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Abstract: Current estimates of CO2 emissions from forest degradation are generally based on
insufficient information and are characterized by high uncertainty, while a global definition of ‘forest
degradation’ is currently being discussed in the scientific arena. This study proposes an automated
approach to monitor degradation using a Landsat time series. The methodology was developed
using the Google Earth Engine (GEE) and applied in a pine forest area of the Dominican Republic.
Land cover change mapping was conducted using the random forest (RF) algorithm and resulted
in a cumulative overall accuracy of 92.8%. Forest degradation was mapped with a 70.7% user
accuracy and a 91.3% producer accuracy. Estimates of the degraded area had a margin of error
of 10.8%. A number of 344 Landsat collections, corresponding to the period from 1990 to 2018,
were used in the analysis. Additionally, 51 sample plots from a forest inventory were used. The carbon
stocks and emissions from forest degradation were estimated using the RF algorithm with an R2 of
0.78. GEE proved to be an appropriate tool to monitor the degradation of tropical forests, and the
methodology developed herein is a robust, reliable, and replicable tool that could be used to estimate
forest degradation and improve monitoring, reporting, and verification (MRV) systems under the
reducing emissions from deforestation and forest degradation (REDD+) mechanism.

Keywords: forest degradation; REDD+; Google Earth Engine; random forest; dynamic land cover
change; Landsat; carbon; MRV

1. Introduction

Forest monitoring has been an important scientific objective mainly due to the large number of
ecosystem services that serve humanity. One of the most efficient methods to monitor them is through
geographically explicit and consistent mapping over time [1,2].

Currently, forest monitoring has been focused on quantifying deforestation; spatial representation
and the monitoring of forest degradation are poorly studied, mainly because there is no clear,
standardized, and recognized definition of ‘forest degradation’ globally [3]. Additionally, international
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initiatives and programs that finance forest emissions reductions have focused on estimating
deforestation, which is easier to measure and monitor than forest degradation [4].

The first step in measuring forest degradation is to define key concepts, such as (i) the forest
and (ii) forest degradation. These concepts have been widely debated [5], and their definitions vary
between institutions and organizations. The Intergovernmental Panel on Climate Change (IPCC)
defines forest degradation as “direct human-induced long-term loss (persisting for X years or more) of
at least Y% of forest carbon stocks [and forest values] since time T and not qualifying as deforestation
or an elected activity under Article 3.4 of the Kyoto Protocol” [6]. Thus, defining a carbon (C) stock
baseline is the first step to monitor this continual C loss.

Forest degradation, along with deforestation, has been reported as the second most common
source (after fuel combustion) of global anthropogenic greenhouse gas (GHG) emissions, comprising
over 17% of global CO2 emissions [7,8]. The assessment and reporting of CO2 emissions caused by
forest degradation is a crucial step to achieve the goals under international policies, such as the REDD+

mechanism, which mainly aims to reduce the emissions from deforestation and forest degradation.
The REDD+ mechanism also includes (i) the conservation of forest carbon stocks, (ii) the sustainable
management of forests, and (iii) the enhancement of forest carbon stocks [9]. To monitor the five REDD+

activities, it is essential to have a robust and transparent system for measuring, reporting, and verifying
(MRV) GHG emissions alongside with methods that combine terrestrial and satellite techniques for the
measurement and monitoring of emissions and the removal of C from forest resources [10,11].

To estimate and report the GHG emissions and their removal, the principal recommendations
of the IPCC are to use activity data and emission factors at a national scale [12]. The most practical
method of mapping land cover changes at a national scale is to use spatially explicit data through
remote sensing (RS) [13].

RS methods to monitor deforestation have been successfully used for global C accounting [4,14].
However, unlike deforestation, no available method has been reliable for monitoring degradation [15],
thereby restricting C accounting [16]. Forest degradation monitoring requires estimating the rate of
change rate for (i) the forest cover and (ii) the forest C stock. In this sense, satellite imagery is key to
monitoring changes in forest cover (density, structure, and composition) but fails to monitor the C
stock [17]. Therefore, in addition to using satellite imagery, there is a clear need to employ data from
field measurements to achieve more accurate estimates of CO2 emissions.

Since RS technologies are advancing and new satellites are emerging at a constant pace [18],
particularly since the United States Geological Survey (USGS) adopted a free and open Landsat in 2008,
it is now possible to spatially quantify changes in the Earth’s surface retrospectively and prospectively
at a global scale [13]. Due to their long record of continuous measurements and high spatial resolution,
Landsat series satellite images are some of the most important information sources for studying the
different classes of land cover change [19] and has facilitated the characterization of land change using
a time series of Landsat images [20].

Applying the Landsat time series requires the use of technologies with a high capacity to access
storage and tools to perform analysis of large data sets; these special technologies are available at
no cost to everyone through the Google Earth Engine (GEE). GEE is a cloud computing platform
consisting of a tool for analyzing geospatial information through which we can analyze the land use
and land change use by applying highly interactive algorithms on a global scale with a code editor via
the JavaScript Application Programming Interface (API) [21]. Cloud-based Landsat imagery has been
widely used for mapping land cover and especially deforestation [22–26]. However, forest degradation
mapping has rarely been investigated using satellite imagery and data sampling using GEE.

The current study developed a method for automated forest degradation measuring and
monitoring using field data from a National Forest Inventory and a time series of Landsat images using
GGE. The objective of this study was to provide a dynamic land cover change map (including pine forest
degradation) in the Dominican Republic and to map C stocks of pine forests to estimate CO2 emissions
from forest degradation for the 1990–2018 time period. Our processing and mapping algorithm uses
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Landsat data to characterize the forest cover’s extension, loss, and degradation. Our approach aims at
determining the magnitude of forest degradation (cover change), the spatial distribution of C stocks
in the forest, and the amount of CO2 emissions from forest degradation per unit area for a given period
of analysis.

2. Materials and Methods

2.1. Study Area

Our research area is located in the Dominican Republic, mainly in two thirds of the so-called
Hispaniola Island in the east, which is the second largest island in the Greater Antilles. The territory of
the country covers 48,198 km2 (18◦28′35”N and 69◦53′36”W) (Figure 1). The Dominican Republic has
a diverse bioclimatic and topographic zones, ranging from dry regions where precipitation reaches
450 mm yr−1 to humid regions where precipitation reaches 2500 mm yr−1, at altitudes over 3000 m.a.s.l.
The northwest–southeast trending mountain range includes the highest peaks in the Caribbean,
Pico Duarte (3098 m.a.s.l) [27]. This wide variety of geographic conditions has given rise to diverse
ecosystems and habitats, including arid, semi-arid, humid, and tropical sub-humid zones [28].

The study was carried out in the pine forests of the Dominican Republic, which cover 3287 km2.
Most of this area lies in the Cordillera Central (the highest elevation mountain range on the island)
and comprises four large protected areas that were declared national parks (NPs): (i) NP Armando
Bermúdez, (ii) NP José del Carmen Ramírez, (iii) NP Valle Nuevo, and (iv) NP Sierra de Bahoruco.
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Figure 1. Study area (a) general location of the Dominican Republic, (b) regional location, and (c) study
area including the protected areas.

