated by (a) the traditional method and (b) the
remove-compute-restore (RCR) technique in September 2005 with the GGM05C static earth gravity
field removed. (c) Residuals of geopotential difference obtained by subtracting (a) from (b).

4. Results

4.1. Preliminary Tests over South America

In order to verify the proposed method (and software), regional surface mass variations on 2◦ ×
2◦ geographic grids over South America ([60◦S–15◦N, 90◦W–30◦W], see Figure 3a) were inverted from
geopotential difference estimates in September 2005, and GLDAS-derived TWS changes were employed
as a priori constraints to reduce the ill condition in regional mass estimations from GRACE. In this
study, the optimal regularization parameters were determined based on the iterative least-squares
estimation method. Specifically, we set initial values α = 1 and σ2

y = 0.002 m2/s2 in Equation (10), and
took the maximum value of EWH differences between two adjacent iterations to be less than 10−6
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mm as the convergence condition. The final estimated mass variations can be obtained after about 10
iterations. Figure 3b,c show the regional surface mass variations over South America inverted from
geopotential differences estimated by the traditional method and RCR technique in September 2005,
respectively. Figure 3d presents the corresponding surface mass variations over South America derived
from the CSR RL06 SH solutions with 300-km Gaussian smoothing and P3M6 decorrelation filtering
for comparisons.
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Figure 3. (a) Topographic map of South America and locations of the eight largest basins; regional
solutions of surface mass variation over South America from geopotential differences estimated by
the (b) traditional method and (c) RCR technique in September 2005; (d) surface mass variations over
South America in September 2005 derived from CSR RL06 SH solutions.

As shown in Figure 3, there are obvious differences in regional surface mass variations inverted
from geopotential differences estimated by the traditional method and RCR technique. The mass
variations over Amazon basin show substantially stronger negative anomalies in Figure 3c than in
Figure 3b, while the mass variations over Orinoco basin (in the north), western part of Parana basin,
and parts of southern South America (e.g., in Uruguay) show stronger positive anomalies in Figure 3b
than in Figure 3c. However, compared with surface mass variations inverted from geopotential
differences estimated by the traditional method, the results from geopotential differences estimated by
the RCR technique are more consistent with CSR RL06 SH solutions. Moreover, mass variation signals
in Figure 3c,d are stronger than those in Figure 3b, and the RMS of mass variations in Figure 3b–d are
13.7, 18.4, and 16.7 cm, respectively. The reason, as mentioned before, is that the empirical parameters
used in the traditional method absorbed the long-wavelength gravity signals, and thus weakened the
mass variation estimates. In addition, the signals of mass variations in Figure 3c are stronger than
those in Figure 3d, which strongly suggests that the regional mascon solutions can retain more signal
energy and enhance regional mass variation inversion.
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To assess the effects of different block sizes on the inversion results, Figure 4 shows regional mass
variations estimated on 1◦ × 1◦ grids, 2◦ × 2◦ grids, and 4◦ × 4◦ grids from geopotential differences
computed by the RCR technique in September 2005 using GLDAS-derived TWS changes as a priori
constraints, and the corresponding residuals between geopotential difference-estimated mass variations
and GLDAS-derived TWS changes are also presented. Figure 5 shows the residuals between regional
mass variations estimated on different mascon block sizes.Remote Sens. 2020, 11, x FOR PEER REVIEW 13 of 29 
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(see Figure 4a–c). In addition, we can draw a similar conclusion from Figure 5 based on the residuals 

Figure 4. Regional surface mass variations estimated on (a) 1◦ × 1◦ grids, (b) 2◦ × 2◦ grids, and (c)
4◦ × 4◦ grids from geopotential differences computed by the RCR technique in September 2005 using
GLDAS-derived terrestrial water storage (TWS) changes as a priori constraints; (d–f) show the a priori
GLDAS-derived TWS changes on 1◦ × 1◦ grids, 2◦ × 2◦ grids, and 4◦ × 4◦ grids, respectively; (g–i) show
the corresponding residuals between estimated mass variations and GLDAS-derived TWS changes.
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Figure 5. Residuals between regional mass variations estimated on different sizes of mascon blocks.
Residuals between (a) 1◦ × 1◦ and 2◦ × 2◦ grids, (b) 2◦ × 2◦ and 4◦ × 4◦ grids, and (c) 1◦ × 1◦and 4◦ ×
4◦ grids, respectively.

