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Abstract: Rapid response to natural hazards, such as floods, is essential to mitigate loss of life and
the reduction of suffering. For emergency response teams, access to timely and accurate data is
essential. Satellite imagery offers a rich source of information which can be analysed to help determine
regions affected by a disaster. Much remote sensing flood analysis is semi-automated, with time
consuming manual components requiring hours to complete. In this study, we present a fully
automated approach to the rapid flood mapping currently carried out by many non-governmental,
national and international organisations. We design a Convolutional Neural Network (CNN) based
method which isolates the flooded pixels in freely available Copernicus Sentinel-1 Synthetic Aperture
Radar (SAR) imagery, requiring no optical bands and minimal pre-processing. We test a variety of
CNN architectures and train our models on flood masks generated using a combination of classical
semi-automated techniques and extensive manual cleaning and visual inspection. Our methodology
reduces the time required to develop a flood map by 80%, while achieving strong performance over a
wide range of locations and environmental conditions. Given the open-source data and the minimal
image cleaning required, this methodology can also be integrated into end-to-end pipelines for more
timely and continuous flood monitoring.

Keywords: microwave remote sensing; rapid mapping; disaster response; flood mapping;
image segmentation; machine learning; convolutional neural network

1. Introduction

The efficiency and timeliness of emergency responses to natural disasters has significant
implications for the life-saving capacities of relief efforts. Access to accurate information is crucial
to these missions in determining resource allocation, personnel deployment and rescue operations.
Despite the critical need, collecting such information during a crisis can be extremely challenging.

Floods are the most frequent natural disaster and can cause major societal and economic disruption
alongside significant loss of human life [1,2]. Flooding is usually caused by rivers or streams overflowing,
excessive rain, or ice melting rapidly in mountainous areas. Alternatively, coastal floods can be due to
heavy sustained storms or tsunamis causing the sea to surge inland. Once an event occurs, a timely
and accurate assessment, followed by a rapid response, is crucial. In carrying out this response,
non-governmental, national and international organizations are usually at the forefront of operations
providing humanitarian support.
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Remote sensing techniques have been crucial in providing information to response teams in such
situations [3]. Indeed, satellite images have proved highly useful for collecting timely and relevant data
and in generating effective damage information and impact maps of flooded regions [4,5]. Currently,
much of the flood analysis is manual or semi-automated, and carried out by experts from a range of
organizations. One example of such an institution is the United Nations Institute for Training and
Research—Operational Satellite Applications Programme (UNITAR-UNOSAT), who provide a ‘Rapid
Mapping’ service [6], and against whose methodology we base our comparison. In general, in order to
respond to quickly developing situations, rapid mapping methodologies serve as an instrumental
component in emergency response and disaster relief.

Traditionally, a common way to approach water and flood detection is to use imagery collected
from passive sensors, such as optical imagery, using techniques such as the Normalized Difference
Water Index (NDWI) and other water indices [7–10]. In such cases, numerous methods have been
developed for combining different frequency bands in order to produce signatures particularly
sensitive to the detection of water bodies. Once an index has been calculated, water and flood
detection can be carried out through the use of thresholds which can either be set globally over the
entire region in question, or more locally. While such detection algorithms using optical imagery,
and other multispectral imagery derived from passive sensors, have shown great promise, the use of
such imagery is often subject to lack of cloud cover and the presence of daylight. These requirements
restrict their use to a limited time interval and to certain weather conditions thus making them less
suitable for rapid response in disaster situations.

For this reason, one of the most commonly used forms of satellite data used for flood water
detection is Synthetic Aperture Radar (SAR) imagery [11]. SAR images can be taken regardless of
cloud cover and time of day since they use active sensors and specific frequency ranges. Although SAR
images generally have a lower resolution in comparison to their high-resolution optical counterparts,
high-resolution imagery (to the level of 0.3–0.5 m) is not generally required for flood disaster mapping,
and SAR imagery can be taken at an acceptable resolution. Due to their popularity, many SAR satellite
collaborations, such as COSMO-SkyMed (CSK) [12], TerraSAR-X (TSX) [13], and Sentinel-1 operated
by the European Space Agency (ESA) now exist, making for regular and timely image capture.

The detection of water bodies in SAR imagery is largely reliant on the distinctiveness of its
backscatter signature. Water generally appears as a smooth surface with a well defined intensity of
backscatter that can be seen in the SAR image; however, depending on environmental conditions such
as landscape topography and shadows, a universal threshold for water backscatter intensity does
not exist. Furthermore, there are also particular exceptions that require more careful consideration
rather than just threshold setting. In the case of urban areas, for instance, the backscattered signal
can be significantly affected by the presence of buildings that exhibit double-bounce scattering,
although several techniques have been designed to address this [14–19]. Indeed, similar considerations
may need to be made for numerous other cases such as water otherwise masked by vegetation [20].
In this study, we will focus on general water/flood detection by developing a method which generalizes
across different environments, some of which contain urban regions, although we do not focus
specifically on addressing such areas.

Since flooding can occur in a variety of different environmental settings, the generalizability
of many existing methods is highly limited, often requiring the careful intervention of analysts to
update parameters and fine-tune results. Such tuning severely limits the speed with which accurate
maps can be produced and released for use by disaster response teams. Moreover, many of these
methods require the combination of data from a variety of sources, as well as extensive cleaning and
processing of imagery before they can be fully utilized. While there have been some successes in
near real time (NRT) mapping [21–24], such methods generally still succumb to the generalizability
shortfalls highlighted above. However, Twele et al. [25] have presented an NRT approach requiring
no human intervention and significantly reducing processing time, by using fuzzy logic techniques,
which have since been built on [26,27], to remove the need for additional input data.
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Machine learning techniques have been shown to offer increasingly generalizable solutions to
a range of problems previously requiring a significant amount of classical image processing [28,29],
and have been applied to a wide variety of fields while gaining prevalence in applications to satellite
imagery [3,30–32]. Specifically, machine learning techniques are now being developed for water
detection, with several focusing on flood mapping as we discuss below.

With the increased rapid deployment of satellites providing low-cost optical imagery, such as
CubeSats, several applications of machine learning methods to automate water/flood detection in
optical and multispectral imagery have been developed [33–39]. However, since imagery from passive
sensors is limited by the conditions mentioned above, such as cloud cover, they are therefore often not
appropriate for flood response. Interestingly, work such as that by Benoudjit and Guida [40] take a
hybrid approach by using a linear model optimized with stochastic gradient descent to infer flooded
pixels in SAR imagery with promising results and a dramatic reduction in the time required to infer on
an image. However, as the authors point out, training data is generated per-location from calculation
of the NDWI which therefore still requires the use of imagery containing additional frequency bands.

There have been several studies applying Artificial Intelligence (AI) techniques requiring only
SAR imagery for water/flood identification. For this, a variety of methods have been tested including
unsupervised learning techniques such as self-organizing Kohonen’s maps [41,42], Gaussian Mixture
Models [43], and support vector machines [44] for general flood mapping. One of the most
commonly used techniques in machine learning for pixel-based segmentation is that of Convolutional
Neural Networks (CNNs). Several studies have been shown to make use of these networks for
multiclassification tasks (including a water class), for example, in complex ecosystem mapping [45],
urban scene and growth mapping [46], and crop identification [47]. In such cases, water detection has
not been the central aim of the outputs, and so such methodologies have not been optimised for its
identification. Moreover, flooding causes the presence of water bodies on both large and small scales
and so work lacking this focus is not sufficient by itself to provide evidence that CNN methods can be
widely applied to flood events.