The water service for human consumption and agricultural use in most of the country is one
of the main environmental services offered by the Central Cordillera to the Dominican Republic.
The vegetation patterns vary mainly due to large-scale climatic factors, such as the direction of the
northeast or southeast winds. This mountain range features the principal pine forests of the country.
The higher sites of the mountain range include moist broadleaf forests, while the windward side
includes forests of West Indies pine (Pinus occidentalis Swartz) [29]. This pine is endemic to the island
of Hispaniola (19◦N, 71◦W), although it has been known to scientists for more than 200 years and still
covers extensive areas of the Dominican Republic and Haiti [30].

Recent studies conducted under the REDD+ program by the Ministry of the Environment and
Natural Resources (MARN) have indicated that the illegal extraction of wood for firewood and charcoal
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to be used as fuel, timber, and weak management are the principal drivers of pine forest degradation
in the Dominican Republic [31].

2.2. Forest, Deforestation, and Degradation Definitions

In recent times, the definition of ‘forest’ has taken on particular relevance due to the challenges
of countries to monitor the CO2 emissions from the forest sector as part of the objectives to establish
robust MRV systems for REDD+. In general, the definitions of ‘forest’ include references to threshold
parameters that include the minimum area of land, minimum tree height, and minimum canopy
cover. Many countries are aligned with the minimum thresholds described by the United Nations
Food and Agriculture Organization’s (FAO) Global Forest Resource Assessment (FRA). Through the
FRA, since 2000, all countries have aligned themselves to adopt a definition of ‘forest’ with common
parameters, such as (i) a canopy coverage of more than 10%, (ii) trees of 5 m, and (iii) land of at least
0.5 ha [32]. The present study subscribes to the definition of ‘forest’ adopted by the Dominican Republic,
with a focus on pine forests in accordance with the Reference Emission Levels/Forest Reference Levels
(FREL/FRL): “land of at least 0.5 ha covered by pine trees higher than 5 m and with a canopy cover of
more than 30%, or by trees able to reach these thresholds, and predominantly under forest land use,
this excludes land that is mainly under agricultural or urban land uses” [33].

Based on the definition of forest described above, in the current study, forest degradation is defined
as “the loss of carbon content in forest lands that remain as forest lands with a decrease in canopy
cover that does not qualify as deforestation and that can be caused by anthropogenic activities”.
Forest degradation has a human-induced negative impact on carbon stock changes; our operational
definition for measuring forest degradation is based on indicators, such as forest structure (changes
in canopy cover) [34] that affect the ability of the forest to store carbon under natural conditions [35].
These definitions demonstrate that deforestation and forest degradation involve different conditions,
processes, and concepts. Deforestation suggests a change in land use from forest to non-forest land
use, altering the original structure and environment of the forest, while degradation occurs in forest
lands that are maintained as forest lands but suffer losses in their forest ecosystem functions (Figure 2).

Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 29 

 

2.2. Forest, Deforestation, and Degradation Definitions 

In recent times, the definition of ‘forest’ has taken on particular relevance due to the challenges 
of countries to monitor the CO2 emissions from the forest sector as part of the objectives to establish 
robust MRV systems for REDD+. In general, the definitions of ‘forest’ include references to threshold 
parameters that include the minimum area of land, minimum tree height, and minimum canopy 
cover. Many countries are aligned with the minimum thresholds described by the United Nations 
Food and Agriculture Organization’s (FAO) Global Forest Resource Assessment (FRA). Through the 
FRA, since 2000, all countries have aligned themselves to adopt a definition of ‘forest’ with common 
parameters, such as (i) a canopy coverage of more than 10%, (ii) trees of 5 m, and (iii) land of at least 
0.5 ha [32]. The present study subscribes to the definition of ‘forest’ adopted by the Dominican 
Republic, with a focus on pine forests in accordance with the Reference Emission Levels/Forest 
Reference Levels (FREL/FRL): “land of at least 0.5 ha covered by pine trees higher than 5 m and with 
a canopy cover of more than 30%, or by trees able to reach these thresholds, and predominantly under 
forest land use, this excludes land that is mainly under agricultural or urban land uses” [33]. 

Based on the definition of forest described above, in the current study, forest degradation is 
defined as “the loss of carbon content in forest lands that remain as forest lands with a decrease in 
canopy cover that does not qualify as deforestation and that can be caused by anthropogenic 
activities”. Forest degradation has a human-induced negative impact on carbon stock changes; our 
operational definition for measuring forest degradation is based on indicators, such as forest 
structure (changes in canopy cover) [34] that affect the ability of the forest to store carbon under 
natural conditions [35]. These definitions demonstrate that deforestation and forest degradation 
involve different conditions, processes, and concepts. Deforestation suggests a change in land use 
from forest to non-forest land use, altering the original structure and environment of the forest, while 
degradation occurs in forest lands that are maintained as forest lands but suffer losses in their forest 
ecosystem functions (Figure 2). 

 
Figure 2. Main parameters and elements that interact in forest degradation in the Dominican 
Republic. 

2.3. Method 

Once the baseline data were collected and the key concepts (forest, deforestation, and forest 
degradation) were defined, a method to quantify the degradation of pine forests in the Dominican 
Republic was developed. The overall structure of the method (Figure 3) consists of four stages: (i) the 
preprocessing and selection of Landsat images, (ii) the computation of the spectral indices to map 
land cover for the 1990–2018 period, (iii) changing the magnitude of mapping, and (iv) mapping the 
carbon stocks in pine forests. The entire process was accompanied by an accuracy analysis for each 
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2.3. Method

Once the baseline data were collected and the key concepts (forest, deforestation, and forest
degradation) were defined, a method to quantify the degradation of pine forests in the Dominican
Republic was developed. The overall structure of the method (Figure 3) consists of four stages: (i) the
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preprocessing and selection of Landsat images, (ii) the computation of the spectral indices to map
land cover for the 1990–2018 period, (iii) changing the magnitude of mapping, and (iv) mapping the
carbon stocks in pine forests. The entire process was accompanied by an accuracy analysis for each
step in which a classification, probability, and regression model was applied using the Smile random
forest (RF) algorithm. The GEE cloud-based platform was also used in our research.
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Figure 3. Flowchart: representation of the methodology used in our research.

Our models were developed using the Landsat Thematic Mapper (TM) and an operational land
imager (OLI) by applying the RF algorithm in GEE to generate a dynamic land cover change map,
degraded forest map, and carbon forest map. The model was trained and validated using sample plots
from the forest inventory and satellite images.

2.4. Reference Data

2.4.1. Landsat TM/OLI Data Processing

We used Landsat-5 TM and Landsat 8 OLI surface reflectance data with 16 day and 30 m resolutions
(available in the GEE computing platform) [21]. All Landsat-5TM surface reflectance data from year
1990 ± 0.5 (a total of 22 images) and Landsat-8 OLI surface reflectance data from year 2018 ± 0.5 (a total
of 322 images) available in GEE were used in this study.

The Landsat surface reflectance data in GEE were atmospherically corrected using the Landsat
Ecosystem Disturbance Adaptive Processing System (LEDAPS) (TM) and Landsat Surface Reflectance
Corrected (LaSRC) (OLI) algorithms [36,37]. The CFmask algorithm was used to mask the clouds and
cloud shadows [38,39]. Landsat 5 TM Top of Atmosphere (TOA) and OLI TOA collections were also
used [40].