As shown in Figure 4, although the a priori information from GLDAS TWS changes can contribute
to the final estimated mass variations, there are obvious differences between regional mass variation
solutions and GLDAS-derived TWS changes, no matter what sizes of grids were used for the estimation.
The residuals can be considered as the new contributions from GRACE observations to the final
estimated regional mass variations, and the added value from GRACE data can obviously enhance the
signals of mass variations over South America, especially in basins of Amazon, Orinoco, and Colorado,
etc. Small mascon block sizes are expected to help to improve the level of details in estimated mass
variations (e.g., from 4◦ × 4◦ to 2◦ × 2◦ grids), but there are no notable changes of signal amplitudes by
decreasing the size of the mascon blocks, and no gains of details in our experiments (see Figure 4a–c).
In addition, we can draw a similar conclusion from Figure 5 based on the residuals between regional
mass variations estimated on different mascon block sizes. The RMS differences of the inversion results
between 1◦ × 1◦ and 2◦ × 2◦ grids, 1◦ × 1◦ and 4◦ × 4◦ grids, 2 × 2◦ and 4◦ × 4◦ grids are ~1.6, 3.3, and
3.1 cm, respectively. Considering the intrinsic optimal spatial resolution of the GRACE data is limited
at ~200–300 km, and the 1◦ × 1◦ regional mascon solution will have leakage errors, while the 2◦ × 2◦

grids computation seem enough to represent the GRACE resolution.

4.2. Spatial Distribution of Mass Changes over South America

To examine the performance of regional mass variations inverted from GRACE intersatellite
geopotential differences, we employed the GRACE Level-1B RL03 data from January 2005 to December
2010 to calculate the precise geopotential differences based on the RCR technique, and estimated
regional surface mass variations on 2◦ × 2◦grids at monthly intervals over South America. We then
compared the results with the official GRACE RL06 mascon solutions and SH solutions. It should be
noted that all the mascon solutions and SH solutions had been applied with the corrections as mentioned
in Section 2.4.4 (i.e., the C20 term replacement, the geocenter correction, and the GIA correction, unless
otherwise mentioned). Figure 6 shows the spatial distributions of regional mass variations over South
America in January (the first row), April (the second row), July (the third row), and October (the fourth
row) 2005 from “the new” geopotential difference-based regional mascon solutions (hereinafter called
GPD Mascon, the first column), CSR RL06 mascon solutions (CSR RL06M, the second column), JPL
RL06 mascon solutions (JPL RL06M, the third column), GSFC mascon solutions (GSFC Mascon, the
fourth column), and CSR RL06 SH solutions (CSR RL06SH, the fifth column), respectively.
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Figure 6. Spatial distributions of regional mass variations over South America in January (the first row),
April (the second row), July (the third row), and October (the fourth row) 2005 from geopotential
difference-based regional mascon solutions (GPD Mascon, the first column), CSR RL06 mascon solutions
(CSR RL06M, the second column), JPL RL06 mascon solutions (JPL RL06M, the third column), GSFC
mascon solutions (GSFC Mascon, the fourth column), and CSR RL06 SH solutions (CSR RL06SH, the
fifth column), respectively.

As shown in Figure 6, both of the mascon solutions and the SH solutions can reflect the same spatial
distribution characteristics of surface mass variations over South America in the four selected months.
However, due to the spatial filtering in post-processing of GRACE SH solutions, the amplitudes
of surface mass variations from CSR RL06SH are obviously smaller than those of the four mascon
solutions. Moreover, there are apparent residual longitudinal stripes in CSR RL06SH (especially in
January and April 2005), although the post-processing was applied to these SH solutions. The reason
is that, unlike the mascon solutions, the GRACE SH solutions are solved without using any constraints
or a priori information.

Comparing the four mascon solutions in Figure 6, we can see that all the mascon solutions reveal
similar main characteristics of the mass changes over South America in the selected four months, but
the details of the mass variations from the four mascons are different. For instance, as can be seen from
the mass variations in January 2005, there are apparent positive anomalies in the Salado basin in GPD
Mascon and GSFC Mascon, while these details are not obvious in CSR RL06M and JPL RL06M. For
July 2005, the mass change signals of CSR RL06M and JPL RL06M are slightly stronger than those of
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GPD Mascon and GSFC Mascon in the Orinoco basin and the north of Amazon basin. From the four
mascon solutions shown in April and October 2005, the strongest mass variations signals are mainly in
the Amazon and Tocantins basins, and the distribution of mass variations over South America in April
2005 shows almost an inverse pattern compared with that in October 2005.

