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Abstract: NOX (NOX = NO + NO2) emissions measurements in Beijing are of great significance
because they can aid in understanding how NOX pollution develops in mega-cities throughout
China. However, NOX emissions in mega-cities are difficult to measure due to changes in wind
patterns and moving sources on roads during measurement. To obtain good spatial coverage on
different ring roads in Beijing over a short amount of time, two mobile differential optical absorption
spectroscopy (DOAS) instruments were used to measure NOX emission flux from April 18th to 26th,
2018. In addition, a wind profile radar provided simultaneous wind field measurements for altitudes
between 50 m and 1 km for each ring road measurement. We first determined NOX emission flux of
different ring roads using wind field averages from measured wind data. The results showed that
the NOX emission flux of Beijing’s fifth ring road, which represented the urban part, varied from
(19.29 ± 5.26) × 1024 molec./s to (36.46 ± 12.86) × 1024 molec./s. On April 20th, NOX emission flux for
the third ring was slightly higher than the fourth ring because the two ring roads were measured at
different time periods. We then analyzed the NOX emission flux error budget and error sensitivity.
The main error source was the wind field uncertainty. For some measurements, the main emission
flux error source was either wind speed uncertainty or wind direction uncertainty, but not both.
As Beijing’s NOX emissions came from road vehicle exhaust, we found that emission flux error had a
more diverse sensitivity to wind direction uncertainty, which improved our knowledge on this topic.
The NOX emission flux error sensitivity study indicated that more accurate measurements of the wind
field are crucial for effective NOX emission flux measurements in Chinese mega-cities. Obtaining
actual time and high resolved wind measurements is an advantage for mega-cities’ NOX emission flux
measurements. The emission flux errors caused by wind direction and wind speed uncertainties were
clearly distinguished. Other sensitivity studies indicated that NOX/NO2 ratio uncertainty dominated
flux errors when the NOX/NO2 ratio uncertainty was >0.4. Using two mobile-DOAS and wind profile
radars to measure NOx emission flux improved the quality of the emission flux measuring results.
This approach could be applied to many other mega-cities in China and in others countries.
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1. Introduction

Nitrogen oxides (NOX, NOX = NO + NO2) is an important trace gas in the atmosphere [1].
It plays a key role in atmospheric chemical reactions and easily produces air pollution with excessive
emissions [1,2]. China’s rapid economic development in the 21st century has been accompanied by
serious environmental pollution, especially air pollution [2–8]. Haze pollution events occur frequently
in Jingjinji (Beijing, Tianjin, and Hebei province) due to the excessive emissions of NOx, sulfur dioxide
(SO2), and volatile organic compounds (VOCs) [9]. The project of the Jingjinji area air pollution control
was launched in April 2017, led by the National Air Pollution Prevention and Control Association,
China (NAPCA). Several research efforts have been dedicated to the study of pollution causes and
control measures to prevent air pollution events [6–10]. According to the campus of Peking University,
the nitrate formation of PM2.5 was evident in the haze pollution of Jingjinji in 2014. The ratio of nitrates
in PM2.5 in Jingjinji obviously increased because of sulphate emission reduction [9]. NOX is now a
major source of inorganic pollutants in the Jingjinji area.

Urbanization has significantly increased NOX emissions from vehicles in Chinese mega-cities.
Beijing, a typical mega-city in China, has no factories in its downtown area, except for a power plant
near the east side of the fifth ring. The power plant emits little NOX due to the region’s strict gas
pollution control policies. Hence, most of the NOX emissions can be attributed to road vehicles.
Figure 1 presents annual NOX emissions of vehicle emissions and the ratio of vehicle NOX emissions
compared to the total NOX emissions in Beijing from 2011 to 2017. Due to the implementation of traffic
control policies, the NOX emission flux emitted by vehicles decreased from 2011 to 2014 and from 2015
to 2016. However, the NOX emissions from vehicles are increasing year by year (nearly 85% in 2017).
This happens in other mega-cities such as Shanghai and Guangzhou. Studying the mega-cities’ NOX

emissions from vehicles has great significance for air pollution control.
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Figure 1. The annual NOX emissions of vehicles in Beijing from 2011 to 2017 and the percentage
of vehicles emitting NOx over total NOx emissions in Beijing. (NOX emission data source: Beijing
Municipal Ecological Environment Bureau).