Focusing on large water bodies and flood events, various CNN approaches have been proposed
for different scenarios. In the specific case of urban flood mapping, for example, Li et al. [48] select
a specific location and use multi-temporal SAR imagery to develop an active self-learning approach
to CNN training, showing improved performance against a naively trained classifier. In addition,
Zhang et al. [49] compare several CNN based approaches for the identification of water and shadows.
However, their focus on a limited range of locations and reliance on flood maps created by hand, rather
than also incorporating classical methods, may be overly simplified. Most similar to the work presented
here is that of Kang et al. [50] who use a CNN specifically for flood detection in SAR imagery captured
in China. The authors show that using CNNs for flood mapping may be a viable option—achieving
promising metrics and performance. We seek to build on this work in demonstrating the generalizaility
of a CNN approach by training and testing our models on a dataset reaching over multiple countries
and regions including many of those which are significantly disaster prone. Moreover, the authors
of [50] highlight the desire to test the usefulness of transfer learning approaches in future work,
which we shall also study.

In this paper we present a fully automated machine learning based solution for rapid mapping,
significantly decreasing the time required to produce a flood map, while achieving a high level of
precision in comparison to existing classical methodologies involving significant manual intervention.
The model is trained on a fully open-source dataset presented here, which we compile from imagery
frequently used in disaster response situations. Furthermore, this dataset contains analysis performed
during rapid mapping response scenarios and so presents an ideal test bed for trialing rapid mapping
automation techniques. We believe this to be the largest and most diverse SAR dataset that machine
learning based flood mapping models have been developed for and tested against. The methodology
employed for the creation of the labels used for model training consists of a classical histogram
based method followed by extensive manual cleaning and visual inspection as explain in Section 2.2.
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In addition, we design a simple linear baseline model against which to compare our more complex
machine learning approaches as explained in Section 2.4. Our methodology does not require any
additional pre-processing or input data, apart from orthorectification using a digital elevation model
(DEM), as well as computationally inexpensive tiling, compression and normalisation as explain in
Section 2.3, thereby making it a strong contender for fully automated pipelines. Moreover, this method
only requires the use of open-source Sentinel-1 SAR imagery and can, if required, be fine-tuned to the
analysis area by adding human-in-the-loop (HITL) network adaptation into the mapping pipeline [51].
While this fine-tuning is not necessarily required in our circumstances, we discuss how it can be naturally
incorporated into the pipeline with minimal extra time cost and may aid in alleviating difficulties
experienced in classical SAR analysis. Since flooding generally occurs adjacent to existing bodies of
water, flood detection usually includes the detection of all water bodies, including those permanent
to the scene. Since permanent water bodies are usually already mapped and can be subtracted out
to measure flood growth, we go beyond other studies in explicitly examining the performance of
our methodology in both general water detection, as well as just flood detection. We finish this
paper by presenting a cost-benefit analysis, comparing our methodology to currently employed tools
and highlight the applicability of this technique to rapid mapping for disaster response, including
setting out a potential work flow which incorporates model validation and improvement. This work
has been carried out in collaboration with several United Nations (UN) entities, including UNOSAT,
upon whose workflow we base our comparison. For further information, please visit the GitHub project
(https://github.com/UNITAR-UNOSAT/UNOSAT-AI-Based-Rapid-Mapping-Service). For clarity,
a general overview of the comparisons made in this paper is depicted in Figure 1.

Figure 1. Overview of our general workflow. The histogram based method, the baseline and the
neural network are computed using Sentinel-1 satellite imagery with different pre-processing steps
as explained in Sections 2.2–2.4 respectively. The orthorectified imagery and the UNOSAT analysis
are used to train the candidate algorithm as explain in Section 2.3. The neural network and baseline
performances are then compared against the classically generated labels.

https://github.com/UNITAR-UNOSAT/UNOSAT-AI-Based-Rapid-Mapping-Service
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2. Materials and Methods

2.1. Dataset

The UNOSAT Flood Dataset [52], has been created for this study using Copernicus Sentinel-1
satellite imagery acquired in Interferometric Wide Swath (IW) and provided as Level-1 Ground Range
Detected (GRD) products at a resolution of 10 m × 10 m with corresponding flood vectors stored
in shapefile format (see Figure 2). Each image was downloaded from the Copernicus Open Access
Hub [53] in order to work on free and open-source data thereby facilitating the deployment of our
methodology more broadly (see Tables 1 and A1 for more details on the dataset).

The dataset consists of the VV polarization of the SAR imagery with their corresponding flood
extent boundaries. These boundaries were taken from preexisting UNOSAT analyses conducted over
a five year period generated using the commonly used histogram based method (also known as
the threshold method) and followed by extensive manual cleaning and visual inspection for noise
reduction and precision validation (see Section 2.2). Flood maps generated using this method were
used as labels for training our machine learning models. In addition, we experimented with applying
a variety of pre and post-processing techniques to the SAR data and assessed its impact on model
performance (see Section 2.3). It should be noted that we make no assessment of the thematic accuracy
of the “labels" created using the techniques mentioned in Section 2.2 and used here for model training
and inference. The potential for thematic accuracy assessments and field-level feedback for model
improvement are discussed in Section 4.5.

Figure 2. Locations included in the UNOSAT Flood Dataset.
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Table 1. Location, event date and image size for each analysis in the UNOSAT Flood Dataset. Due
to the very large size of the satellite images, a tiling process was needed (as explained in Section 2.3).
Therefore the number of tiles of size 256 × 256 pixels is also shown.

Location Event Date Image Size Number of Tiles

Myanmar 11 August 2015 21,486 × 30,312 3467
Myanmar 08 May 2016 21,601 × 29,409 3666

Bangladesh 12 August 2017 21,486 × 31,111 6990
Somalia 01 May 2018 22,086 × 28,223 1977
Ethiopia 07 May 2018 21,953 × 28368 4087

Mozambique 13 March 2019 29,657 × 26,488 6282
Mozambique 20 March 2019 22,618 × 16,159 1021

Vietnam 06 September 2019 18,999 × 22,267 2227
Thailand 11 September 2019 21,729 × 29,362 6217
Thailand 11 September 2019 21,687 × 29,559 5811

Cambodia 23 September 2019 21,812 × 29,055 4701
Vietnam 28 September 2019 24,453 × 29,041 5258

Cambodia 31 September 2019 21,698 × 28,768 3169
Mozambique 03 December 2019 20,382 × 15,915 2066
Mozambique 20 January 2020 20,292 × 26,194 1189

Total 58,128

2.2. Histogram Based Method and Label Generation

The aim of flood detection analysis using satellite imagery is to extract water signatures and
convert them to cleaned vector data. In both radar and optical imagery bands, there is a contrast
between water and non-water pixels. In the former case, water pixels generally appear significantly
darker than non-water pixels after the usual processing applied by the imagery provider. Using a
histogram based method is common practice when identifying water pixels in SAR imagery for disaster
mapping [21,54–57].