In addition, RMS differences between GPD Mascon and CSR RL06M, GPD Mascon and JPL RL06M,
and GPD Mascon and GSFC Mascon for the four months in 2005 are listed in Table 2, and the ranges
of RMS differences between the three official mascon solutions are also presented for comparisons.
These results show that GPD Mascon appears closer to GSCF Mascon but differs much more from JPL
RL06M. For example, the RMS differences between the GPD Mascon and CSR RL06M, GPD Mascon
and JPL RL06M, and GPD Mascon and GSFC Mascon in April and October 2005 are 6.18 vs. 6.72 cm,
7.25 vs. 7.93 cm, and 5.42 vs. 5.46 cm, respectively. Meanwhile, differences among CSR RL06M, JPL
RL06M, and GSCF Mascon are also obvious, e.g., the ranges of RMS differences between the three
official mascon solutions are 5.87–6.75 cm in April 2005, and 5.67–6.70 cm in October 2005, respectively.

Table 2. Statistics of the root-mean-square (RMS) differences between the geopotential difference-based
regional mascon solutions (GPD Mascon) and CSR RL06 mascon solutions (CSR RL06M), JPL RL06
mascon solutions (JPL RL06M), and GSFC mascon solutions (GSFC Mascon) in January, April, July, and
October 2005 over South America, as well as the ranges of RMS differences among CSR RL06M, JPL
RL06M, and GSFC Mascon. The abbreviations of GPD, CSR, JPL, and GSFC in the table represent GPD
Mascon, CSR RL06M, JPL RL06M, and GSFC Mascon, respectively.

Month
RMS Differences (cm) Ranges of RMS

Differences (cm)GPD vs. CSR GPD vs. JPL GPD vs. GSFC

January 2005 6.31 7.44 6.76 5.51–6.21
April 2005 6.18 7.25 5.42 5.87–6.75
July 2005 6.14 6.42 4.85 4.90–6.13

October 2005 6.72 7.93 5.46 5.67–6.70

In order to better understand the surface mass variations inferred from different solutions over
South America, a simultaneous fit of annual, semi-annual, trend, and bias was made to the time series
for each mascon block of the above five solutions (i.e., GPD Mascon, CSR RL06M, JPL RL06M, GSFC
Mascon, and CSR RL06SH). Figure 7 shows the spatial distributions of annual amplitudes (the first
row), trends (the second row), root-mean-square error (RMSE, the third row), and signal-to-noise
ratio (SNR, the fourth row) of mass variations over South America (over the period January 2005 to
December 2010) derived from the five solutions, respectively.

As shown in Figure 7, the spatial patterns of the annual amplitudes and trends for the five
solutions are consistent with each other, but the differences between each other can still be observed if
we carefully examine these results at basin scale. An apparent observation is that annual amplitudes
and trends over the Amazon basin are significantly larger in the four mascon solutions as compared to
those from the CSR RL06SH results. Because the four mascon solutions are provided on different sizes
of grids (not the real spatial resolutions), for better comparisons, we resampled the GPD Mascon, JPL
RL06M, and GSFC Mascon into 0.25◦ × 0.25◦ grids, consistent with the CSR RL06M grid’s resolution.
In terms of annual amplitudes, the correlation coefficients between GPD Mascon and the three other
mascons (CSR RL06M, JPL RL06M, and GSFC Mascon) are ~0.95, 0.93, and 0.97, respectively. In terms
of trends, the corresponding correlation coefficients are ~0.85, 0.79, and 0.88, respectively. The relatively
lower correlation coefficients for the trends are attributed to the fact that temporal mass variations in
South America are dominated by seasonal hydrological signals, and the long-term trend is usually
small, and its uncertainty is relatively larger. Nevertheless, our results demonstrate that regional mass
variations inverted from geopotential differences estimated by the RCR technique are comparable
to those from the official GRACE mascon solutions, without using low degrees of SH solutions to
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complement the missing long-wavelength signal (unlike in the studies, e.g., Frédéric Frappart et al. [43]
and Ramillien et al. [44]).Remote Sens. 2020, 11, x FOR PEER REVIEW 17 of 29 
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Figure 7. Spatial distributions of annual amplitudes (the first row), trends (the second row),
root-mean-square errors (RMSE, the third row), and signal-to-noise ratios (SNR, the fourth row)
of mass variations over South America (over the period January 2005 to December 2010) derived from
geopotential difference-based regional mascon solutions (GPD Mascon, the first column), CSR RL06
mascon solutions (CSR RL06M, the second column), JPL RL06 mascon solutions (JPL RL06M, the third
column), GSFC mascon solutions (GSFC Mascon, the fourth column), and CSR RL06 SH solutions
(CSR RL06SH, the fifth column), respectively.