Differential optical absorption spectroscopy (DOAS) is a remote sensing technique developed in
the 1970s and used for measuring atmospheric gases [11,12]. The DOAS technique is widely applied to
measure trace gases [13–15]. An important application of the DOAS method is to measure the gas
emission flux, such as NOx and SO2, using the close integral method (for area emitters) and the flow
rate method (for point sources) [16,17]. Mobile-DOAS uses sunlight as its light source and places
a DOAS instrument on a mobile platform, which is a technological improvement for the technique.
This platform can be a car or an airplane [18–22]; here, we focus on cars. Mobile-DOAS has been widely
used for emission flux measurements and has achieved good results [23–32]. Previous studies have
aimed at point sources [25,26] or area emitting [27–32] measurements taken from stationary emission
sources. Some studies have also used mobile-DOAS to examine CHIMERE chemistry transport model
(CTM) outputs or emission inventories [26,31]. Improvements in the mobile-DOAS measurements
quality has been highly requested by the scientific community to enhance the capabilities needed to
determine NOx emission fluxes particularly in Chinese mega-cities.
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Road vehicles, which are moving sources, are now the main emission sources of NOX in Chinese
mega-cities. The large spatial scales of these cities and the predominance of moving sources make NOX

emission flux measurements rather complicated for mobile-DOAS. The large spatial scale of these cities
leads to two issues: unknown details of NOX emission fluxes in inner cities and the large amount of
time needed to take necessary measurements. This directly relates NOX emission flux measurements
needed for the high-quality wind field. Moving sources have also introduced a problem: the spatial
tropospheric NO2 vertical column density (VCD) distributed along the measurement route has a strong
relationship not only to wind field dispersion but also to traffic flow and traffic jams. This indicates that
high value VCDs can appear anywhere along roads and that the NOX flux error budget and sensitivity
to the wind field might have unexpected differences.

This paper is organized as follows: Section 2 describes the experiments, instruments,
and algorithms. In Section 3, the measurement results are presented. Section 4 concentrates on
the discussion. In Section 5, the conclusions are presented.

2. Experiment and Methodology

2.1. Experiment Overview

For area emission flux measurements using mobile-DOAS, the close integral method is usually
used [30]. Therefore, the ring structure of Beijing is ideal for the mobile-DOAS emission estimations.
We chose 4 ring roads (the second ring, third ring, fourth ring, and fifth ring) for these measurements.
The mean distance r from the measurement location to the city center was about 4.5 km, 7 km, 10 km,
and 15 km for the second ring, third ring, fourth ring, and fifth ring, respectively. Two sets of the same
mobile-DOAS model and wind profile radar were selected to perform cooperative measurements.
We used DOAS1 and DOAS2 to mark the 2 mobile-DOAS sets. DOAS1 was used to measure the third
and fourth ring, and the rest were measured by DOAS2. The wind profile radar provided simultaneous
measurements of the wind field. Figure 2 shows the measurements routes and wind profile radar
measurement location.
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2.2. Mobile-DOAS

2.2.1. Mobile-DOAS Instrument

There are two types of mobile-DOAS instruments: one working in the zenith sky configuration [18]
and the other in the multi axis (MAX) configuration [17]. The instruments for our experiment were
carefully chosen, as there are many tall buildings in Beijing that can directly act on the sunlight
scattering or reflection. The air mass factor (AMF) is also a problem, as it cannot be accurately estimated.
Therefore, the application of mobile MAX-DOAS in our experiment is limited. We chose the mobile
zenith-sky DOAS and, for simplicity, used the “mobile-DOAS” abbreviation.

The mobile-DOAS consists of several parts. A telescope, placed on the top of the mobile, is used
to collect the scattering sunlight from the zenith sky. A spectrometer with a 0.5 nm resolution and a
290–438 nm of spectral range is located inside the temperature stabilization system placed within the
car. An optical fiber is used to transmit the sunlight from the telescope to the spectrometer. The other
parts include the GPS module used to record the car’s moving trail and a computer to collect the data.
The mobile-DOAS system and its measurements principle are outlined in Figure 3.
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Figure 3. (a) The mobile zenith-sky differential optical absorption spectroscopy (DOAS) system; (b) the
measurement principle of the mobile-DOAS system.

2.2.2. Retrieval Algorithm

In this study, we used the QDOAS software (version 3.2, 2017) to retrieve the tropospheric NO2

differential slant column density (DSCD) from the measured spectra [33]. All the measured spectra
were divided by a Fraunhofer reference spectrum, which was relatively “clean”, and the ring was
calculate by DOASIS [34,35]. The absorption cross-sections used in the QDOAS for the 2 mobile-DOAS
and fitting window are listed in Table 1. Figure 4 shows a DOAS fitting example for NO2 and the
fitting residual.

Table 1. NO2 slant column density (SCD) retrieval fit setting.

Fitting Parameter NO2

Fitting windows (338~370) nm
Polynomial order 5

NO2 Vandaele, 1996 (220K, 298k)
O3 Bogumil, 2003 (223K, 243K)
O4 Thalman, 2013 (293K)

HCHO Meller, 2000 (297K)
Ring by DOASIS
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Figure 4. (Upper plot) DOAS fitting example for NO2; (bottom plot) fitting residual.

The tropospheric NO2 VCD taking part in the NOX emission flux calculations is obtained from
NO2 DSCD divided for the AMF according to the following formula [17]:

VCD =
DSCDtrop − DSCDo f f set(t i)

AMFtrop
(1)

where DSCDtrop denotes the tropospheric NO2 DSCD and AMFtrop is the tropospheric AMF.
DSCDoffset(ti) is the difference of the reference SCD and stratospheric SCD, and is a smooth

function of time [17]. DSCDoffset(ti) depends on the solar zenith angle (SZA), where the dependence is
weak when SZA <80◦ [17]. The SZA during the measurements was <55◦. Therefore, the DSCDoffset(ti)
was negligible in our measurements.