When using this method, a sample of pixel values is manually taken from the visible flood extent
in the radar image to estimate the range of pixel values that represent water. All pixels that are within
that pixel value range are then selected by the algorithm. Often, experiments will be conducted with
multiple thresholds to determine which value provides the most accurate output based largely on
visual inspection and comparison with pre-flood information (i.e., data on the location of rivers and
other existing water bodies). A standard end-to-end pipeline for rapid flood analysis, following the
work of [21,54–57], is described below:

1. A raw satellite image is imported, pre-processed and calibrated through radiometric correction.
After this, the image undergoes speckle filtering followed by orthorectification using a DEM.

2. Multiple thresholds are then determined to separate water and land through manual pixel
sampling and applied to the image. Running the analysis for each threshold value can take from
five to ten minutes each time using standard GIS mapping software. This extraction may either
underestimate or overestimate the flood and therefore expert knowledge provided by an analyst
is crucial in determining the best threshold value.

3. The new raster images will have two values: the ‘1’ values representing the threshold extraction,
and the ‘0’ values representing the corresponding pixels that were above the threshold. A new
raster image is created for each chosen threshold.

4. Since the selected extraction is an approximation, it requires filtering to smooth the edges of
the water signature. Majority Filtering [58] is applied to reducing noise and fill in ‘holes’ in the
water extent.

5. A Focal Statistics method [59] is then applied to help further smooth and remove additional noise.
6. The best raster according to the analyst is converted to a vector.
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7. The flood vector is further cleaned by manual inspection to: remove Zero Grid values to save
only the flooded area; remove the imagery border; further reduce noise; fill in any remaining
holes and remove any other obvious non-water elements.

8. The river and other water resources that were present in the pre-flood analysis are then filtered
out and excluded from the flooded area.

As can be seen, this methodology involves much expert manual intervention and cleaning to
produce a flood map. Limitations of this methodology are possible false positive/negative values in
areas of radar overlays, foreshortening, and shadows in hilly and mountainous areas which may affect
algorithmic performance. Dense urban areas and smooth areas like roads and dry sand can further
affect performance. Furthermore, ‘holes’ in the dataset are pixels or groups of pixels formed where a
water signature was not detected. This may occur due to different signatures in the imagery such as
hill shadow in a mountainous area, waves and boats in the water, and vegetation or structures like
bridges that may cause false water signatures in the extraction.

The generation of labeled data denoting water extent can depend on a variety of external factors.
Human errors must be taken into consideration since, even though the analyst follows a strict workflow,
the flood boundaries are chosen based on human experience. The quality of the flood map is also
influenced by time restrictions since rapid assessment flood maps must frequently be delivered in a
few days. Moreover, sending feedback from the flooded regions to the map provider may not always
be possible during a humanitarian emergency.

For completeness, potential human biases were estimated by conducting four independent
analyses, each following the procedure described above, on a random subset of the images comprising
our dataset. In each case, the difference between the archived and a new analysis of the same image
was calculated. The analyses were found to differ by 5% on average in both classes, which serves as a
lower bound on the variability of the labels used. In addition, in an attempt to minimize the human
error, the entire dataset was reviewed through visual inspection by two different geospatial analysts
with necessary modifications made to increase consistency. The flood vectors generated with this
method were used as labels for our machine learning approaches. The analyses can be downloaded
from the UNOSAT Flood Portal [60], and the UNOSAT page on the Humanitarian Data Exchange [61].

2.3. Data Processing for Machine Learning

To assess their impact on model performance, we experimented with a variety of data processing
techniques. First, a terrain correction was applied using the orbit file as is standard procedure
when delivering the final output. After testing various image pre-processing techniques prior to
model training, including speckle filtering and calibration, we observed best performance when
such processing was minimised to just orthorectification and compression to 8-bit. We perform this
latter step since we found it to make image storage and manipulation more memory efficient without
hindering overall performance. By reducing the necessary pre-processing, the time required to produce
a map is also reduced. Concerning the labels, a binary mask was generated from the shapefiles where
the flood pixels were labeled as one and the background as zero. These masks were clipped with the
corresponding satellite image.

The image comes with a black frame around it that can have different default values such as
nan, -inf, and others. The sea areas can also be characterized by outliers from shadows due to waves
and high values due to ships. For the purposes of the labels, the sea was originally assigned as water
up to a certain distance from the coastline which varied each time. Therefore, for consistency, the sea
and the black frame around the image were masked out using the image extent and a global coastal
shapefile, as shown in Figure 3. These regions were not included in the dataset. Moreover, to avoid
confusing the network, existing water bodies, such as rivers, were added back to the labeled data in
order for the network to learn to detect all water pixels as opposed to only newly flooded regions.



Remote Sens. 2020, 12, 2532 8 of 30

Figure 3. The analysis of Vietnam on the 6th September 2019 with the corresponding label. The left
image displays the satellite imagery using the greyscale colormap. The dark region around the image
on the left is the frame that comes with any image combined with the sea. The image in the middle
shows the mask in white used to define the region of interest. The image on the right shows the water
label in yellow using the viridis colormap.

Feeding a neural network with the entire satellite image is not computationally feasible, due to
their large memory footprint. Therefore, we tiled the images, and their corresponding labels, prior
to training. Different tile sizes were tested, with best performance being observed with tiles sized
256 × 256 pixels. For clarity, throughout this paper we refer to ‘images’ as the raw SAR imagery
obtained from the image provider and ‘tiles’ as the output from tiling the images.

The dataset was split into training, validation and testing sets following a ratio 80:10:10.
The training dataset is used to train the candidate algorithms, the validation dataset is used to
tune the hyperparameters (e.g., the architecture, batch size etc.), and the test dataset is used to obtain
the performance characteristics on tiles completely unseen by the model. The test set is independent of
the training dataset, but it likely follows the same probability distribution as the training dataset since
tiles in this set come from the same original image as tiles in the training and validation sets. In order
to test performance more rigorously, we also present results derived from inference on tiles from a
completely unseen image and location (see Section 3.2). The UNOSAT Flood Dataset and its tiles are
shown in Table 1.

As shown in Table 2 and Figure 4, the dataset is also highly imbalanced with water pixels making
up only 6% of the dataset. Such imbalances can have a significant effect on model performance due to
the optimization strategies commonly used, and therefore we aim to mitigate this effect. In doing
so, we under-sampled at the tile level by excluding all tiles that only contained background pixels.
In order to maintain the structure of the tiles, under-sampling at the pixel level to reach a 50:50
ratio between classes was not possible. However, by performing tile under-sampling, the water to
background pixel ratio was increased from 6% to 16% and also resulted in a training speed increase.

Table 2. Quantitative comparison of the training, validation, and test sets. The numbers displayed are
the number of pixels for each class and each set.

Class Training Set Validation Set Test Set Class Weights

Background 2,549,444,681 319,232,826 318,887,583 0.16
Water 498,044,855 61,662,406 62,007,649 0.84

Total 3,047,489,536 380,895,232 380,895,232 1.00
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Figure 4. The number of pixels for each class in a given image. Each image is listed in the same order
as used in Tables 1 and A1.