In addition, the RMSE of mass variation residuals and SNR were used to evaluate the errors and
accuracies of different solutions. As mentioned above, a simultaneous fit was made to the time series
for each mascon block, and mass variation residuals were obtained by removing the fitted signals from
the mass change time series. Then, the residual RMSE for each block was estimated, and the SNR was
computed as the quotient between the annual amplitude and RMSE. As can be seen from Figure 7,
the RMSE patterns from the five solutions are similar in most of the regions. For example, the mean
RMSEs in the Amazon basin are ~4.23, 4.24, 4.46, 4.11, and 3.34 cm for GPD Mascon, CSR RL06M,
JPL RL06M, GSFC Mascon, and CSR RL06SH, respectively. Here, due to the spatial smoothing and
filtering applied to the SH solutions, the mean RMSEs from CSR RL06SH in the Amazon basin are the
smallest (compared with those of the mascon solutions). The SNR patterns from the five solutions
are similar to those of the annual amplitudes shown in the top row of Figure 7. The mean SNR in the
Amazon basin are ~4.65, 4.55, 4.56, 4.90, and 4.51 for GPD Mascon, CSR RL06M, JPL RL06M, GSFC
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Mascon, and CSR RL06SH, respectively. Again, these comparisons also suggest that the GPD Mascon
solutions are comparable to the official GRACE mascons, and further demonstrate the effectiveness of
solving regional mascon solutions using geopotential differences estimated by the RCR technique with
a priori constraints.

4.3. Basin-Scale Mass Changes over South America

In order to compare surface mass variations derived from different solutions over South America at
the basin scale, mass variations over the eight largest basins (i.e., Amazon, Parana, Orinoco, Tocantins,
San Francisco, Colorado, Rio Pamaiba, and Salado, see Figure 3a) were further analyzed. Figure 8
shows mass change time series for the eight basins over the period January 2005 to December 2010,
derived from GPD Mascon, CSR RL06M, JPL RL06M, GSFC Mascon, and CSR RL06SH, respectively.
Figure 9 presents the non-seasonal mass change time series for the eight basins, which were obtained
by removing seasonal signals and long-term trends from the time series shown in Figure 8. Table 3 lists
the corresponding annual amplitudes and trends of surface mass change time series for these eight
basins, and the uncertainties correspond to a 95% confidence interval.
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Figure 8. Surface mass change time series for the eight largest basins from January 2005 to December
2010 over South America. The mass change time series are derived from geopotential difference-based
regional mascon solutions (GPD Mascon), CSR RL06 mascon solutions (CSR RL06M), JPL RL06 mascon
solutions (JPL RL06M), GSFC mascon solutions (GSFC Mascon), and CSR RL06 SH solutions (CSR
RL06SH), respectively.
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Figure 9. Non-seasonal mass change time series for the eight largest basins from January 2005 to
December 2010 over South America. The no-seasonal time series are obtained by removing the
seasonal signals and linear trends from mass changes time series of the geopotential difference-based
regional mascon solutions (GPD Mascon), CSR RL06 mascon solutions (CSR RL06M), JPL RL06 mascon
solutions (JPL RL06M), GSFC mascon solutions (GSFC Mascon), and CSR RL06 SH solutions (CSR
RL06SH), respectively.

Table 3. Statistics of the annual amplitudes and trends of surface mass change time series for the eight
largest basins during the period from January 2005 to December 2010 over South America, and the
uncertainties correspond to a 95% confidence interval. The mass change time series were derived from
geopotential difference-based regional mascon solutions (GPD Mascon), CSR RL06 mascon solutions
(CSR RL06M), JPL RL06 mascon solutions (JPL RL06M), GSFC mascon solutions (GSFC Mascon), and
CSR RL06 SH solutions (CSR RL06SH), respectively.