Digital elevation data were obtained from the Shuttle Radar Topography Mission (SRTM) [41]
in GEE. These data have a 30 m spatial resolution. SRTM data were used to calculate the topographic
slope and elevation. In addition, the empirical Earth rotation model (ERM) was used as a basis to
apply a terrain illumination correction algorithm [42], which allowed us to topographically correct
each image. For reflectance images, we used the medoid method [43] (Figure 4).

Once the images were preprocessed, a composite mosaic was developed. This mosaic was formed
by combining spatially overlapping images into a single image based on a function of multiple spectral
and temporal aggregation ranges [44]. This mosaic (multiband and multidate) was built with the
images of the years 1990 and 2018.
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2.4.2. Field Inventory Data

The reference field data included in this study are based on the National Forest Inventory (NFI)
collected by the Ministry of the Environment and Natural Resources (MARN) of the Dominican
Republic with the support of the REDD/CCAD-GIZ program and the World Bank’s Forest Carbon
Partnership Facility (FCPF) (https://www.forestcarbonpartnership.org/country/dominican-republic
(ERPD document, September, 2019)) [45]. In 2012, the Dominican Republic designed its MRV strategy.
This strategy proposed two major lines of monitoring forest resources: (i) satellite monitoring and
(ii) terrestrial monitoring. For terrestrial monitoring, the country executed an NFI between 2017 and
2018 with a plan to develop permanent sampling plots to be measured every 5 years according to the
action plan of the country’s MRV System. The NFI of the Dominican Republic contains 404 sampling
units located in the different forest classes, such as moist broadleaf forests (204 plots), subdivided into
semi-humid broadleaf forests (117 plots), humid broadleaf forests (76 plots), and broadleaf cloud forest
(11 plots); pine forests (59 plots), subdivided into high canopy cover density (19 plots) and low canopy
cover density (40 plots); dry forests (71 plots); and mangrove forests (70 plots).

The plot is rectangular with a size of 0.125 hectares (ha) (25 m× 50 m). Different forest characteristics
and topographical factors were measured at all plots (tree species, height, diameter at breast height
(DBH), soil organic matter, number of trees, geographical coordinates, elevation, and slope). To design
the NFI, the methodology proposed by the REDD/CCAD-GIZ program was used [46,47]. For our
study, we used the data from 51 plots located in the pine forest areas. More information about the
methodology and the results of the NFI is available in the FREL/FRL submission of the Dominican
Republic [33,48] to REDD+ UNFCCC (Figure 5) (Appendix D Table A2 and Appendix E Figure A1).

2.5. Classification of Dynamic Land Cover Change

One of the most relevant tasks for RS is land cover mapping. Different spectral indices are used to
improve such mapping techniques [49]. For land cover change mapping, we generated a composite
mosaic for the 1990–2018 period, and spectral indices were selected based on the known characteristics
of land cover classes. Landsat time series and spectral analyses were used to detect deforestation and
degradation forests.

https://www.forestcarbonpartnership.org/country/dominican-republic
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Classes that were determined in the dynamic land cover map correspond to a stable forest, stable
non-forest, degradation, deforestation, and restored forest. Seven different vegetation indices were
used to monitor the dynamics of forest change during the 1990–2018 period. Among the most relevant
indices used are the enhanced vegetation index (EVI), which was designed to enhance the vegetation
signal with improved sensitivity in high biomass areas [50]; the soil adjust vegetation index (SAVI) [51];
and the normalized difference fraction index (NDFI), which was constructed to highlight degraded
or cleared forest areas. The NDFI values in intact forests are expected to be high (i.e., approximately
1) due to the combination of high “green vegetation” (GV) and low non-photosynthetic vegetation
(NPV) and soil values [52]. The spectral indices used are closely related to the land cover defined
in our research; Appendix C, Table A1 details each index used.

Land Cover Change Samples

Training samples for land cover change classification were derived from a visual analysis using
Landsat from GEE and high spatial resolution images from Google Earth (GE) (Figure 6).

First, we established four cover change classes: stable forest, stable non-forest, deforestation, and
forest restoration. We allocated 97 samples to areas that appeared to be stable forest or stable non-forest,
and the remaining 15 samples were allocated to land cover change. The second step was to detect
forest degradation based on the stable forest class, commonly called the ‘forest mask’, following the
criteria established in the definition of a forest in our study. We focused on two classes: non-degraded
forest and degraded forest. A total of 90 samples were allocated to areas with disturbances observed
in the 1990–2018 period. Reference samples were randomly distributed over each land cover class
in the study area, while a single pixel was used as the sample unit (Figure 7).

The training dataset was used to improve the supervised classification, the per-band pixel values
of the stacked composite images were extracted from the training samples, and the resulting data were
used to train the RF classifiers [53]. We used the RF algorithm, because it is a built-in classifier in GEE
and has been widely demonstrated to improve the accuracy of maps by combining random subsets
of trees to classify the training samples. In GEE, the RF algorithm is applied through the following
function: (ee.Classifier.smileRamdomForest). Moreover, the algorithm can be configured in three ways
(ee.setOutputMode) based on the classification mode (class/type maps), regression mode (maps with
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continuous values predicted), and the probability mode (map with rescaled values between 0 and 1).
In the current study, the RF algorithm was applied in the classification mode using GEE to obtain
the land cover, in the regression mode to estimate the carbon maps, and in the probability mode to
estimate the change magnitude maps.
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(b) dynamics of land cover change classification.

2.6. Carbon Stock and Change Magnitude

Estimating the spatial–temporal distributions of forest carbon stocks subject to land cover changes
is critical for estimating and reporting GHG emissions [54]. To spatially represent explicit forest
degradation along with degraded carbon, we generated a carbon map of pine forests using 51 sampled
plots from the NFI data and Landsat 2018.
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The size of each parcel is 0.125 hectares (ha) (25 m × 50 m). As the size of each plot and the Landsat
pixels do not match, we used the geographic coordinates of the centroid of the plot. Thus, we applied
the carbon values in units per hectare (t ha−1) to each pixel.

For each plot, four of the five C pools were measured [55]: aboveground biomass (AGB),
belowground biomass (BGB), deadwood (DW), and leaf litter (Table 1) [47,56,57] (See Section 2.4.2
Field Inventory Data for more details). To convert the biomass to carbon, the IPCC default carbon
factor value (0.47) was used. Each pool was modeled independently using spectral responses
(vegetation indices) from Landsat, applying a regression model with the RF algorithm in GEE
(ee.Classifier.randomForest(30).setOutputMode(‘REGRESSION’). Through this process, each spatial pixel
acquired an AGB (t C ha−1) value and its related standard deviation as a measure of uncertainty.
The code generated to model the C stock using the GEE is available in Appendix B.

The change magnitude is assumed to be an approximate indicator of the amount of tree removal
or canopy damage that occurred due to disturbances [58]. The change magnitude was estimated from
the spectral indices for the stable forest class using the composite mosaic for the 1990–2018 period.
We fitted an RF probability model in GEE to represent the structural forest changes in each of the
spectral indices described previously (ee.Classifier.randomForest(50).setOutputMode(‘PROBABILITY’).