2.4. Automatic Histogram Based Method

ε∗ = argmin
ε∈[0.04,0.07]

(
n

∑
i=1

(h(ε)i − yi)
2

)
, (1)

where ε is the threshold value, n the number of tiles in the training set, yi is the flood extent of
the tileWe designed an automated version of the histogram based method to use as a baseline
against which to compare our machine learning methodologies. The technique involves the following
pre-processing steps: application of an orbit file, calibration, speckle filtering, and terrain correction
using a DEM. While these steps are already automated in the original histogram based method,
the choice of appropriate threshold is usually decided manually by analysing the histogram of the
filtered backscatter coefficient for each image. In order to create a baseline against which to justify the
use of more complex techniques such as neural network based approaches, we automated the process
of choosing the threshold by minimizing the mean squared error between the labels created according
to Section 2.2 and a global optimal threshold: i, and h(ε)i is the output of the automatic histogram
based method for tile i using the threshold ε.

In practice, this optimization was carried out by tuning a Tree-structured Parzen Estimator
(TPE) [62] as implemented in the hyperopt [63] library thus effectively ’training’ a linear classifier.

2.5. Convolutional Neural Networks

Convolutional neural networks have been developed for many segmentation tasks, including
several in remote sensing. We test various existing neural network architectures for flood identification
and compare these against the method described in Section 2.2 and our baseline. Specifically we assess
the performance of the well used U-Net model [64], and an alternative model, XNet [65].
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Both U-Net and XNet are convolutional neural networks consisting of encoder and decoder
modules as well as utilizing weight sharing. The encoder module consists of a series of convolutional
layers for feature extraction, along with max-pooling layers which downsample the input. The decoder
is applied after feature extraction and performs upsampling to generate a segmentation mask of equal
dimension to the input. The decoder also consists of further convolutional layers which allows for
additional feature extraction and thus produces a dense feature map.

U-Net, shown in Figure 5, consists of an encoder for capturing context, and a symmetric decoder
which allows for precise localization of features in the tile. The encoder consists of a stack of the
convolutional layers followed by rectified liner unit (ReLU) activation functions to add non-linearity
to the model, and max-pooling layers for downsampling. The decoder consists of convolutional
and upsampling layers. Through using feature concatenation between each level, denoted “copy
and concatenate” in Figure 5, precise pixel localization has been found to be enhanced [64]. Here,
the feature maps saved during the downsamping/encoder stage are concatenated with the output of
the convolution layers during the upsampling/decoder stage. Neither U-Net nor XNet contain any
dense layers and therefore can accept tiles of any size.

Figure 5. U-Net architecture using 3 × 3 convolutional layers and ReLU activation functions. Filter
depths of each level are given in Table 3.

XNet, shown in Figure 6, consists of many of the same features contained in U-Net. However,
instead of following the encoder-decoder structure shown in Figure 5, this architecture consists of
a symmetric encoder-decoder-encoder-decoder structure. By containing multiple decoder stages
alongside avoiding large serial downsampling of the input tile, XNet is designed to be sensitive to
boundary level detail, particularly around small structures, while still achieving strong performance on
largescale structures [65]. As with U-Net, XNet also leverages feature concatenation between encoder
and decoder stages to help avoid the loss of important information between the downsampling and
upsampling stages.
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Figure 6. XNet architecture using 3 × 3 convolutional layers and ReLU activation functions. Filter
depths of each level are given in Table 3.

2.6. Transfer Learning

Transfer Learning is a machine learning method where a pre-trained model is used as a starting
point for another model with a similar architecture. Using pre-trained models allows for the leveraging
of previously learnt features, often on different datasets (which may help with generalizability), and can
greatly speed up training and development time. Transfer learning is often used in applications where
the labeled datasets are small, and training a neural network from scratch can be challenging due to its
computational complexity.

Deep neural networks generally extract relevant information using a hierarchical approach.
Initial layers detect high-level features such as corners and edges which are necessary for many image
recognition problems, while the later layers detect more sophisticated features which are likely more
domain specific. Due to this structure, neural networks are highly suited to transfer learning.

In the case of neural networks, a common approach is to alter the architecture of the model you
wish to use such that part of it conforms to the design of another pre-trained model. The weights
from the pre-trained model are then ported into the architecture you wish to train. Training of the
entire architecture can then be performed, starting from the pre-trained weight values, or a subset
of the model layers can be trained at different time steps. This latter method can help with model
performance, as well as training speed.

In this study, we test the performance of training a U-Net style architecture as described above,
but with the encoding/downsampling stage replaced with a ResNet architecture [66] which has been
pre-trained on the ImageNet database [67] (see Figure 7). Since ResNet was originally designed
for image classification, in order to connect the ResNet ‘backbone’ the classification layers has
been removed such that all convolutional layers remain, but any flattening and dense layers for
classification have been eliminated. By making this alteration, the modified ResNet architecture acts
purely as a feature encoder in line with the encoder description provided in Section 2.5 and contains
potentially useful information for high level feature extraction such as edge detection and general
shape recognition.
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Figure 7. Transfer learning process starting from a random neural network applying pre-trained
weights on ImageNet to fine tune on a new dataset Credits.

2.7. Comparison Algorithms

We test a variety of automated algorithms and compare each performance against the method
described in Section 2.2 for label generation. As a simple baseline to justify the use of more complex
techniques, we use the automatic histogram based method described in Section 2.4. Here we minimize
the mean squared-error between the labels and the output of the linear model applied after the
necessary pre-processing steps.

Against this baseline we test several neural network architectures with different hyper-parameter
values and compare their performance, while also accounting for the difference in training and testing
time between the automatic histogram based method and the neural networks. We train XNet [65] and
U-Net [64] architectures, both implemented in Keras [68] with a Tensorflow backend [69]. All input tiles
are normalized prior to training and inference by applying mean subtraction and min/max scaling.

In addition, we test a transfer learning approach by training a U-Net architecture with a
ResNet-34 [66] backbone structure implemented in the fastai library [70]. The model is trained
using a one-cycle policy and fine-tuned using discriminative and slanted triangular learning rates [71].
Input tiles are normalized using ImageNet [67] statistics.

All neural networks are trained using Early Stopping (see Section 7.8 of [72]) and Adam
optimization [73] with a binary cross-entropy loss function.

2.8. Computational Platform and Evaluation Criteria

We trained our models on Amazon Web Service (AWS) instances using NVIDIA Tesla K80 GPUs.
The models were also tested using PulseSatellite, a collaborative satellite image analysis tool enabling
HITL style model interaction, for compatibility and to test the possibility of deployment [51].

Given an input tile, the segmentation techniques described above assign a class to each pixel.
In this study, a binary segmentation is performed and thus two outcomes are possible: positive or
negative, which correspond respectively to water and background regions. The classifier output can
be listed as:

• True Positive (TP): Water pixels correctly classified as water
• True Negative (TN): Background pixels correctly classified as background
• False Positive (FP): Background pixels incorrectly classified as water
• False Negative (FN): Water pixels incorrectly classified as background

https://medium.com/owkin/transfer-learning-and-the-rise-of-collaborative-artificial-intelligence-41f9e2950657
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There are a variety of metrics that can be used to evaluate the segmentation. For instance, pixel
accuracy reports the percentage of pixels in the tiles that are correctly classified irrespective of their
class. However, this metric can be misleading when the class of interest is poorly represented. To avoid
this, precision, recall, the critical success index (CSI) (The CSI is equivalent to the intersection over
union (IoU) of the water class) and F1 scores are commonly used [74–76]:

accuracy = TP+TN
TP+TN+FP+FN (2)

precision = TP
TP+FP (3)

recall = TP
TP+FN (4)

Critical Success Index = TP
TP+FP+FN (5)

F1/Dice = 2× precision×recall
precision+recall =

2TP
2TP+FN+FP (6)

Precision is the fraction of relevant instances among the retrieved instances, i.e., it is the the
”purity” of the positive predictions relative to the labels. In other words, the precision illustrates how
many of the positive predictions matched the labeled annotations. Recall is the fraction of the total
amount of relevant instances that were actually retrieved, i.e., it describes the ”completeness” of the
positive predictions relative to the labels. In other words, of all objects annotated in the labeled data,
the recall denotes how many have been captured as positive predictions. As shown here, the F1 score
is just the harmonic mean of the precision and recall and is equivalent to the dice similarity coefficient,
thereby providing a metric which combines both the precision and recall statistics into one number.
The CSI is also highly related to the F1 score and is provided here for clarity since it is a common
metric to use in such mapping exercises. For a discussion on the similarities and trade offs of both the
F1 and CSI metrics, see [76].