Basins GPD Mascon
(cm)

CSR RL06M
(cm)

JPL RL06M
(cm)

GSFC Mascon
(cm)

CSR RL06SH
(cm)

Amplitudes

Amazon 19.69 ± 1.42 19.29 ± 1.42 20.34 ± 1.50 20.17 ± 1.38 15.06 ± 1.12
Parana 7.59 ± 1.18 6.04 ± 1.14 6.82 ± 1.16 6.84 ± 1.10 4.70 ± 0.92

Orinoco 18.19 ± 1.96 19.81 ± 2.11 20.07 ± 2.12 20.13 ± 1.87 15.06 ± 1.55
Tocantins 21.46 ± 2.02 21.44 ± 1.95 22.19 ± 2.06 21.48 ± 1.57 16.82 ± 1.51

San Francisco 9.85 ± 1.48 9.35 ± 1.59 9.32 ± 1.58 9.87 ± 1.12 6.84 ± 1.29
Colorado 3.19 ± 1.08 6.87 ± 1.09 4.73 ± 1.16 3.93 ± 0.80 3.29 ± 0.93

Rio Pamaiba 13.50 ± 2.18 14.02 ± 2.20 13.35 ± 2.33 14.36 ± 1.87 9.17 ± 1.75
Salado 1.38 ± 1.45 2.01 ± 1.31 0.69 ± 1.23 1.66 ± 1.19 2.63 ± 1.10

Trends

Amazon 1.08 ± 0.58 0.61 ± 0.58 0.67 ± 0.61 0.55 ± 0.56 0.40 ± 0.46
Parana 0.93 ± 0.52 0.50 ± 0.49 0.42 ± 0.50 0.20 ± 0.46 0.24 ± 0.38

Orinoco −0.21 ± 0.80 −0.95 ± 0.86 −0.96 ± 0.87 −0.71 ± 0.76 −0.76 ± 0.63
Tocantins −0.34 ± 0.82 −0.11 ± 0.79 −0.21 ± 0.84 −0.60 ± 0.64 −0.06 ± 0.61

San Francisco −0.48 ± 0.61 −1.24 ± 0.65 −1.10 ± 0.64 −1.19 ± 0.46 −0.69 ± 0.53
Colorado −1.48 ± 0.44 −2.66 ± 0.44 −2.83 ± 0.47 −2.52 ± 0.33 −1.38 ± 0.38

Rio Pamaiba 1.79 ± 0.89 1.06 ± 0.90 1.30 ± 0.95 1.20 ± 0.77 0.78 ± 0.72
Salado −1.40 ± 0.59 −1.88 ± 0.54 −1.90 ± 0.50 −2.04 ± 0.48 −1.42 ± 0.45
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As can be seen from Figure 8, basin mass change time series from the five solutions (i.e., GPD
Mascon, CSR RL06M, JPL RL06M, GSFC Mascon, and CSR RL06SH) agree well with each other,
especially for the large river basins with stronger seasonal signals (e.g., in Amazon, Parana, and
Orinoco). However, discrepancies are also obvious, especially in some small basins with weaker mass
change signals (e.g., in Colorado and Salado). This is because the uncertainty estimated in small basins
with weaker mass change signals is relatively large compared to mass change signals themselves.
In addition, due to the spatial filtering applied to the SH solutions, mass change signals from CSR
RL06SH over the eight basins are slightly smaller than those of the mascon solutions (which can also
be found in Table 3).

As listed in Table 3, the annual amplitudes for the four mascon solutions agree well, especially
in basins with stronger mass change signals (e.g., the Amazon, Parana, Orinoco, Tocantins, San
Francisco, and Rio Pamaiba), and the differences of annual amplitudes are acceptable as compared to
their uncertainties. Aside from the seasonal variability, basin-scale non-seasonal signals affected by
extreme climate events, such as floods and droughts, are also of great interest. Figure 9 shows that the
non-seasonal signals of the four mascon solutions for the eight basins are also consistent. For instance,
in the case of the Amazon basin, the correlation coefficients of mass change time series between the
four mascon solutions all reach up to 0.99. With the seasonal signals and linear trends removed, the
correlation coefficients of mass change time series between GPD Mascon and the other three mascons
(CSR RL06M, JPL RL06M, and GSFC Mascon) still reach up to 0.99, 0.98, and 0.97, respectively. In the
Salado basin (the smallest of the eight basins), after removing the seasonal signals and linear trends,
the correlation coefficients of mass change time series between GPD Mascon and CSR RL06M, JPL
RL06M, and GSFC Mascon are ~0.91, 0.91, and 0.86, respectively. The excellent consistency among
basin-scale mass changes from the four mascon solutions indicate that all these four mascon solutions
perform fairly well at both seasonal and non-seasonal time scales.