The disturbance monitoring algorithm used to identify the forest changes in each pixel location is
closely related to the Continuous Change Detection and Classification algorithm (CCDC) [20,58,59]
but was adapted using RF models to predict the change magnitude probabilities for bitemporal
observations. Several studies have successfully applied this algorithm to different sensors and different
spectral indices to detect changes [60,61]. This change detection algorithm operates on the time series
of each pixel in the study area.

The decrease in a spectral index caused by a disturbance is recognized by a certain change
magnitude. For example, values close to 1 in the NDFI spectral indices indicate high proportions of
green vegetation (GV) or stable forests, while values close to 0 in the NDFI imply higher proportions
of soil (So). The code generated to estimate the change magnitude using the GEE is available
in Appendix B.

Pixel-based mapping facilitates comparisons and evaluations of changes with direct algebraic
calculations [62]. Once the carbon stored in the four pools of the forest was estimated for the year 2018
along with the magnitude of change between 1990–2018, we used (Equation (1)) to determine the C
stocks in each pixel for the year 1990. Finally, the degraded carbon was estimated as the difference of
the C stored in the pine forests between 1990 and 2018 combined with the change magnitude observed
in the same period (Equation (2)). To estimate forest degradation, only disturbances occurring in the
stable forest class were considered for the period analyzed:

Ct1 =
Ct2

1−CM
(1)

where Ct1 is the C stock in 1990 (Mg ha−1), Ct2 is the C stock in 2018, and CM is the change magnitude
(value > 0 and < 1).

CD = Ct1 − Ct2 (2)

where CD is the carbon degraded for the 1990–2018 period (Mg ha−1), Ct1 is the C stock in 1990, and Ct2

is the C stock in 2018.
Finally, to calculate the annual rate of degraded carbon, the stock-difference method (SDM) was

used, where changes in carbon stock (∆Carbon) represent the difference between carbon stocks for
a given forest area estimated at two time points (Equation (3)):

∆Carbon =
Carbont1 −Carbont2

t2− t1
(3)
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where ∆Carbon is the annual change in C stocks (Mg·C·ha−1
·yr−1), Carbont1 is the C stock in 1990

(Mg·C·ha−1), and Carbont2 is the C stock in 2018 (Mg C·ha−1).

Table 1. Definitions and variables used to estimate the carbon stored in the pine forest.

Variable Unit Definition/Explanation

AGB Mg C ha−1 Aboveground biomass: all living and standing dead trees with a diameter at
breast height (DBH) equal to or greater than 2 cm.

BGB Mg C ha−1 Belowground live biomass: roots.

DW Mg C ha−1 Deadwood: All pieces of wood with a diameter greater than 2 cm lying on
the surface of the ground or intermixed with dead leaves.

Litter Mg C ha−1
Non-woody biomass is recorded, which includes dead leaves (dead biomass)

and herbaceous vegetation (living non-woody biomass on the ground).
The maximum diameter for woody material to be considered is 2 cm.

Note: 1 Mg ha−1 = 1 ton ha−1, to convert biomass to carbon, the IPCC default carbon factor value (0.47) was used.

2.7. Model Evaluation: Carbon Stock

Cross-validation (CV) is one of the most commonly used techniques to evaluate the efficiency of
a machine learning (ML) technique; this is due to its wide application in the scientific arena and its
efficiency in detecting a model’s overfitting problems [63]. To evaluate the performance of the machine
learning model applied to map the change magnitude and forest carbon, the following functions were
used: coefficient of determination (R2), mean square error (MSE), root mean square error (RMSE),
mean absolute deviation (MAD), cumulated forecast error (CFE), and mean absolute percentage error
(MAPE):

R2 =

(∑n
i=1

(
yi − yi

)(
fi − f i

))2

∑n
i=1

(
yi − yi

)2 ∑n
i=1

(
fi − f i

)2 (4)

MSE =
1
n

n∑
i=1

(yi − fi)
2 (5)

RMSE =

√√
1
n

n∑
i=1

(yi − fi)
2 (6)

MAD =

∑ ∣∣∣yi − fi
∣∣∣

n
(7)

CFEt =
t∑

i=1

(yi − ft) (8)

MAPE =

∑ ∣∣∣∣ yi− fi
yi

∣∣∣∣
n

× 100 (9)

where n (i = 1, 2, . . . , n) is the number of samples used for the machine learning model, yi is the value
observed (C stock), yi is the corresponding mean value, fi is the predicted value (C stock), and f i is the
mean value.

2.8. Accuracy Assessment and Analysis

We used the confusion matrix statistical accuracy assessment method to evaluate the dynamic
land cover change classification. The overall accuracy (OA), user’s accuracy (UA), and producer’s
accuracy (PA) were applied to each class, and the Kappa coefficient was used to assess the class map
and determine the level of agreement between two raters. The standard deviations and the confidence
intervals (at a 95% significance level) were also estimated.
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Since land change classes (degradation, deforestation, and forest restoration) tend to cover only
a small portion of the study objectives compared to stable areas (stable forest and stable non-forest),
it is recommended to stratify the study based on a map that represents the classes of principal interest
to ensure an effective statistical sample representation in land change classes, such as degradation,
deforestation, and forest restoration [64].

An accuracy assessment of the dynamic land cover change map (for the 1990–2018 period),
generated through a sampling-based approach to estimate the area of forest degradation in the
Dominican Republic (Figure 6), was performed on the following land cover change classes:

Stable forest: pine forests that remain pine forests without disturbance; this forest contains over
30% canopy cover.

Stable non-forest: other non-forest lands, such as agriculture, wetlands, grasslands.
Deforestation: elimination of the forest canopy cover that exceeds 30%; results

in a land-use change.
Degradation: this entails any disturbance that changes the canopy cover density between 100%

and 30% and does not result in a land-use change.
Forest restoration: conversion of non-forested land to forest; this includes forest restoration with

a canopy cover greater than 30% (through natural and artificial means) on deforested land.
For the accuracy assessment, a total of 1124 spatial sampling points (Table 2) were established

for the study area using the stratified random sampling approach following best practices [64]
(Equation (10)). It was necessary to modify the minimum sample size to determine the objective
standard error of the degradation area, rather than the OA of the map, and thereby ensure that
sample size would be large enough to produce sufficiently accurate estimates [65]. The stratified area
estimator-design tools hosted in the System for Earth Observation Data Access, Processing and Analysis
for Land (SEPAL) were used to generate random spatial points (Table 2). SEPAL is a cloud-based
computing platform developed by FAO, which uses the GEE and OpenForis Geospatial Toolkits [66].

n =
(
∑

WiSi)
2[

S
(
Ô
)]2

+ (1N)
∑

WiS2
i

≈


∑

WiSi

S
(
Ô
) 

2

(10)

where n = number of points in the study area, S
(
Ô
)

is the standard error of the estimated OA, Wi is the
mapped proportion of the class area i, and Si is the standard deviation of land cover classes i.

We performed an analysis following best practices to assess the accuracy of the map classification,
and the area of change was estimated using a classification error matrix. For details on the matrix
nomenclature, refer to Olofsson et al. (2014) [64].