AMFtrop can be computed with a radiation transfer model simulation or with geometric
approximations [36]. In this study, we performed the Monte Carlo radiative transfer model [37]
simulations to determine AMFtrop. The AMFtrop was simulated under different SZA and different
aerosol scenarios. The mean NO2 load from national environment observation stations (Dongsi station,
Aoti Station, Gucheng station and Wanliu station) in Beijing was about 43 ppb. AMF simulation results
indicated that the AMFtrop was typically between 1.05 and 1.4. The higher SZA and higher aerosol,
the larger the AMFtrop. Since SZA was less than 45◦ for most of the measurement time (AMFtrop < 1.3),
we applied a typical AMFtrop value of 1.15 with an error of ±0.1.

2.2.3. Retrieval Comparison

We used 2 mobile-DOAS systems to measure the NOX emission flux for the first time. To ensure
measurement quality, two retrieval comparisons were performed.

The first tested the retrieval homogeneity of the 2 mobile-DOAS systems. On 14 April 2018,
we placed 2 DOAS instruments on 1 mobile to measure the NO2 of an industrial park located in
Handan, Hebei province. The 2 DOAS apparatus’ time resolutions were set as 10 s and measured NO2

almost simultaneously. The comparison results of NO2 VCDs apparatuses are shown in Figure 5a and
the correlation coefficient (R2) of the 2 sets was found to be 0.976. The high retrieval homogeneity
shows the efficacy of cooperatively measuring the area emission flux using the 2 DOAS sets.

The second was to ensure mobile-DOAS instrument performance. The retrieval homogeneity
was ensured, so we only needed to compare one of the mobile-DOAS (DOAS1) instruments with
another instrument. A ground-based MAX-DOAS located on the roof of the Beijing south observation
station building (116.468◦ N, 39.798◦ E) was selected as the reference instrument. The mobile-DOAS
and MAX-DOAS systems were put together to measure NO2 on April 16th. The 2 apparatuses time
resolutions were 10 s and measured NO2 almost simultaneously. Figure 5b presents the comparison
result, which shows good agreement with a correlation coefficient (R2) of 0.932.
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These two comparison results demonstrated that the 2 mobile-DOAS systems can perform a good
quality measurement.
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MAX-DOAS with a correlation coefficient (R2) of 0.932.

2.3. Wind Field Measurement and Average Wind Field

2.3.1. Wind Profile Radar

The wind field uncertainty is the main error source of mobile-DOAS emission flux
measurements [27]. Several studies on mobile-DOAS indicate that having a wind profile is crucial for
mobile-DOAS [18,22,24,26,31]. A near real-time measurement of the wind field is recommended for
calculating the emission flux [18,26,31]. To enable an accurate emission flux measurement, we chose a
wind profile radar to obtain wind profile data.

Wind field measurements involve two possible methods. The first uses a mobile wind profile radar
with a mobile-DOAS to measure the wind field. The second uses stationary observation. Wind profile
radar vehicles are usually large and inconvenient to enter/exit the second and third ring in Beijing
because of the strict restriction policies on vehicles. Therefore, we measured the wind field data
using stationary observations. An advantage of this approach is that the 2 DOAS sets only need 1
shared wind profile radar to obtain the wind profile data. Furthermore, the wind field and wind field
uncertainty for each ring road measurement could be determined.

The tall buildings in downtown Beijing markedly affected the wind field, so wind field observation
sites could not be selected randomly. The comprehensive meteorological experimental observation
station (116.466◦ N, 39.796◦ E) was used for Beijing’s meteorological research so we chose this station
to measure the wind field data. The location of the station is shown in Figure 2 marked with point A.

A radar for boundary wind profiling placed in a square cabin was also used in this experiment.
The wind profile radar can measure the wind profile under a height of 5 km, with a height resolution
of 50 m and a time resolution of 2 min. Since a wind profile under 1 km met our needs [31], we only
measured the wind profile under a height of 1 km.

2.3.2. Wind Field Statistics

The wind parameters taking part in the NOX emission flux calculations are for average wind
speed and wind direction, while the data furnished by the wind profile radar measured the time series
of wind profiles. In order to calculate NOX emission flux, we developed 2 methods for averaging
wind field profiles. The first used vector-based statistics and the second used scalar-based statistics.
Both presented the same behavior and were equivalent [38]. Here, we chose scalar-based statistics.