Besides the commonly used evaluation metrics for segmentation, it is relevant to also define the
impact of this study in a broader context. Since rapid response is crucial during a humanitarian crisis,
the time saved compared with using the methodology described in Section 2.2 is used as an impact
metric. The time was calculated from when the image was initially accessed to the delivery of the final
map (see Section 4.3).

2.9. Neural Network Hyper-Parameter Tuning

Given the variety of architectures being tested, as well as limited compute resources available,
hyper-parameter tuning was carried out by manually varying parameters found to be particularly
effective in improving model performance. If parameters were tested which did not have a significant
impact on performance then these were sometimes not varied in later tests due to computational
efficiency. Performance was measured using the precision, recall, CSI and F1 statistics presented in
Equations (3)–(6).

For the case of the XNet and U-Net models, the learning rate was set to 10−5 and varied by an
order of magnitude with no immediate effect on performance. In the case of the U-Net+ResNet transfer
learning approach, we utilized the fastai ‘learning rate finder’ tool to assist in choosing the learning
rate for each training phase. Moreover, different ResNet depths (i.e., the number of skip-connection
modules included in the backbone) were tested, although this too made minimal difference and
so a smaller backbone was chosen for computational efficiency. The XNet and U-Net models were
set to use a kernel size of 3 × 3 with a stride of 1, as a trade off between incorporating additional
contextual information and memory efficiency, with the U-Net+ResNet kernel sizes and strides set to
the default values.

In Figure 8 we present results obtained by varying the batch size, number complete passes
over the training set during model training, the use of a weighted loss function (giving greater
weight to the flooded pixels in proportion to their imbalance in the dataset), changes in filter depths
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of the convolutional layers and the use of mixed precision during the training phase (i.e., the use
of both 16 and 32-bit floating point numbers in the model during training). Details of the model
setups are provided in Table 3 which also serves as a key for curves shown in Figure 8 and those
shown subsequently.

Table 3. Hyper-parameter tuning experimental setups for different architectures. Here we vary the
batch size, number of times the training dataset is passed to the model during training (For the XNet
and U-Net models, this number refers to the number of times the entire training dataset was passed
to the model during training before Early Stopping was implemented. For the U-Net+ResNet case,
the first number is the number of times the dataset was passed when training just the head nodes of
the architecture, and the latter the number of times it was passed when training the entire network.
In the latter case, at each epoch the validation loss was manually compared after training and the best
model selected.), the use of a weighted loss function, the filter depth of the convolutional layers (where
the numbers refer to the depths used symmetrically at each level of the architectures) and the use of
mixed precision during training.

Name Batch Size Dataset Passes Weighted Loss Filter Depth Mixed

XNet shallow 3 1 [16,32,64,128]
XNet shallow weighted 3 1 x [16,32,64,128]
XNet shallow weighted b8 8 1 x [16,32,64,128]
XNet shallow weighted b8 d5 8 5 x [16,32,64,128]
XNet deep weighted 3 1 x [56,128,256,512]

U-Net shallow 3 1 [16,32,64,128]
U-Net shallow weighted 3 1 x [16,32,64,128]
U-Net shallow weighted d5 3 5 x [16,32,64,128]
U-Net shallow weighted b8 8 1 x [16,32,64,128]
U-Net shallow weighted b8 d5 8 5 x [16,32,64,128]
U-Net deep weighted 3 1 x [56,128,256,512]

UNet+ResNet b4 d5/10 4 5/10 x [64,128,256,512,1204]
UNet+ResNet b8 d5/10 mix 8 5/10 x [64,128,256,512,1204] x
UNet+ResNet b8 d5/10 8 5/10 x [64,128,256,512,1204]
UNet+ResNet b8 d10/20 mix 8 10/20 x [64,128,256,512,1204] x
UNet+ResNet b32 d10/20 mix 32 10/20 x [64,128,256,512,1204] x

Figure 8a,b show the performance of the XNet and U-net architectures with various hyper-parameter
configurations. Two different filter depth configurations are tested: ‘deep’ and ‘shallow’, with the former
being four times the size of the latter (see Table 3). Since we see that filter depth seems to have little
effect on model performance in the ranges tested, for computational efficiency we assess the impact of
the remaining hyper-parameters on models with smaller filter depths. When it comes to training the
larger and more complex U-Net+ResNet model, we assume this depth variation to have similarly little
effect and so did not assess its impact for this model. Here we take the default fastai filter depth sizes for
both the U-Net and ResNet backbone.

When training the XNet and U-Net models, we test using both weighted and unweighted loss
functions to account for the unbalanced dataset. This was also found to have minimal effects in
comparison to other hyper-parameters and so we kept the weighted loss for the U-Net+ResNet model
since we feel this may enable greater generalizability in future scenarios where datasets may be even
more imbalanced.
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(a) (b)

(c)

Figure 8. Precision-recall curves for different experiments: (a) XNet trials; (b) U-Net trials;
(c) U-Net+ResNet trials. The curves show the precision and recall values at different probability
thresholds ranging from 0.01 to 0.99.

Given the large size of the training dataset, when training the XNet and U-Net models, each epoch
only passed over a fraction of the total training set. By default, we ensured the model is passed the
same number of tiles as is contained in the training set once before Early Stopping is introduced.
By increasing this to five passes we see that this can have a significant impact on model performance.
This is to be expected given the diversity of the training set and the relatively few times the model is
likely to see a given tile.

We discover mixed results when increasing the batch size from 3 to 8, with XNet performance
increasing with the batch size and not increasing further with the number of passes over the dataset,
whereas in the U-Net case the converse is found. In general we also do not see a significant difference
in performance if one chooses to use either the XNet or U-Net architecture. Final testing to isolate the
number of times a tile is shown to the model, and its batch size, is therefore only carried out on the
U-Net architecture.

In Figure 8c we present the results for similar tests performed on the UNet+ResNet model which
utilizes transfer learning. These curves show similar characteristics to those shown in Figure 8a,b
and therefore suggests that the addition of transfer learning does not have a significant impact in this
example. Another feature of testing carried out at this stage was the effectiveness of mixed precision.
In general, using mixed precision is designed to decrease training time and has also been observed in
certain circumstances to improve performance. Although the best performing model here has been
trained with mixed precision, the differentiating factor from the other mixed precision models appears
to be the number of times the whole training data is passed to the model during training, as well as
some improvement coming from varying the batch size.
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3. Results

3.1. Experimental Results

In this section we present the results of the different methodologies as applied to an unseen test
set after hyper-parameter tuning. The test set was made up on 5813 tiles from across the different
images and locations in the training set (see Section 2.3).