Table 2. Strata area, sample allocation for the stratified random sample, and weights for the study
period (1990–2018).

Stable Forest Stable non-Forest Deforestation Restored Forest Degradation

Area (ha) 252,408 2527 2856 23,452 47,534
Wi (%) 76.77 0.77 0.87 7.13 14.46

Samples 800 50 50 74 150

Collecting reference observations of forest degradation is a complex task, primarily because
degradation is a continuous process that must be observed over a long period. In this sense,
satellite images with high spectral resolutions have become a key tool, but they are not sufficient to
reconstruct the landscape’s historical dynamics. Therefore, this study required the use of a Landsat
observation time series supported by very high spatial resolution (VHRS) imagery. Independent
stratified validation samples were visually interpreted from the VHRS time-series images of Collect
Earth (CE). We built a survey in CE that helped us access multiple satellite images, including archives



Remote Sens. 2020, 12, 2531 12 of 25

including VHSR imagery (Google Earth, Bing Maps) and a set of satellite images from the GEE catalog,
along with their derived spectral indices [67] (Figure 8).

To facilitate the historical collection of reference data, other GEE assessment tools were adapted and
used, such as the Accuracy and Area Estimation Toolbox (AREA2) developed by Bullock and Olofsson
(2018) (see github.com/bullocke/AREA2). The sample interpretation tool allowed us to determine
reference labels for the 1124 samples collected. This algorithm helped estimate the map accuracy and
disturbance area and visualize the time series trends of each sample using a dataset created using the
Continuous Degradation Detection (CODED) methodology in GEE [20] (see Appendix B for the code
developed in this study using the GEE).
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Figure 8. Tools used to collect the reference observations of forest degradation. (a) Collect Earth
interface in Google Earth Pro; (b) Collect Earth survey; (c) time series tools online viewer.

To review and assign reference labels to each of the 1124 selected special sample units, three trained
interpreters were delegated. These interpreters did not know the classes of the assigned samples.
An additional interpreter reviewed all samples with low or medium confidence. At least three
interpreters reviewed all units labeled as degradation. The decision matrix and labels assigned to the
samples evaluated in the time series are shown in Table 3.

Table 3. The decision matrix for the validation samples interpreted from high-resolution images and
a Landsat time series using Collect Earth (CE) and GEE, respectively.

Land Cover 1990 Land Cover 2018 Reference Class

Non-forest Non-forest Stable non-forest
Pine forest: high canopy cover density Pine forest: low canopy cover density Degradation
Pine forest: high canopy cover density Non-forest Deforestation
Pine forest: low canopy cover density Non-forest Deforestation

Non-forest Pine forest: low canopy cover density Restored forest
Non-forest Pine forest: high canopy cover density Restored forest

Pine forest: high canopy cover density Pine forest: high canopy cover density Stable forest
Pine forest: low canopy cover density Pine forest: high canopy cover density Stable forest
Pine forest: low canopy cover density Pine forest: low canopy cover density Stable forest

3. Results

3.1. Dynamic Land Cover Changes from 1990 to 2018

The total study area corresponded to 328,777 ha of pine forests in the Dominican Republic.
The results showed that degraded forests accounted for 11% ± 1.21% (95% confidence interval) of the
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total study area between 1990 and 2018, while 79% ± 1.28% remained stable and did not suffer any
disturbances; further, 2% ± 0.61% were deforested. In total, we estimated that 36,808 ± 446 ha of pine
forests was degraded.

The margin of error of the area estimate for forest degradation was 10.8% (95% CI). The user’s
accuracy was 70.7%, and the producer’s accuracy for forest degradation was 91.3%. The overall
accuracy of the dynamic land cover change map was 92.8%. The main results corresponding to the
accuracy assessment are shown in Table 4.

Table 4. Confusion matrix—sample counts, area proportions, area estimates, and accuracy measures
for stable forest, stable non-forest, deforestation, restored forest, and forest degradation.

Confusion Matrix, Random Sample Counts

Stable Forest Stable Non-Forest Deforestation Restored Forest Degradation Total Pixels W_i Ha

Stable
non-forest 0 48 0 2 0 50 28,074 0.008 2,527

Deforestation 0 2 47 0 1 50 31,729 0.009 2,856
Restored

forest 11 5 0 57 1 74 260,578 0.071 23,452

Degradation 29 6 9 0 106 150 528,158 0.145 47,534
Total 827 61 58 61 117 1124 3,653,077 1 328,777

Confusion Matrix, Area Proportions

Stable Forest Stable Non-Forest Deforestation Restored Forest Degradation

Stable forest 0.7552 0.0000 0.0019 0.0019 0.0086
Stable non-forest 0.0000 0.0074 0.0000 0.0003 0.0000

Deforestation 0.0000 0.0003 0.0082 0.0000 0.0002
Restored forest 0.0106 0.0048 0.0000 0.0549 0.0010

Degradation 0.0280 0.0058 0.0087 0.0000 0.1022
Total 0.7938 0.0183 0.0188 0.0572 0.1119

Accuracy and Area Estimates
Area [pix] 2,899,809 66,953 68,526 208,850 408,939
Area [ha] 260,983 6026 6167 18,796 36,804
S(Area) 0.0065 0.0031 0.0031 0.0038 0.0062

S(Area) [ha] 2143 1034 1031 1240 2033
95% CI [ha] 4201 2026 2021 2430 3985

Margin of error [%] 1.61 33.62 32.77 12.93 10.83
User’s acc (%) 98.38 96.00 94.00 77.03 70.67

Producer’s acc (%) 95.14 40.25 43.52 96.11 91.27
Overall 92.8%
Kappa 0.85

We analyzed the dynamics of land cover change, as they relate to the country’s protected areas,
and identified that 71% of the degraded pine forests exist within the protected area. Among these,
the main forest belongs to Sierra de Bahoruco National Park (NP), with 14,166 ha (30% of the total
degraded area), followed by Valle Nuevo NP and José del Carmen Ramírez NP, with 8,736 ha (18% of
the total degraded area) and 6,462 ha (16% of the total degraded area), respectively. Table 5 shows
the locations of the protected areas with the degraded pine forests from 1990 to 2018. A geographic
representation of the dynamic land cover change map obtained in our study is also provided (Figure 9).
Detailed results on land cover change are available via a dashboard called “Accuracy assessment and
analysis tools” available in Appendix A.

Table 5. Dynamics of land cover change associated with the different classes of protected areas in the
Dominican Republic.