The linear trends of the mass changes over the eight basins are small, and there are obvious
differences between the estimated trends from these five different solutions (see Table 3). Moreover, the
uncertainties for the estimated trends are relatively larger, and in some cases the estimated uncertainty
is even greater than the trend itself. The obvious differences in trends can also be confirmed from
the lower spatial correlation of trends as analyzed in Section 4.2 (see Figure 7). As mentioned before,
basin-scale mass variations over South America are dominated by seasonal TWS changes, and trends
are usually small and uncertainties are relatively larger, leading to poorer agreements in trends.

In order to further analyze the consistency among the four mascon solutions, a total of 30 river
basins (with areas larger than 50,000 km2) over South America were selected for comparisons. Mass
change time series of the basin average for the 30 basins over the period January 2005 to December
2010 were calculated, and simultaneous fits of seasonal terms and trends (mentioned in Section 4.2)
were made to these time series. Figure 10 shows the scatterplot of annual amplitudes for the 30 river
basins over South America obtained by comparing the four mascon solutions with each other, i.e., (a)
GPD Mascon vs. CSR RL06M, (b) GPD Mascon vs. JPL RL06M, (c) GPD Mascon vs. GSFC Mascon, (d)
CSR RL06M vs. JPL RL06M, (e) CSR RL06M vs. GSFC Mascon, and (f) JPL RL06M vs. GSFC Mascon
over the period January 2005 to December 2010.

As shown in Figure 10, if the two mascon solutions in one panel agree perfectly, the filled cycle
would align on the y = x line (black solid lines). However, if the scattered points for any two mascon
solutions are distributed around that line, the corresponding fitting curve is the linear regression
equation y = kx + b (given by the red dashed line), and the relative positions of the black solid line and
the red dashed line can describe the consistency of annual amplitudes between the corresponding two
solutions. We can see that for every panel in Figure 10, the red dashed lines are very close to the black
solid lines and the correlation coefficients are all greater than 0.96, which indicate that the consistencies
of annual amplitudes for the four mascon solutions are very good, even though notable differences can
also be observed.
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Figure 10. Scatterplot of annual amplitudes for the 30 river basins over South America obtained by
comparing the four mascon solutions with each other (i.e., (a) GPD Mascon vs. CSR RL06M, (b) GPD
Mascon vs. JPL RL06M, (c) GPD Mascon vs. GSFC Mascon, (d) CSR RL06M vs. JPL RL06M, (e) CSR
RL06M vs. GSFC Mascon, and (f) JPL RL06M vs. GSFC Mascon) over the period January 2005 to
December 2010. Basins are color coded by areas, and the areas of 30 river basins are all over 50,000 km2.
R2 in each panel represents the correlation coefficient, the linear equation (i.e., y = kx + b) describes the
consistency of the annual amplitudes between the corresponding two solutions, and the error bars of
the amplitude correspond to a 95% confidence interval.

In general, when the slope of the red dashed line is less than 1.0, the y-axis values are smaller
than those of the x-axis, e.g., GPD Mascon vs. JPL RL06M, GPD Mascon vs. GSFC Mascon, and CSR
RL06M vs. JPL RL06M, as shown in Figure 10b–d, and vice versa from those in Figure 10a,e,f. In a
particular case of GPD Mascon vs. CSR RL06M (Figure 10a), although the slope is greater than 1.0,
the red dashed line is generally below the solid black line. In the sense of statistics, it means that the
annual amplitudes of the 30 basins from GPD Mascon are slightly smaller than those from CSR RL06M.
The relatively larger discrepancies in small basins among the four mascon solutions appear to be the
main reason affecting the consistency.