Wind data were measured as a time series wind profile and averaging was be implemented in
2 steps. The first step averaged each height of the wind field for each time series to generate a time
averaged wind profile, while the second step averaged the time averaged wind profile by using the
exponential-weight method.
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1. Wind field time averaging

First, we calculated the time averaged wind speed. The average wind speed and its uncertainty
were determined by Equations (2) and (3), respectively.

w(z j)t
=

1
N

N∑
i=1

w(z ji) (2)

σ(wzj)t =

√√√
1

N − 1

N∑
i=1

[w(z ji)−w(z j)t
]2 (3)

where i is the data measured at time i, z j is the height, and j is the layer series. The subscript t represents
the average.

We then averaged the wind direction. Wind direction distribution is subject to wrapped normal
distribution, so we introduced wrapped normal distribution to determine the average wind direction
and its uncertainty [38–40]. The wrapped normal distribution probability density is given with:

f (µ
∣∣∣θ, σ) =

1
√

2πσ

∞∑
κ=1

exp [
−(θ− µ+ 2πκ)2

2σ2 ], 0 ≤ θ ≤ 2π (4)

where θ is the wind direction, µ is the expectation, and σ is the standard deviation. Since the wind
direction is between 0 and 2π, we let κ equal 0. The wind direction uncertainty of the measured wind
data is

σ(θzj)t =
√

ln(ρ2
zj) (5)

where ρ2
zj= (cosθzj)

2+(sinθzj)
2, cosθzj =

1
N

∑N
i=1 cosθzji, cosθzj =

1
N

∑N
i=1 sinθzji.

The average wind direction is

θ > (z j >)t
=


arctan

(
sinθzj

cosθzj

)
, cosθzj> 0

arctan
(

sinθzj

cosθzj

)
+π, cosθzj< 0

(6)

In this step, the wind speed uncertainty σwt and the wind direction uncertainty σθt introduced by
time averaging were determined by Equation (7) according to the error combination law, which are:

σwt =
√∑M

j=1 [Qzj·σ(wzj)t]2, σθt =
√∑M

j=1 [Qzj·σ(θzj)t]2 (7)

where Qzj is the weight function determined by Equation (8).

2. Wind profile averaging

After the time averaging, the next step was to average the wind field by the NOX concentration’s
exponentially decreasing profiles. This was an exponential weight function [29,31] and the weight at
the height of z j is:

Qzj =
exp(−z j/z0)∑M

j=1 exp(−z j/z0)
(8)

Then, the final average wind speed wz and the average wind direction θz are given with:

wz =
M∑

j=1

[Qzj·w(z j)t], θz =
M∑

j=1

[Qzj·θ(z j)t] (9)
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where z0 is the scale height, which is assumed to be 500 m in summer and 300 m in winter [31].
In spring and autumn, z0 was chosen as the average of the winter and summer seasons, i.e., 400 m.
The z0 we chose is a rough estimate and has a rather small influence on the average wind field [31].

In this step, the uncertainty caused by the wind profile was introduced. According to statistical
theory, the wind speed σwz and the directional uncertainty σθz of the wind profile is:

σwz =

√∑M
j=1 [Q j(wz −w(z j)t)]

2
, σθz =

√∑M
j=1 [Q j(θz − θ(z j)t)]

2
(10)

Therefore, the total uncertainty of the wind speed σw and the wind direction σθ are:

σw =
√
σ2

wz+σ
2
wt, σθ =

√
σ2
θz+σ

2
θt (11)

2.4. Determination of the NOX Emission Flux

There are two steps to determine the NOX emission flux.
The first step is to determine the NO2 emission flux using the closed integral method is given as

FNO2 =

∮
VCD

→
w
→
n ds (12)

where VCD is the NO2 VCD,
→
w is the wind filed, and

→
n is the unit vector orthogonal to the car’s

moving direction. The discrete form of Equation (12) is given with [25]

FNO2 =
∑

i

[VCDi·w·(cosθ·siy−sinθ·six)] (13)

where w is the average wind speed and θ is the average direction.
→
si= (six, siy) is the car’s movement

vector. VCDi is the tropospheric NO2 VCD retrieved from the spectra measured by mobile-DOAS.
Then, we determined the NOX emission flux with NOX/NO2 ratio correction and NOX lifetime

correction [29].
FNOx= RNOx·cτ·FNO2 (14)

where RNOx is the mean NOX/NO2 ratio. RNOx is sensitive to meteorological conditions, other trace
gases, and emission sources [32]. However, for Beijing, the RNOx was highly sensitive to emission
sources because many vehicles on the road give off NO and consume a large amount of O3. This may
result in significant O3 consumption, which will in turn lead to a higher NOX/NO2 ratio near the
surface. Therefore, the RNOx observed on the ground should be carefully used. An understanding of
the mean RNOx value at different heights is thus important. An available method is to derive the mean
RNOx from the European Center for Medium-Range Weather Forecasts (ECMWF) CAMS model with
the NO2 and NO products under different heights. The mean RNOx derived from different heights is
used in this study at a height under 1 km at a UTC time of 6:00 (LT 14:00).