Protected Area
Category

Deforestation
(ha)

Degradation
(ha)

Restored Forest
(ha)

Stable Forest
(ha)

Stable Non-Forest
(ha)

Natural Monument 0 5 19 337 0
Natural Reserve 71 1800 1293 12,350 21

National Park 2151 31,779 9867 175,081 1580
Protected Landscape 6 151 48 3,083 3
Strict Protection Area 3 98 30 820 7

Habitat/Species
Management Area 0 0 1 16 0

Non-Protected Area 625 13,701 12,193 60,722 916
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3.2. Carbon Stock

The total carbon stock in the pine forest area analyzed was composed of AGB C, BGB C,
DW C, and litter C pools. The results for the total carbon analysis are presented in Table 6,
Figures 10–12. The analysis shows that the total carbon stock in 2018 was approximately 19,002,000 Mg C,
with an average of 64.4 Mg C ha−1. The RMSE of the model was 13.4 Mg C ha−1, the R2 was 0.78, the CFE
was 0.35, and the MAPE reached 21%. Of the total carbon stock stored, 75.8% (14,410,609 Mg C) was
in the National Park, while 18.4% (3,498,042 Mg C) was outside protected areas, and 4.3% (824,182 Mg C)
was stored in natural reserves (Table 7). Detailed results on the carbon stored from the different pools
and protected area categories are available via a dashboard provided in Appendix A.

Table 6. Results of the accumulated carbon stock model, carbon stock for the different pools estimated,
and their error measures based on random forest modeling.

Pool N Mg C Mg C ha−1 R2 (%) MSE RMSE (Mg C ha−1) MAD CFE MAPE (%)

Total 51 19,002,000 66.9 78.1% 179.09 13.38 10.85 0.35 21.1%
AGB 51 12,098,753 43.3 75.5% 96.99 9.85 8.09 −7.83 24.8%
BGB 51 3,638,370 13.2 75.8% 7.41 2.72 2.08 −1.82 20.9%
DW 42 1,289,859 3.53 80.1% 12.33 3.51 1.97 16.11 175.0%

Litter 50 548,420 2.2 79.3% 1.96 1.40 0.90 −10.10 86.0%
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used to evaluate the performance of the model via random forest modeling.
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Table 7. Results of the accumulated carbon stocks and carbon stock models for the different pools
in each protected area category.

Protected Area Category Mg C Total Litter (Mg C) AGB (Mg C) DW (Mg C) BGB (Mg C)

Natural Monument 22,507 833 14,872 643 4453
Natural Reserve 824,182 27,840 531,320 38,284 160,987

National Park 14,410,609 395,917 9,182,340 1,022,543 2,754,263
Protected Landscape 180,743 7942 120,722 6917 36,218
Strict Protection Area 64,857 2075 42,030 2454 12,592

Habitat/Species Management Area 1058 35 692 24 205
Non-Protected Area 3,498,043 113,777 2,206,776 218,994 669,653
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1 Mg ha−1 = 1 ton ha−1).
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3.3. Carbon Degraded in the 1990–2018 Period

The total carbon degraded in the pine forest area analyzed was 3,479,159 Mg C. Converting
this degraded carbon into emission- and climate-related units of CO2-equivalent emissions (metric
tons CO2-equivalent units), the emissions caused by the degradation of the pine forests in the period
1990–2018 were 12,756,916 tCO2eq, with an annual average of 2.6 Mg C ha−1 yr−1 (9.5 tCO2eq ha−1

yr−1). Of the total degraded C stock, 73.9% (2,570,081 Mg C) was found in national parks, while 2.9%
(102,401 Mg C) and 22.8% (792,048 Mg C) of C were degraded in natural reserves and non-protected
areas, respectively (Table 8). Detailed results on the degraded carbon in pine forests in the 1990–2018
period for the different pools and protected area categories are provided in Appendix A.

Table 8. Results of degraded carbon for different pools per protected area category.

Protected Area Category Total Carbon (Mg) Carbon (Mg) Litter Carbon (Mg) AGB Carbon (Mg) DW Carbon (Mg) BGB

Natural Monument 242 9 135 43 41
Natural Reserve 102,401 2584 55,559 18,834 17,320

National Park 2,570,081 61,449 1,404,486 595,785 423,726
Protected Landscape 8512 297 4,743 1440 1482
Strict Protection Area 5873 141 3,167 1152 970

Habitat/Species
Management Area 2 0 1 0 0

Non-Protected Area 792,048 20,407 431,030 162,352 132,047
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Park protected area with the highest degradation): (a) total carbon; (b) AGB C; (c) BGB C; (d) DW C;
(e) litter C in the pine forests of the Dominican Republic.

4. Discussion

4.1. Validation of Dynamic Land Cover Change Map from the 1990–2018 Period

Most of the countries that are part of the REDD+ mechanism do not quantify or report their
emissions caused by forest degradation [16]. Efforts to find such a method have been great, and the
challenge of obtaining accurate estimates remains under investigation and debate in the scientific arena.
One of the main agreements in the measurement and monitoring of forest degradation is that a long
series of temporal and spatiotemporal observations are required to detect disturbances in forest cover,
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which is why satellite images, such as those from Landsat, are key inputs to establishing more robust
MRV systems for REDD+.

Using Landsat data in GEE, we developed a methodology to monitor pine forest degradation
in the tropics. This approach was determined to be precise, with an overall 92.9% and 91% producer’s
accuracy in the degraded forest class of the dynamic land use change map of pine forests in the
Dominican Republic. Our estimates of forest degradation are compatible with those of other studies
on a sub-national scale. For example, the OA obtained in degradation and deforestation mapping
in Rondônia, Brazil, was 91%, while the producer’s accuracy reached 68% in the forest degradation
class [58]. In the forests of the Brazilian Amazon, the OA in degradation and deforestation mapping
was 92%, while the producer’s accuracy was 80% in the forest degradation class [68]. Another study
using SPOT images with spectral mixing models in the eastern Amazon showed results that also
indicated good agreement (86% OA) [69].

The dynamic mapping analysis determined an efficient stratification in the study area and allowed
for an impartial estimation. Margins of error of 10.8% were obtained when mapping forest degradation
at a 95% confidence level. Although the mapping of forest degradation in tropical forests is scarce
in the literature, we observed some consistency between our results and those of other studies in the
temporal scale, spatial and spectral resolution of the images used, accuracy, and the use of vegetation
index analysis as a method to evaluate and map tropical forest disturbances.

Historical data collection on forest changes is a challenging task because such data are not readily
available everywhere, and temporal change data are not detailed enough for the validation of time
series maps. The current study used the AREA2 algorithm developed by Bullock and Olofsson (2018)
by applying the Time Series Viewer. This is a sample interpretation tool used to determine the reference
labels derived from a mapped dataset. However, a new challenge involved assessing the changes
detected by the model. For this process, independent datasets were selected and assessed using CE [70].
The combination of these tools proved to be efficient in our study.

Using spectral index measures to validate the dynamic land cover change map in our study
allowed us to extend tele-interpretation techniques and facilitated the visual detection of historical
change processes, especially for degraded forest detection. In other research, the NDFI was used to map
degradation; ultimately, the NDFI was found to be more sensitive to disturbances from tropical forests
than other spectral indices [71]. We use different spectral indices to improve our estimates of forest
degradation and performed a regression analysis with random forest to determine the importance
of the indices in the constructed model. We found that the NDFI and EVI were the main variables
able to explain the model and thereby classify areas with forest degradation for the 1990–2018 period
(Figure 13a,b).
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While the Dominican Republic has experienced a decrease in deforestation in recent times,
forest degradation has been on the rise. In our study, we found that an area equivalent to 14% of pine
forests of the Dominican Republic was degraded between 1990 and 2018. This is a critical element that
must be considered for the development of a REDD+ program in the country. The Dominican Republic
established a FREL/FRL to obtain results-based payments under the REDD+ mechanism supported by
the FCPF. This includes emissions and removal in the remaining forest land (emissions from forest
degradation) for the 2006–2015 period [45]. In this sense, the methodology proposed and the results
obtained in the current study contribute directly to monitoring and quantifying CO2, emissions and
removal. Furthermore, this methodology is a valuable tool that can be used in other tropical countries
to monitor forest degradation.