In Figure 9 we plot the best performing model for each of the three different architectures tested.
While it should be noted that these curves are not wholly equivalent since the hyper-parameters chosen
for one model inform those applied to the next, in Table 4 we can clearly see that the neural network
based approaches significantly outperform the linear baseline. Higher precision suggests the neural
network’s ability to identify a bigger proportion of correct positive identifications, thereby decreasing
the number of pixels that an analyst would have to manually clean. Higher recall refers to a greater
percentage of total relevant results correctly classified by the neural network.

Figure 9. Precision-recall curves of the best XNet, U-Net and U-Net+ResNet models after hyper-parameter tuning.

For additional rigour, the F1 scores quoted in Table 4 are for the best threshold value according to
model performance on the validation set as evaluated using the F1 score. Moreover, from these results
we see that neural network approaches are also able to achieve strong performance in comparison to
the labels created using the time consuming process described in Section 2.2.

While the models do not significantly differ in performance, the results presented in Figure 9
show that when using the U-Net+ResNet model, the choice of threshold can have a more significant
effect on precision/recall statistics than in the case of the XNet and U-Net architectures. In most cases,
the threshold producing the best F1 score might be chosen and so this threshold sensitivity may not be
important. However, cleaning noise in a flood extent is easier than adding in missing flooded pixels
and so a higher precision might be favourable (at the reasonable expense of recall). In order to allow
for greater variability in the choice of precision/recall tradeoff, the U-Net+ResNet model may therefore
be the most favourable, although the more computationally expensive.

Example outputs of the best performing U-Net+ResNet, after probability thresholding, can be
seen in Figure 10. In particular, we see the neural network’s ability to detect the flood area with little
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difference in comparison to the labeled data. The baseline (third column in Figure 10) was generated
using the automatic threshold based method and would require significantly more noise reduction in
post-processing. More examples of well detected tiles from both the baseline and this neural network,
particularly highlighting severe flooded regions, can be seen in Appendix B.

Table 4. Overall quantitative comparison.

Model Accuracy Precision Recall Critical Success Index F1/Dice

Baseline 91% 62% 84% 0.55 0.71
XNet 97% 91% 91% 0.81 0.91
U-Net 97% 91% 92% 0.83 0.91

U-Net+ResNet 97% 91% 92% 0.77 0.92

Figure 10. From left to right: raw SAR tiles displayed using the viridis colormap followed by tiles of
different analyses corresponding to classical histogram based, baseline and neural network predictions.
The background is displayed in purple and flood in yellow.
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3.2. Sagaing Region—18 July 2019

To further test the generalizability of our model, we demonstrate performance on a set of tiles
compiled from one completely unseen location. The U-Net+ResNet model was tested over the Sagaing
Region, Myanmar on 18 July 2019. The image was downloaded by Copernicus Hub [53] and compared
to the UNOSAT analysis (Shapefile and GeoDatabase with analysis extent over Sagaing are available at:
https://www.unitar.org/maps/map/2921). In addition, to test how the model can be used in an
operational fully-automated flood mapping setting, tests were performed to determine results both on
overall water detection ability (as performed above) as well as only on the flooded regions. The Global
Surface Water Dataset [77] was used to subtract permanent water from the model prediction which
was then compared to the classically generated flood extent mask, thereby testing performance on the
regions of greatest interest, i.e just the flooded regions. A comparison of the model output to the labels
can be found in Figure 11.

(a) (b)

Figure 11. Analysis of Sagaing Region on the 18th July 2019 with permanent water and labels.
The images show the area of interest in black outline and the permanent water in light-blue. (a) shows
the classically generated label in yellow. (b) shows the machine learning prediction in yellow. Neither
the label nor the prediction include any permanent water.

A common issue when performing CNN based image segmentation are border artifacts.
We mitigate these by tiling the image with a stride less than the tile dimensions thereby ensuring
overlap. In addition to this we clip the tiles to remove the exterior 2-pixels. In overlapping regions, we
take the average of the inferred pixel values.

The results of this analysis are presented in Table 5. Here we see that the model performance on
water detection is comparable to that presented on the test set in Table 4; however, performance
on flood only regions is marginally lower. This is not necessarily surprising since the flooded
regions may well present slightly different characteristics compared with combining all water bodies
together as we did when creating labels for training the model. We also notice that the accuracy
score changes little between the two comparisons since the background clearly dominates in this
example, therefore presenting a good test of the model’s ability to detect ‘no flood’ in background-only
tiles. During previous training, validation and testing, background-only tiles were removed to better
balance the datasets, and reduce training time. In the example presented here, these tiles have not been
removed since they would be unknown in an operational context, but we can see that this does not
significantly affect the performance.

https://www.unitar.org/maps/map/2921
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Table 5. Quantitative comparison over Sagaing Region, Myanmar—18 July 2019.

Model Class Accuracy Precision Recall Critical Success Index F1/Dice

U-Net+ResNet Water 99% 93% 97% 0.90 0.95
U-Net+ResNet Flood 99% 82% 97% 0.79 0.89

4. Discussion

4.1. Comparison to the Literature

As shown above, we compare various neural network methodologies for the detection of flooded
pixels in SAR imagery. In doing so, performance is measured against commonly used classical
techniques [21,54–57], followed by extensive manual cleaning and visual inspection, which were used
to generate labeled data for training, validation and testing. Moreover, we designed an automated
version of these classical methods against which we benchmark our performance. By building this
automated benchmark, which essentially acts as a linear model, we aim to justify the development of a
more complex approach, such as that of a neural network.

As can be seen in Table 4, the neural network approaches greatly outperform the baseline
automated method, while also achieving F1 scores above the 92% level averaged over the entire testing
dataset. Indeed, since this performance is achieved over a significantly large dataset with different
land formations, we demonstrate the generalizabiility of our approach to different environmental
conditions. Furthermore, in Section 3.2 we provide an analysis of model performance on tiles from a
completely unseen image and location. In this case, Table 5 demonstrates further strong performance
against the classically created labels, both on total water detection, as well as flood specific detection.

As discussed in the Introduction, Zhang et al. [49] and Kang et al. [50] both develop CNNs for
water detection in SAR imagery. These studies focus on a relatively small selection of regions and have
been trained on water masks generated by hand, rather than benchmarking against the more detailed
classically generated masks with manual cleaning such as those presented in this paper. In comparison
to the results presented in these studies, our model shows similar or better performance. Specifically,
Kang et al. achieve F1 scores of between 0.90 and 0.94 per location, with 0.90 being achieved on their
totally independent image (Study 3), as opposed to the 0.95 achieved in our example. Comparing
with Zhang et al. is more challenging since their methodology was developed for water and shadow
identification. However, their overall accuracy achieved on studies with reasonable mean intersection
of unions (MIoUs) is in the region of 88–91%, thus scoring lower than our methodology.

As mentioned previously, further to our method being comparable, or performing better than,
previous related works, we also make an explicit check on our model’s ability to classify flood-only
pixels, as opposed to all water bodies in an image. We think this analysis is essential since achieving
strong metrics on flood specific detection is the key task required during operational rapid mapping.
Indeed, while we agree with the issues raised in [50], surrounding previous studies not using
independent imagery for testing and comparison, we propose a further recommendation that future
modelling investigations present performance of their techniques on both general water detection,
as well as specifically quoting metrics for flood-only detection (i.e., all water detected minus permanent
water bodies).