cτ= exp( r
w·τ

)
is the NOX atmospheric lifetime decay correction factor, r is the mean distance from

the measurement center to the measurement location, and we have provided these data in Section 2.1.
τ is the NOX mean lifetime in atmosphere. In urban areas it varies from 3 h to 12 h in different
seasons [31]. Usually, the NOx lifetime correction is sensitive to the lifetime when the wind speed is
very low (<1 m/s) in mega-city measurements because NOX decay is a lifetime exponential function.
However, accurate lifetime correction is not very sensitive when the wind speed is larger than 1 m/s.
In this study, average wind speeds are all above 1.5m/s. Therefore, we roughly assumed the urban
NOX mean lifetime to be about 5 h in spring [29]. It should also be noted that Equation (14) is for NOX

lifetime correction of total NOX emissions. As Beijing has strong NOX emissions within fourth and fifth
ring roads, NOX influx and outflux [24] lifetime correction for the flux of fourth and fifth ring roads
are not so evident. There is a 5%~11% difference between the correction for total flux correction and
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correction for influx and outflux. The lifetime correction for NOX influx and outflux is important when
there is little difference between influx and outflux [31]. Differences between NOX influx and outflux
for second and third ring roads are relatively small so that lifetime correction for influx and outflux
is important. However, the spatial scales of second and third ring roads are rather small. Lifetime
correction for NOX influx and outflux have little influence from the correction for total NOX emissions.
As a result, we applied lifetime correction for the NOX influx and outflux of fourth and fifth ring roads.

3. Results

3.1. Average Wind Field

Using the statistical method outlined in Section 2.2.2, we first calculated the time averaged wind
field to generate corresponding wind profile. Then, we averaged the time averaged wind profile.
The average wind field and its uncertainty for different ring roads are listed in Table 2. The average
wind field in Table 2 was used to determine the NOX emission flux in Section 4.

Table 2. The ring roads’ measuring data, measuring time, averaged wind field, and its uncertainty on
April 18th, 20th, 24th, 25th, and 26th, 2018.

Date (2018) Ring Roads and Measuring
Time (Beijing Time)

Averaged Wind Speed and
Its Uncertainty (m/s)

Averaged Wind Direction
and Its Uncertainty (◦)

April 18th

The second ring (12:40~13:27) 2.325 ± 0.643 55.644 ± 17.039
The third ring (12:03~13:11) 2.285 ± 0.638 65.176 ± 13.735
The fourth ring (9:39~11:24) 1.738 ± 0.501 70.651 ± 17.302
The fifth ring (9:27~11:56) 1.736 ± 0.494 67.317 ± 15.497

April 20th

The second ring (13:18~14:32) 2.905 ± 0.779 68.607 ± 15.859
The third ring (12:01~13:21) 3.553 ± 0.959 64.944 ± 13.220
The fourth ring (9:33~11:21) 3.423 ± 0.919 61.889 ± 20.926
The fifth ring (9:24~12:22) 3.501 ± 0.942 60.662 ± 15.265

April 24th

The second ring (11:24~12:15) 2.183 ± 0.551 255.665 ± 13.897
The third ring (9:56~11:03) 2.721 ± 0.704 260.323 ± 20.409

The fourth ring (11:09~12:47) 1.973 ± 0.512 255.457 ± 13.760
The fifth ring (9:41~11:03) 2.83 ± 0.737 260.666 ± 21.051

April 25th

The second ring (13:19~14:07) 2.826 ± 0.730 44.126 ± 8.448
The third ring (12:28~13:36) 2.621 ± 0.676 43.218 ± 9.216

The fourth ring (11:03~12:26) 1.956 ± 0.545 41.982 ± 21.501
The fifth ring (9:58~12:28) 2.14 ± 0.582 45.945 ± 19.045

April 26th

The second ring (12:08~13:30) 1.912 ± 0.506 273.92 ± 17.226
The third ring (11:36~13:10) 1.537 ± 0.413 276.556 ± 15.009
The fourth ring (9:42~11:32) 1.686 ± 0.459 255.23 ± 14.349
The fifth ring (9:33~11:53) 1.571 ± 0.431 254.648 ± 14.211

3.2. Determination of NO2 VCD

We used Equation (1) to calculate tropospheric NO2 VCDs. After determining the NO2 VCDs,
we plotted the overall NO2 VCDs with the GPS data shown in Figure 6. From the results, NO2 VCDs
varied from 1.38 × 1015 molec./cm2 to 8.0 × 1016 molec./cm2. As we mentioned in Section 1, the NO2

VCD has a strong relationship with traffic flow and traffic jam, so high NO2 VCD distribution along
measurement routes had no obvious pattern. This strongly impacted the emission flux error estimation,
which we discuss in Section 4.3.
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Figure 6. NO2 VCD distribution of Beijing’s ring roads on April 18th, 20th, 24th, 25th, and 26th.
From outside to inside, the ring roads are the fifth ring, fourth ring, third ring, and second ring.