4.2. Carbon Model Assessment

Forest inventory is an important source of information for a variety of strategic purposes in forest
management. Based on 51 carbon samples obtained in pine forests, we generated a predictive regression
model of the carbon stored in AGB, BGB, DW, and litter. Satisfactory results were obtained when
applying the RF algorithm to estimate the total carbon stock in the study area, obtaining an R2 of 78.1%
and an RMSE of 13.38 Mg C ha−1. It was determined that 19,002,000 Mg C is stored in the pine forests
of which 3,479,159 Mg C was degraded (18% of C stock), which is equivalent to 124,255 Mg C yr−1 for
the 1990–2018 study period.

We found some differences between our results and previous estimates; for example, the MARN
of the Dominican Republic estimated the local emissions from forest degradation at a level of
182,937 Mg C yr−1, including all forest classes, and at a level of 46,591 Mg C yr−1 specifically for pine
forests for the 2006–2015 reference period [33]. The differences between both estimates are mainly
due to the scale of monitoring (sub-national vs. national), the methodology, the reference period, the
algorithms used for image processing and classification, and especially the differences in the accuracy
obtained between both estimates.

These differences also suggest that between 1990 and 2006, the degradation rate in the pine
forest was much higher compared to that during the period 2006–2015. This provides a new research
opportunity to understand the drivers of degradation that have decreased in the country. However,
we believe that the degradation estimates found in both studies differ from each other due to the
previously mentioned technical and methodological factors.

A robust and transparent national forest monitoring system to monitor and reporting five REDD+

activities is required [9]. Often, capabilities and national circumstances prevent the monitoring and
reporting of CO2e emissions and their removal under the five REDD+ activities. In our study, the forest
carbon stock increases in forest lands that remain forest lands were not estimated for the reference
period due to the absence of information on the average annual increase in biomass in the studied forest.
This offers a new research opportunity for a “step-wise” approach that will allow estimate net CO2e
emissions as part of one of the five REDD+ activities called “enhancement of forest carbon stocks”.

4.3. Google Earth Engine Platform

The processing and analysis of the data from our study were accomplished using the JavaScript
API via the code editor of the GEE platform. Using GEE, the processing time efficiency increased,
and satisfactory results were obtained (see the GEE code developed for this study in Appendix B).
GEE is considered a multidisciplinary tool; since 2017, its application has increased notably,
especially in land-use mapping and water resources. Landsat images (82%), the RF algorithm
(52%), and the NDVI spectral indices are the most frequently used methods in recent studies related to
vegetation [72].

In our study, we faced a series of complexities in the detection of forest degradation, especially since
a very detailed approach is required. This approach involves detecting the reduction or modifications
in the forest structure that are not considered a total loss over an extended period of time and at a large
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scale. Using the characteristics of the GEE platform by extracting spectral characteristics from satellite
images, it was possible to satisfactorily solve the main challenges we encountered.

The methodology proposed here was able to detect the dynamics of change in land use and
forest degradation. While there is room to improve the methodology, the use of GEE with its
computing capacity and the availability of free satellite images provide powerful support for mapping
forest degradation. Additionally, GEE allowed us to quantify the carbon stored until 2018 and the
degraded carbon in four pine forest pools. Thus, this method could become a key monitoring tool
(at the sub-national and national levels). Moreover, this tool will allow authorities to monitor forest
degradation according to indicator 15.3.1 of the Sustainable Development Goals (SDGs), which defines
the area of degraded land and will serve as an essential element for developing national MRV systems
for REDD+ strategy implementation and supporting the report on GHG emissions of the United Nations
Framework Convention on Climate Change (UNFCCC) in an efficient, robust, and transparent manner.

5. Conclusions

The current study developed and applied a methodology for forest degradation mapping based
on available data from the Open Access Landsat and the GEE platforms. Additionally, GEE was used
in combination with tools, such as SEPAL and CE by the FAO. The main objective was to estimate the
degraded pine forest area and quantify the degraded carbon for a period of 28 years (1990–2018) by
applying machine learning models, such as random forest.

The methodology applied in this study shows new possibilities for forest degradation monitoring
and estimating CO2 emissions from forest degradation using spectral information derived from Landsat
archives and data from the forest inventory; combining both sources of information can also help
improve the MRV systems for the REDD+ mechanism.

The model assessment revealed a dynamic land change map with a cumulative overall accuracy of
92%, in relevant classes (such as forest degradation) with a UA of 70.7%, and a PA of 91.2%. A carbon
stock model was also developed with an R2 of 79% to estimate degradation in terms of the Mg C ha−1.
The applied models were built, trained, and validated to demonstrate the efficiency of the methodology.
The results obtained indicate that this methodology can be an especially useful tool for time series
processing to map forest degradation by applying technologies, such as GEE.

GEE has excellent potential for the “wall to wall” forest degradation mapping of tropical pine
forest ecosystems. More research is still required to assess the ability of GEE to map degradation
in broadleaf forests and dry forest ecosystems by applying machine learning techniques combined
with spatial data and field measurements. The approaches presented herein could become a key tool
for measuring and monitoring emissions from forest degradation in the tropics.
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Appendix A

A consolidation of the results obtained is available on a dashboard with free online access called
“Accuracy assessment and analysis tools”. This dashboard presents assessments of the dynamic land
cover change, the spectral mixture analyses from Landsat, the error matrix, the carbon model, and all
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the results obtained. The dashboard allows users to pose questions and filter graphic and alphanumeric
data with a geographic viewer. The dashboard is available at the following link: Accuracy assessment
and analysis tools.

Appendix B

The codes developed in this study using the GEE cloud-based computing platform are available
at the following link: Degradation code.

Appendix C

Table A1. Spectral indices used for forest degradation mapping.

Spectral Indices Equation

Normalized Difference Vegetation Index (NDVI) [73] NDVI = (NIR−Red)
(NIR+Red)

Normalized Difference Spectral Vector (NDSV) [74] NDSVi j =
Bi−B j
Bi+B j

where Bi and B j are two generic bands.

Enhanced Vegetation Index (EVI) [50] EVI = G x (NIR+Red)
(NIR+C1 x Red−C2 x Blue+L)

Soil Adjust Vegetation Index (SAVI) [51] SAVI = (NIR−Red)
(NIR+Red+L) ∗ (1 + L)

Index-Based Built-Up Index (IBI) [52]

NDBI = (MIR−NIR)
(MIR+NIR)

SAVI = (NIR−Red)(1+l)
(NIR+Red+l)

MNDWI = (Green−MIR)
(Green+MIR)

Near-Infrared Reflectance of Vegetation (NIRv) [75] NIRv =
(
NDVImedian monthly − 0.08

)
x NIRmedian monthly

Normalized Difference Fraction Index (NDFI) [52]
NDFI = GVshade −(NPV+Soil)

GVsahde+NPV+Soil

where: GVshade = GV
100−Shade

Appendix D

Table A2. Reference field: National Forest Inventory (NFI) collected by the Ministry of the Environment
and Natural Resources (MARN) of the Dominican Republic.