5. Discussion

This study focused on applying the improved method to estimate regional mascon solutions
using GRACE intersatellite geopotential differences, and the inversion results were examined through
comprehensive comparisons with the official GRACE mascon solutions. A proper validation was not
carried out through the use of independent in situ data. However, the comparative analysis shows
that our geopotential difference-based regional mascon solutions (GPD Mascon) are comparable to
the three official GRACE mascon solutions at the basin scale (i.e., the accuracies of these four mascon
solutions are very similar), and have demonstrated the feasibility and effectiveness (and advantage) of
the proposed method.
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As can be seen from the comparative analysis, the spatial patterns and characteristics of mass
variations over South America from GPD Mascon agree well with those from the three official GRACE
mascon solutions (see Figures 6 and 7), and the annual amplitudes of mass change time series from the
four mascon solutions at the basin scale over South America show good consistency with each other
(see Table 3 and Figure 10), and the non-seasonal signals from these four mascon solutions in larger
basins are also in good agreement with each other (see Figure 9). However, notable differences among
the four mascon solutions still exist, in particular at the basin scale. The reasons for this are twofold.
Firstly, the mass variations inversion methods are different, i.e., all the official GRACE mascon solutions
are directly solved from instrument observations based on the dynamic method, while the GPD Mascon
solutions are computed from intermediate observations (i.e., intersatellite geopotential differences),
which are estimated based on the energy balance approach. Therefore, different approximate errors in
inversion models will lead to differences in the final estimated mass variations. Secondly, different
processing strategies (e.g., regularization constraints, background models, sizes of mascon blocks,
and data pre-processing, etc.) can also induce discrepancies between these mascon inversion results.
For instance, even though the three official GRACE mascon solutions are all solved by the dynamic
method, differences among them are also obvious. The main reason accounting for this includes the
different regularization constraints and different sizes of mascon blocks for the three mascon solutions
as introduced in Section 2.4.3.

In our case study, surface mass changes over South America are dominated by seasonal hydrological
signals, thus TWS changes from hydrological models (i.e., GLDAS) are chosen as a priori information
for the estimation of mascon solutions. As mentioned in Section 4.1, the a priori information from
GLDAS-derived TWS changes can contribute to the final estimated mascon solutions, but how the a
priori constraints can affect the output needs to be assessed. It is well known that hydrological models
suffer from large uncertainties in regions that have poor-quality data (e.g., in high-mountain Asia),
or even no data (e.g., in Greenland and Antarctic) [61–63]. Therefore, it is necessary to analyze the
influences of different a priori information on the estimation of mascon solutions, especially if only the
rough a priori information can be obtained. To assess the effects of different a priori constraints on
the inversion results, we employed CSR RL06 SH solutions post-processed with different Gaussian
smoothing radius as a priori models to estimate the mascons, and compared them with the previous
results, which use GLDAS-derived TWS changes as a priori models. Figure 11 shows the regional
mass variations estimated from geopotential differences in September 2005 by using different a priori
models, and the corresponding residuals between estimated mass variations and the a priori models are
presented. Figure 12 shows the corresponding residuals between the geopotential difference-estimated
mascon solutions by using different a priori models, and also the residuals between the a priori models.
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Figure 11. Regional surface mass variations estimated from geopotential differences in September 2005
by using different a priori models: (a) GLDAS-derived TWS changes, (b) CSR RL06 SH solution-derived
TWS with 300-km Gaussian filtering, (c) CSR RL06 SH solution-derived TWS with 750-km Gaussian
filtering; (d–f) show the a priori models corresponding to (a–c); (g–i) show the corresponding residuals
between estimated mass variations and the a priori models.

As shown in Figure 11a–c, there are only minor differences between the mascon solutions estimated
by our improved method through using different a priori models. When taking the GLDAS-derived
TWS changes, the CSR RL06 SH solution with 300-km Gaussian filtering, and the CSR RL06 SH solution
with 750-km Gaussian filtering as a priori models, the RMS residuals between the estimated mass
variations and the a priori models are ~8.09, 4.43, and 8.45 cm, respectively. This is true that the a priori
model of CSR RL06 SH solutions with 300-km Gaussian filtering is closer to the estimated mascons.
However, as shown in Figure 12, although there are obvious differences between the three a priori
models (e.g., RMS residuals is larger than 7.0 cm), the estimated mascon solutions agree well with each
other (e.g., RMS residuals is ~2.0 cm). This shows that our improved method can robustly estimate
the mascon solutions, which are less affected by a priori information (even by using a rough a priori
information). In other words, GRACE SH solution-derived TWS changes can be used as alternative
a priori models when the quality of hydrological models is poor, or no a priori information can be

obtained. Meanwhile, the resolution matrix [64] (i.e., (ATA + ασ2
yC−1

x )
−1
ασ2

yC−1
x derived from Equation

(10)) was used to analyze the relative contribution of a priori constraints to the mascon solutions. Our
results show that when using GLDAS-derived TWS changes, CSR RL06 SH solutions with 300-km