3.3. Comparison of TROPOMI and Mobile-DOAS VCDs

In this study, mobile-DOAS NO2 VCDs were compared with a Tropospheric Monitoring Instrument
(TROPOMI) to measure tropospheric NO2 VCDs over Beijing. For places without significant emission
sources, ground-based observations can compare with satellite products within 2 h around the satellite’s
overpass time [9]. As there are many moving sources in Beijing, we used mobile-DOAS tropospheric
NO2 VCDs within 1 h around the overpass time for comparison. Figure 7a–e presents the spatial
distribution of mobile-DOAS and satellite tropospheric NO2 VCDs over Beijing. The two datasets
generally agree with each other, yet for some observations the satellites underestimated NO2 VCDs
compared with mobile-DOAS (subfigures (b) and (e)). The tropospheric NO2 VCD daily average
for the mobile-DOAS and TROPOMI correlation coefficient (R2) was 0.7, showing a relatively good
agreement, as shown in subfigure (f).
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Figure 7. (a–e) are the mobile-DOAS and satellite tropospheric NO2 VCD spatial distribution; (f) is the
correlation coefficient (R2).

4. Discussion

4.1. NOX Emission Flux Error Sources

NOX emission flux errors mainly come from the VCD, wind speed, wind direction, car moving
vector, NOX/NO2 ratio, and lifetime measurement errors or uncertainty [27–32]. The NOX emission
flux is obtained with:

∆FNOx =
√

∆F2
RNOx + ∆F2

cτ + ∆F2
VCD + ∆F2

s + ∆F2
θ
+ ∆F2

w (15)

where ∆FRNOx represents the NOX flux error introduced by the NOX/NO2 ratio uncertainty.
The NOX/NO2 ratio uncertainty we assumed to be about ± 0.1.

∆Fcτ is the NOX flux error introduced by the NOX atmospheric lifetime uncertainty. The NOX

atmospheric lifetime uncertainty we assumed here to be about ±1 h. It should be noted that the NOX

lifetime uncertainty estimation in this study was rough and had a small influence on the error budget
(see Section 4.3).

∆FVCD is the NOX emission flux error introduced by NO2 VCD error. Because
VCD = DSCDtrop/AMFtrop, the VCD error is determined by DSCD retrieval error and AMFtrop

uncertainty. The NO2 DSCD is retrieved by the QDOAS software so that DSCD error can be mainly
attributed to the DOAS retrieval error. The AMF error that we simulated was approximately ±0.1.

∆Fs is the NOX emission flux error caused by the car movement vector measurement error. The car
movement vector was recorded by GPS and the GPS error was <1.5 m.

∆Fw and ∆Fθ represent the emission flux error caused the wind speed uncertainty and wind
direction uncertainty, respectively. The wind speed uncertainty and wind direction uncertainty are
mainly attributed to the wind fluctuation in space and time during the measurements. The uncertainties
are listed in Table 2.

4.2. NOX Emission Flux and Error

One of the motivations of this work was to obtain good spatial coverage of mega-cities’ NOX

emission flux in a short amount of time. The NOX emission flux values of different ring roads obtained
using our measurements can provide useful and detailed information on road vehicle exhaust in
Beijing. The NOX emission flux and the errors results are shown in Figure 8.
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Figure 8. The NOX emission flux and its error for the ring roads in Beijing; measurements taken on
April 18th, 20th, 24th, 25th, and 26th, 2018.

During the measurement, the NOX emission flux of the second ring varied from
(0.30 ± 0.51) × 1024 molec./s to (1.53 ± 0.75) × 1024 molec./s; the third ring varied
from (2.60 ± 0.95) × 1024 molec./s to (5.21 ± 1.42) × 1024 molec./s; the fourth ring varied from
(5.01 ± 3.43) × 1024 molec./s to (18.22 ± 6.82) × 1024 molec./s; and the fifth ring, representing downtown
Beijing, varied from (19.29 ± 5.26) × 1024 molec./s to (36.46 ± 12.86) × 1024 molec./s. The fifth ring’s
NOx emission flux mean value was about 26.89 × 1024 molec./s, which was ~13.08% higher compared
to the estimations by Li et al. in November, 2014, under a low wind speed (<3 m/s) [41]. Significant
improvement of NOX emissions within the fifth ring was not found in this study, although a strict
traffic control policy has been implemented in Beijing for these years.

The NOx emission flux showed an overall increase from the second ring to the fifth ring.
This indicates that little NOX was emitted from other sources within the fifth ring (mainly the road
vehicles emissions). Because the traffic conditions vary day to day, the NOX emission flux of different
ring roads also vary day to day, which can be easily found in our measurements. For example, the fifth
ring’s NOX emission flux was 36.46 × 1024 molec./cm2 on April 18th and 34.740 × 1024 molec./cm2 on
April 26th, while it was 20.63 × 1024 molec./cm2 on April 20th, 19.29 × 1024 molec./cm2 on April 24th,
and 23.35 × 1024 molec./cm2 on April 25th. Other ring roads that were measured on different dates also
show this characteristic. This analysis reveals that the large amount NOX emissions from road vehicles
may create additional challenges for the accurate measurements of NOX emissions in the mega-cities
of China.