ID Class
AGB

(Mg C ha−1)
BGB

(Mg C ha−1)
Litter

(Mg C ha−1)
DW

(Mg C ha−1)
Total Accumulated

(Mg C ha−1) Long Lat

1 Pine forest: low canopy cover density 18.6 7.9 0.4 0.0 37.5 −71.363 19.371
2 Pine forest: high canopy cover density 26.2 7.2 1.3 0.0 35.2 −71.642 19.321
3 Pine forest: low canopy cover density 12.4 4.6 0.5 0.3 22.2 −71.743 19.321
4 Pine forest: low canopy cover density 17.4 5.3 0.6 1.2 26.8 −71.354 19.330
5 Pine forest: low canopy cover density 34.8 11.3 0.6 2.2 56.1 −71.647 19.277
6 Pine forest: low canopy cover density 85.7 25.0 3.3 2.9 123.6 −71.158 19.272
7 Pine forest: low canopy cover density 56.4 15.3 2.6 2.7 77.4 −71.055 19.268
8 Pine forest: low canopy cover density 49.8 15.6 1.8 2.2 77.5 −71.122 19.284
9 Pine forest: low canopy cover density 41.8 12.0 0.9 7.7 65.2 −71.252 19.270
10 Pine forest: high canopy cover density 43.0 13.2 4.6 2.5 69.3 −70.589 19.212
11 Pine forest: low canopy cover density 29.6 10.3 0.4 0.1 49.1 −71.001 19.191
12 Pine forest: high canopy cover density 58.4 17.5 4.1 0.5 86.8 −71.054 19.107
13 Pine forest: high canopy cover density 27.3 8.5 3.1 0.8 43.7 −70.936 19.146
14 Pine forest: high canopy cover density 64.1 20.2 3.8 0.8 99.8 −70.881 19.134
15 Pine forest: high canopy cover density 68.4 20.6 1.4 4.4 102.8 −71.033 19.119
16 Pine forest: low canopy cover density 60.3 17.9 5.0 3.7 92.7 −70.478 19.124
17 Pine forest: low canopy cover density 59.8 17.3 1.2 2.4 84.8 −70.488 19.134
18 Pine forest: low canopy cover density 23.4 9.2 0.9 4.0 48.3 −71.073 19.131
19 Pine forest: low canopy cover density 45.4 12.3 1.3 27.4 86.4 −70.717 19.125
20 Pine forest: low canopy cover density 29.9 8.1 0.3 0.0 38.2 −71.550 19.143
21 Pine forest: low canopy cover density 52.1 15.9 1.1 4.4 80.2 −71.017 19.154
22 Pine forest: high canopy cover density 53.5 15.2 1.3 4.9 77.9 −71.159 19.055
23 Pine forest: high canopy cover density 45.1 14.9 1.6 2.8 74.5 −70.679 19.046
24 Pine forest: low canopy cover density 39.6 12.6 0.8 0.0 60.1 −71.067 19.022
25 Pine forest: low canopy cover density 32.0 9.2 5.6 0.7 49.5 −70.706 19.066
26 Pine forest: low canopy cover density 78.7 22.2 3.0 2.9 110.2 −70.824 19.079
27 Pine forest: low canopy cover density 26.3 7.3 3.2 5.8 43.4 −70.941 19.039
28 Pine forest: low canopy cover density 35.9 11.0 2.6 29.3 83.4 −70.933 19.046
29 Pine forest: low canopy cover density 20.3 5.9 5.4 0.8 33.7 −70.775 19.061
30 Pine forest: high canopy cover density 43.8 13.7 17.9 0.1 82.3 −70.769 18.994
31 Pine forest: low canopy cover density 43.1 11.9 0.9 0.3 57.3 −71.073 19.013
32 Pine forest: low canopy cover density 61.5 17.1 0.6 8.2 89.1 −71.167 18.967

https://app.powerbi.com/view?r=eyJrIjoiZGE0MDQxNmQtMTY2Yy00NWM3LTgwMzItNDI4MzM4OWE5NTVmIiwidCI6IjhmYmFhNWJmLTJlY2MtNGRjOC1iNTZiLThmOTJlMzA3ZjA3NiIsImMiOjR9
https://app.powerbi.com/view?r=eyJrIjoiZGE0MDQxNmQtMTY2Yy00NWM3LTgwMzItNDI4MzM4OWE5NTVmIiwidCI6IjhmYmFhNWJmLTJlY2MtNGRjOC1iNTZiLThmOTJlMzA3ZjA3NiIsImMiOjR9
https://github.com/EDuarteCode/Degradation_Code
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Table A2. Cont.

ID Class
AGB

(Mg C ha−1)
BGB

(Mg C ha−1)
Litter

(Mg C ha−1)
DW

(Mg C ha−1)
Total Accumulated

(Mg C ha−1) Long Lat

33 Pine forest: low canopy cover density 21.2 6.1 0.6 1.6 30.8 −70.925 18.952
34 Pine forest: high canopy cover density 69.6 18.8 0.7 4.4 93.6 −70.975 18.902
35 Pine forest: high canopy cover density 56.9 15.8 0.7 11.3 86.5 −70.929 18.926
36 Pine forest: low canopy cover density 28.8 9.9 0.4 0.1 47.2 −71.148 18.927
37 Pine forest: low canopy cover density 64.5 17.4 0.2 0.0 82.1 −71.126 18.913
38 Pine forest: high canopy cover density 62.5 18.6 0.7 0.9 89.3 −70.738 18.836
39 Pine forest: high canopy cover density 66.8 18.8 0.0 0.2 88.5 −70.992 18.855
40 Pine forest: low canopy cover density 23.8 7.9 0.3 0.0 37.3 −70.770 18.861
41 Pine forest: high canopy cover density 22.7 6.5 1.0 0.0 31.8 −70.581 18.726
42 Pine forest: high canopy cover density 36.3 12.5 1.0 1.3 60.9 −70.590 18.639
43 Pine forest: high canopy cover density 67.1 19.0 1.2 11.0 101.6 −71.709 18.263
44 Pine forest: high canopy cover density 53.1 17.6 3.0 1.1 86.7 −71.662 18.263
45 Pine forest: low canopy cover density 26.4 8.6 1.0 1.0 42.4 −71.568 18.265
46 Pine forest: high canopy cover density 65.5 19.6 0.8 1.0 94.1 −71.625 18.256
47 Pine forest: low canopy cover density 14.4 6.0 0.6 0.0 29.1 −71.493 18.238
48 Pine forest: low canopy cover density 12.8 4.2 0.3 2.0 22.1 −71.584 18.197
49 Pine forest: low canopy cover density 26.1 13.5 1.1 0.9 65.7 −71.631 18.239
50 Pine forest: high canopy cover density 54.7 19.4 1.3 1.7 94.5 −71.534 18.105
51 Pine forest: low canopy cover density 44.4 13.9 0.8 0.0 66.1 −71.581 18.104
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