While we show strong performance against existing methodologies of flood detection using solely
SAR imagery, our results are also comparable to, and in several cases outperform, machine learning
methods that require the use of optical imagery. Specifically, the works of Mateo-Garcia et al. [33]
and Benoudjit et al. [40] use a set up comparable to ours, since they use the same label generation
techniques but without the additional manual cleaning and visual inspection that we perform to
improve the quality of our training data. In the former, the authors achieve F1 scores between 0.80–0.88
depending on the resolution of the images in the dataset, whereas in the latter the authors achieve F1
scores between 0.73–0.90 depending on the environment being tested. Again, the results presented
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in Table 4 demonstrate that our methodology produces similar or better scores on comparable flood
maps without the need for optical data.

4.2. Applications to Humanitarian Situations, Disaster Relief and Rapid Mapping Services

Given these promising results, a fully automated pipeline similar to that of [25] can be implemented
whereby images of flood-prone areas are automatically downloaded and processed to output disaster
maps. Such an automatic AI-based flood mapping workflow could download and pre-process
SAR imagery from data sources such as the Copernicus Hub and feed this into a neural network
that outputs a flood segmentation mask. This tool would potentially allow for query, download,
and pre-processing of Sentinel-1 imagery through an interface that communicates with the Scihub
Copernicus platform [53], and ESA SNAP [78], a desktop software used for pre-processing satellite
images. A possible configuration of such an automatic pipeline is shown in Figure 12.

Additionally, such models can be integrated into human-in-the-loop (HITL) systems for
random validation testing and iterative model performance enhancement, such as that presented by
Logar et al. [51]. By utilizing such systems, if there is a location in which the model is failing then
expert analysis can be fed back into the model either to fine-tune it to the specific situation at hand,
or to generally increase model performance by expanding the training set. In these circumstances,
since the model would not necessarily be required to be completely retrained [3], this procedure can
be a relatively inexpensive process.

Figure 12. A possible configuration for a fully automated pipeline for AI-based Rapid Mapping.
The image related to the region of interest would be automatically downloaded and ingested into the
machine learning model which outputs flood polygons. The region of interest could be defined by
flood-prone regions, regions requested by the user, or automatically triggered by additional data input
such as social media monitoring. In addition, a random human validation could be integrated to test
and fine-tune the model.

As highlighted previously, one of the significant advantages of this study is that the models
have been trained and tested on flood masks generated from operational rapid mapping response
scenarios which represent the desired outcome to be reproduced. Since the results presented here
demonstrate high metric scores across a wide range of locations, and have specifically shown the ability
to generalize to tiles from completely unseen images and locations, with appropriate validation and
checks, our method has been deemed appropriate by experts for testing in disaster response situations.
Moreover, one of the crucial bottlenecks in humanitarian disaster response is the time between requests
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for analysis and the final result. While we shall discuss the speed up gained through using a neural
network based approach in the next section, it should also be noted that such an automated system
would allow for 24/7 monitoring and surveillance. In such instances, partner organisations could make
map requests and receive a rapid response without analysts needing the ability to respond immediately.
Since emergency responders need timely information as fast as possible when responding to disaster
situations, such a system could translate into numerous lives saved.

4.3. Cost Effectiveness Analysis

The financial implications of analysis is of great importance to organisations undertaking rapid
mapping, as they are are often operating on tight and restricted budgets. We perform a Cost Effectiveness
Analysis (CEA) comparing the widely used threshold method with the solutions presented in this
paper. A CEA is a ’type of value-for-money analysis that compares the relative costs of different
alternatives that achieve different amounts of the same impact’ [79]. CEA is often used in the health
sector where it is inappropriate to associate an economic value to human life. The output of the
analysis is expressed in terms of the Effectiveness-Cost ratio (EC ratio) between affected people and
total cost. The methodology with the highest EC ratio is the most effective, and therefore affects a
greater number of people for each cost unit. Three methodologies were compared: the histogram based
method as followed by an expert analyst, the automatic histogram based method used as baseline,
and the U-Net+ResNet neural network based approach (which is the most computationally expensive
of the three architectures to train and perform validation on).

Firstly, the time of each activity, shown in Table 6, must be monitored in order to quantify the cost
of each methodology. The personnel costs are based on the salary for a UN GIS analyst and a UN GIS
senior analyst, are set respectively at $26 per hour and $44 per hour according to the United Nations
Remuneration Rate [80]. Other costs, i.e., electricity, administration, computational, and others are not
taken into account. Using a histogram based method requires 6 h for the UN GIS analysis to download
and process the image and 1 h for the UN GIS senior analyst to perform quality control. By using
a single GPU, the automatic histogram based method requires 30 min for automatic download and
pre-processing, 5 min for segmentation by the algorithm and 2 h for the quality control and cleaning.
The neural network approach, however, requires only 20 minutes for the automatic download and
pre-processing since less of the latter was found to be required. Tiling and inference takes 5 min
and final quality control, if needed, can take up to 1 hour. Therefore the entire workflow for this
methodology requires 1 hour and 25 min with a UN GIS senior analyst only becoming involved at the
quality control stage.

Table 6. Time per activity for the three methodologies investigated during the Cost-Effectiveness Analysis.

Histogram Based Method Baseline Neural Network

Download

6h

2 min 2 min
Pre-processing 28 min 18 min

Flood Detection 5 min 5 min
Cleaning 1 h -

Quality Control 1 h 1 h 1 h

Total Time 7 h 2 h 35 min 1 h 30 min

The number of ‘affected people’ was calculated by studying a Bangladesh analysis that occurred
on 12 August 2017 with the zonal statistics. Here, the number of affected people was set to 1,432,222
supposing a scenario of a severe flood event. Based on these assumptions, the EC ratio is computed
for each methodology as shown in Table 7.
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Table 7. Cost Effectiveness Analysis.

Histogram Based Method Baseline Neural Network

Total time 7 h 2 h 35 min 1 h 30 min
Cost (C) $201 $71 $44
EC ratio 7117 20,208 32,737

Using the automatic histogram based method or a neural network for flood segmentation will
decrease the cost by 65% and 78% respectively, and the overall time needed for delivering a map by
63% and 80% as compared to existing workflows employed at agencies such as UNOSAT. However,
using a neural network has a higher effectiveness concerning the number of people affected per unit
currency. Specifically, with one single dollar, the neural network approach could potentially impact
360% more people compared to the current approach.

The Cost Effectiveness Analysis shows that both of the automated approaches are cheaper and
less time-consuming. However, the effectiveness of a methodology during a natural disaster also
relies on the ability to provide more updates during the same time period, which can be delivered
by the neural network based method. The latter does not require any human intervention, beside a
potential quality check, allowing the technology to be scalable to a 24/7 monitoring system. Moreover,
such technology provides better results compared to the other methodologies analyzed.

4.4. CO2 Emission Related to Experiments and Deployment

This section aims for transparency on the CO2 emission of the experiments and to start a
conversation on how to prevent unnecessary experiments and compensate for such emissions.
Experiments were conducted using Amazon Web Services in region us-east-2, which has a carbon
efficiency of 0.57 kgCO2eq/kWh. A cumulative of 1894 hours of computation was performed on
hardware of type Tesla K80 (TDP of 300 W). Total emissions are estimated to be 323.87 kgCO2eq of
which 0 percents were directly offset by the cloud provider. Estimations were conducted using the
Machine Learning Impact calculator presented in [81].