Some interesting findings from our results were the NOX emission flux differences between the
third and fourth ring. On April 18th, the NOX emission flux values of the third and fourth ring were
2.74 × 1024 molec./cm2 and 13.01 × 1024 molec./cm2, respectively. It seemed reasonable that for the
fourth ring road’s NOX emissions would be higher than those of the third ring. However, on April
20th, the NOX emission flux values of the third and fourth ring were 5.22 × 1024 molec./cm2 and
5.10 × 1024 molec./cm2, respectively. The fourth ring’s NOX emissions were slightly lower than the
third ring’s on April 20th. The differences in the NOX emission flux values can be attributed to the
number of road vehicles. The direct reason for the different number of road vehicles was the different
measurement time periods. A potential issue was that there may be an indirect cause behind the
differences in the number of road vehicles. The number of road vehicles during different time periods
was decided by factors such as the citizen’s workplace, the office area aggregation scale in the city,
and the business style. Therefore, detailed NOX emission flux studies in mega-cities can provide
important information for urbanization in China.
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4.3. Error Budget and Sensitivity

4.3.1. Error Budget

Studying the emission flux error budget and sensitivity can improve our knowledge about the
area emitters’ flux measurements, especially in mega-cities. Therefore, another motivation of this work
was to study the error budget of NOX emission flux measurements in mega-cities and to determine the
emission flux sensitivity factors in detail. We chose the 18th and 20th measurement results as typical
examples to analyze.

The tropospheric NO2 VCD spatial distribution has a strong relationship to traffic flow and traffic
jams. This suggests that NOX emission flux error may be very sensitive to wind field uncertainty.

Because the emission flux error is propagated and combined (and is not linear), using percentage
indicator is not a good way to evaluate the error budget. We thus used R2

i as the indicator:

R2
i =

∆F2
i

∆F2
NOx

(16)

where ∆Fi is the emission flux error and i represents the error source. Because
∑

R2
i = 1, a different

error source budget can be accurately represented by R2
i . ∆Fi contributes over half of this value when

R2
i > 0.5.

Figure 9 shows the R2
i of the ring roads’ measurements on April 18th and 20th. Interestingly,

the sums of the wind speed uncertainty’s R2 and the direction uncertainty’s R2 are all above 0.84,
with the highest close to 1, while the other error sources’ R2 values are very low. This could indicate
that wind field uncertainty contributed most to the emission flux error in our measurements.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 19 
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Figure 9. The R2
i of the ring roads measured on April 18th and 20th. Group A’s main error source is the

wind direction uncertainty. Group B’s main error source is the wind speed uncertainty. Group C’s
main error is both the wind direction uncertainty and the wind speed uncertainty.

We also found an extreme case for the second ring on April 18th and extreme cases for the second,
third, fourth, and fifth ring on April 20th. The main error source was either wind speed uncertainty or
wind direction uncertainty, rather than the common work of wind field uncertainty. This suggests that
the main error source of each case may be the sensitivity factors of the emission flux error.

We classified the R2 values into Groups A, B, and C in Figure 9 to aid the sensitivity study. Groups
A, B, and C represented three different cases:

A: the main error source is the wind direction uncertainty;
B: the main error source is the wind speed uncertainty;
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C: the error contribution of the wind speed uncertainty and wind direction uncertainty is
approximately equal.

4.3.2. Sensitivity to Wind Field Uncertainty

Sensitivity involves studying the relationship between the independent variable change rate
(the wind speed uncertainty or the direction’s) and the dependent variable change rate (the emission
flux error due to wind speed uncertainty or the direction). The independent variable change rates are
given by:

∆θ =
θ− θ
σθ
×100%, ∆w =

w−w
σw
×100% (17)

The dependent variable change rates are given by:

rθ|w =
∆Fθ−θ
∆FNOx

∣∣∣∣∣∣
w

, rw|θ =
∆Fw−w
∆FNOx

∣∣∣∣∣
θ

(18)

The variations of rθ|w/rw|θ with ∆θ/∆w are shown in Figure 10. Groups A, B, and C in Figure 10
correspond to the same groups as shown in Figure 9. We also calculated the slope value because of
the relationship between rθ|w/rw|θ and ∆θ/∆w, which was linear. This can help assess the sensitivity.
The higher the slope, the more sensitive it is to the error source.
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Figure 10. The emission flux error change rate (rθ|w/rw|θ) varied with the wind direction/speed change
rate (∆θ/∆w ) on April 18th and 20th. The higher the slope, the more sensitive it is to the NOX emission
flux error.

First, we studied the characteristics of Groups A and B. The absolute slope of rθ|w in Group A
(varying with ∆θ ) was higher than that of rθ|w while the absolute slope of rw|θ in Group B (varying
with ∆w ) was higher than that of rθ|w A higher slope means a higher growth rate and, in other words,
greater sensitivity. Therefore, the emission flux error of Group A was sensitive to wind direction
uncertainty and Group B was more sensitive to wind speed uncertainty. Unlike the fifth ring in Group
A, the rθ|w slopes of the second ring on April 18th and 20th were much higher than those of rw|θ
suggesting that the emission flux error was highly sensitive to wind direction uncertainty.