Remote Sens. 2020, 12, 2553 24 of 28

Gaussian filtering, and CSR RL06 SH solutions with 750-km Gaussian filtering as a priori models, the
average contributions of a priori constraints to the final mascon solutions are ~11.8%, 12.9%, and 10.5%,
respectively. It indicates that the contributions of a priori constraints to the mascon solutions are not
dominant, and most contributions are from GRACE observations.Remote Sens. 2020, 11, x FOR PEER REVIEW 24 of 29 
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Figure 12. Residuals between the geopotential difference-estimated mascon solutions by: (a) using
GLDAS-derived TWS and CSR RL06 SH solutions with 300-km Gaussian filtering as a priori models,
(b) using GLDAS-derived TWS and CSR RL06 SH solutions with 750-km Gaussian filtering as a priori
models; Residuals between the a priori models: (c) GLDAS-derived TWS and CSR RL06 SH solutions
with 300-km Gaussian filtering, (d) GLDAS-derived TWS and CSR RL06 SH solutions with 750-km
Gaussian filtering.

6. Conclusions

In this study, we presented an improved method for the estimation of regional mass variations
from GRACE intersatellite geopotential differences using a priori constraints. Firstly, an alternative
analytic formula was presented to incorporate the KBR range-rate into the improved energy balance
equation, and precise intersatellite geopotential differences were estimated from GRACE Level-1B data
based on the RCR technique, which can avoid the long-wavelength gravity signals to be absorbed
by empirical parameters. Secondly, GLDAS-derived TWS changes were used as a priori constraints
to reduce the ill condition for solving regional mass variations from geopotential difference data,
and an adaptive algorithm was employed to determine the optimal regularization parameters based
on iterative least-squares estimation. Thirdly, regional mascon solutions inverted from geopotential
differences over South America on 2◦ × 2◦ grids at monthly intervals from January 2005 to December
2010 were compared to the official GRACE mascon solutions.

The results show that the regional mascon solutions inverted from geopotential differences
estimated by the RCR technique using GLDAS hydrological models as a priori constraints can retain
more signal energy and enhance regional mass variation inversion, and the final estimated mascon
solutions are less affected by the a priori information. The spatial distribution characteristics of mass
variations over South America from the geopotential difference-based regional mascon solutions (i.e.,
GPD Mascon) agree well with those from the three official GRACE mascon solutions (i.e., CSR RL06M,
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JPL RL06M, and GSFC Mascon). Additionally, the annual amplitudes of mass change time series
derived from the four mascon solutions for the eight largest basins over South America show good
consistencies with each other. Aside from the seasonal variability, the basin-scale non-seasonal signals
from these four mascon solutions are also in good agreement with each other. However, obvious
differences can be observed among the spatial patterns and trends derived from the four mascon
solutions, especially in the small basins. The discrepancies are mainly due to different inversion
methods with different error approximations and data processing strategies (regularization constraints,
background models, sizes of mascon blocks, and data pre-processing, etc.) applied. In addition,
differences in trends are also due to their small magnitudes, as mass variations over South America
basins are dominated by seasonal hydrological signals. Despite the expected discrepancies, the GPD
Mascon solutions are comparable to the three official mascon solutions at the basin scale, and without
needing low degrees of SH solutions to complement the missing long-wavelength signal, which
demonstrates the feasibility and advantage of the proposed method.

It should be noted that our GPD Mascon solutions did not account for the leakage effects across
land–ocean boundaries (like the CRI filter used in JPL RL06M), which might affect the comparisons
with the official GRACE mascon solutions. However, if the basin is large or far away from the ocean,
the leakage effect is expected to be small. Our future work will include the implementation of leakage
corrections to further improve the accuracy of geopotential difference-based regional mascon solutions.
In addition, GRACE Follow-On is equipped with laser ranging interferometer (LRI), which can provide
more accurate intersatellite ranging data, so we plan to use GRACE Follow-On data to further analyze
and verify the geopotential difference-based method in the future.
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