A CO2 compensation should be considered during any production phase, such as a 24/7
monitoring platform, which will contribute an estimated total emission of 0.51 kgCO2eq a day
considering that only the inference part is done on the cloud and by keeping all 24/7 monitoring to
local machines. A CO2 compensation strategy is currently under investigation in order to deploy a
zero net emission model for all intensive image analysis and remote sensing procedures. We encourage
others to carefully monitor future CO2 emission related to experiments and deployments of artificial
intelligence technologies.

4.5. Further Research

This research study focused on the development of flood segmentation techniques and exploring
how these might be integrated into a fully automated pipelines (as discussed in Section 4.2). However,
to enhance the impact of the AI-based methodology in the local communities affected by natural
disasters, a technological and social partnership is needed. Protocols must be put in place between the
data providers and the end beneficiaries in order to minimize unnecessary and costly procedures in
the disaster relief chain [82].

Social media monitoring for flood events [83–85], real time events and risk detection platforms [86]
has been shown to be effective in producing relevant alerts for disaster response. Such technology
could be integrated prior to data acquisition to localize where the disaster occurs and automatically
trigger the generation of a flood map. Timely information and image acquisition could therefore
leverage the speed of the AI-based method and its potential independence from human intervention.
It would also reduce the time needed to report the event to the relevant organizations leading to faster
humanitarian support.

https://mlco2.github.io/impact#compute
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In addition to finding new ways to augment the processing pipeline for rapid response,
we encourage others to test the generalizability of this approach across even more landscapes and
situations, as well as perform testing on data generated using different classical water detection
techniques beyond those presented in Section 2.2. Since the masks used here for model training and
testing were generated in situations requiring rapid response to disaster situations, field-level feedback
was not incorporated into the mapping process. A future line of research could be to train a model on
data generated in collaboration with field operations, which is highly expensive to collect, but could
be used to produce a model of an equivalent standard, thus potentially surpassing current classical
methodologies in terms of thematic accuracy.

5. Conclusions

The ability to perform rapid mapping in disaster situations is essential to assisting national and
local governments, NGOs and emergency services, enabling information to be gathered over large
distances and visualised for planned response. Non-governmental, national and international agencies
currently spend many hours, using a variety of manual and semi-automated classical image processing
techniques, resulting in highly detailed maps of flood extent boundaries.

In this work we present a machine learning based approach to further automate and increase the
speed of rapid flood mapping processes, while achieving sufficiently good performance metrics for
deployment across a broad range of environment landscapes and conditions. By using convolutional
neural networks trained on a wide variety of flood maps created using SAR imagery, we are able to
produce results which are comparable, or outperform, previous more limited studies of SAR flood
segmentation, as well as methods which also include the use of optical imagery not required by our
methodology. In addition, our approach requires minimal pre-processing before the image is fed
into the network, thereby speeding up inference time, and does not rely on many additional external
data sources.

In this work, we not only demonstrate model performance over a wide ranging, diverse dataset
of images taken from some of the most disaster prone areas of the world, but also explicitly present
statistics on both unseen tiles gained from images that have been partially seen by the model, as well
as unseen tiles derived from completely unseen images. Furthermore, we assess model performance
on the usual analysis task of water detection, as has been carried out in previous studies, as well
as specifically focusing on the model’s ability to detect new flooded regions which are additional
to the permanent water in the image. Building on previous recommendations, such as those by
Kang et al. [50], we hope future studies also take a similar approach to assessing model performance
rather than solely focusing on water detection.

Through using a machine learning based approach there is also potential to increase the impact to
end beneficiaries during humanitarian assistance by allowing for the implementation of live streaming
mapping services triggered by direct partner requests or automatic activations. By enabling flood
mapping to be completed automatically in a fraction of the time, teams on the ground are able to
respond more quickly to disaster situations.

Using the existing histogram based method, a flood map can be provided in 24 h; however, floods
change quickly thereby rapidly rendering maps outdated. Additionally, because an analyst takes
many hours to producing a flood map, the frequency with which maps can be created is limited to the
number of analysts. By using the method presented in this paper, flooded regions can be identified in
a significantly shorter time period using fully automated methods, allowing the dissemination of more
timely information and enabling new workflows to be developed.

Rapid flood mapping is a crucial source of information, and a speed up in this process could have
extremely meaningful repercussions for disaster response procedures.
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Appendix A. Copernicus Imagery

Table A1. Location, event date, image name that can be download from the Copenicus Open Access Hub [53].

Location Event Date Image Name

Myanmar 11 August 2015 S1A_IW_GRDH_1SSV_20150811T114721_20150811T114746_007215_009DE4_C4E2.tif
Myanmar 08 May 2016 S1A_IW_GRDH_1SSV_20160805T114607_20160805T114632_012465_0137A7_ACBC.tif
Bangladesh 12 August 2017 S1A_IW_GRDH_1SDV_20170812T235532_20170812T235557_017897_01E03B_AF9D.tif
Somalia 01 August 2018 S1A_IW_GRDH_1SDV_20180501T025444_20180501T025509_021705_025710_8835.tif
Ethiopia 07 May 2018 S1B_IW_GRDH_1SDV_20180507T151605_20180507T151630_010817_013C63_C906.tif
Mozambique 13 March 2019 S1A_IW_GRDH_1SDV_20190313T161522_20190313T161557_026321_02F156_A8A9.tif
Mozambique 20 March 2019 S1A_IW_GRDH_1SDV_20190320T160818_20190320T160843_026423_02F51E_5018.tif
Vietnam 06 September 2019 S1A_IW_GRDH_1SDV_20190906T110524_20190906T110549_028900_0346B3_457F.tif
Thailand 11 September 2009 S1A_IW_GRDH_1SDV_20190911T111310_20190911T111335_028973_034937_0BA8.tif
Thailand 11 September 2009 S1A_IW_GRDH_1SDV_20190911T111245_20190911T111310_028973_034937_C91D.tif
Cambodia 23 September 2019 S1A_IW_GRDH_1SDV_20190923T111155_20190923T111220_029148_034F2E_9682.tif
Vietnam 28 September 2019 S1B_IW_GRDH_1SDV_20190928T224435_20190928T224504_018244_0225A5_DC47.tif
Cambodia 31 September 2019 S1A_IW_GRDH_1SDV_20190927T225300_20190927T225325_029213_03516D_B4A3.tif
Mozambique 03 December 2019 S1A_IW_GRDH_1SDV_20191203T030914_20191203T030939_030178_0372DB_368F.tif
Mozambique 20 January 2020 S1B_IW_GRDH_1SDV_20200120T160700_20200120T160729_019902_025A5F_CDF4.tif
Sagaing Region 18 July 2019 S1A_IW_GRDH_1SDV_20190718T233107_20190718T233132_028178_032ED3_94DF.tif
Sagaing Region 18 July 2019 S1A_IW_GRDH_1SDV_20190718T233132_20190718T233157_028178_032ED3_6748.tif

Appendix B. Tile Results

Figure A1. Cont.
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Figure A1. From left to right: raw SAR tiles using the viridis colormap followed by tiles of
different analyses esponding to classical histogram based, baseline and neural network predictions.
The background is displayed in purple and flood in yellow.
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