We made an interesting discovery in Group B (the third ring measurement on April 20th). The rw|θ
varied with the ∆w, but has a negative trend for rθ|w To explain this, we compared the third ring’s VCD
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with the fifth ring’s VCD (see Figure 11). The rectangular as area represented the main high VCD
value. The blue arrow was the fifth ring’s averaged wind field and the red arrow was the third ring’s
averaged wind field.
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Figure 11. The NO2 VCD spatial distribution of the fifth ring and third ring on April 20th (The blue
arrow is the averaged wind field of the fifth ring. The red arrow is the averaged wind field of the
third ring).

The characteristics of the point/industry park source emission measurements by mobile-DOAS
suggest that the high VCD value should appear downwind. The high value VCD distribution we
measured was approximately vertical to the wind direction. However, the NO2 VCD for road vehicle
exhaust was different. The high value VCD distribution had a relationship with traffic jams and traffic
flow, not only with the wind field. The high VCDs in the fifth ring have three distributed sectors,
while those in the third ring have two. Clearly, these high VCDs impact the emission flux as the
emission flux errors are different. This phenomenon could produce diverse sensitivity to the wind
direction and, furthermore, indicates that the NOX emissions of the road vehicle exhaust measurements
are highly sensitive to the wind field. Therefore, more accurate wind field data are necessary.

Second, we studied the characteristics of Group C. Like other groups, the slope in each unit figure
of Group C had subtle differences. This indicates that the sensitivity of the emission flux error to the
wind speed uncertainty or the directional uncertainty was similar.

Since emission flux error was highly sensitive to wind field uncertainty, the emission flux error
may have evident increase if using coarse wind measurements. For coarse wind measurements, wind
speed uncertainty, and wind directional uncertainty were roughly estimated as ±1 m/s and ±20◦,
respectively. The emission flux errors with coarse wind measurements typically increased by about
7%~50%. The wind profile radar used in our experiment was an advantage.

4.3.3. Sensitivity to Other Error Sources

In Section 4.3.2 we determined that the emission flux error was highly sensitive to wind field
uncertainty. The sensitivity to other error sources should also be discussed.

We assumed the NOX atmospheric lifetime uncertainty to be ±1 h. As NOX decay is a lifetime
exponential function, the NOx emission flux is not very sensitive to NOX atmospheric lifetime
uncertainty. The R2

τ is < 0.15, even though the atmospheric lifetime uncertainty is ±2 h. VCD
uncertainties are determined by SCD retrieval errors and AMF errors. With the amount of VCD data
included in the emission flux calculations, the VCD uncertainties have only a small influence on
the emission flux errors. Therefore, for area measurements, emission flux errors are not sensitive to
VCD uncertainties.



Remote Sens. 2020, 12, 2527 16 of 19

The NOX/NO2 ratio directly acts on NOX emission flux corrections; thus, NOX emission flux
errors may be sensitive to the uncertainty of this ratio. In Section 4.3.2, we demonstrated what
happens when the error source dominates the error budget. For simplicity, we used R2 to survey
the sensitivity, wherein measurements from the fifth ring were tested. The R2 of the NOX/NO2 ratio
uncertainty remains above 0.5 when the NOX/NO2 ratio uncertainty is >0.4., as shown in Figure 12.
This demonstrates that the emission flux error is no longer sensitive to wind field uncertainty when the
NOX/NO2 ratio uncertainty is > 0.4.
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Figure 12. The variation in the R2 of NOX/NO2 ratio uncertainty with NOX/NO2 ratio uncertainty.

In the above analysis, we showed the emission flux error budget and the relationship between
the emission flux error sensitivity and wind field uncertainty. We found that wind field uncertainty
was the main error source for emission flux errors on Beijing’s ring roads. For some cases, the NOX

emission flux errors were highly sensitive to wind speed uncertainty or wind direction uncertainty,
rather than both. These diverse sensitivities were caused by traffic flow and traffic jam. This study
adds to the existing literature on this topic expanding upon the work of previous studies [22–32,34–36].
Our work also indicates that wind information is crucial, as having the actual time and height resolved
wind measurements yields great advantages for measuring mega-cities’ emission flux.

5. Conclusions

We reported here, for the first time, the use of two mobile-DOAS and a wind profile radar to
perform cooperative measurements using data from April 2018.

Two mobile-DOAS systems were used to measure the NO2 VCD of Beijing’s ring road and a wind
profile radar was used to measure the near real-time wind field in a short amount of time to determine
the NOX emission flux values of different ring roads. The results show that the NOX emission flux of
Beijing’s fifth ring road varied from (19.29 ± 5.26) × 1024 molec./s to (36.46 ± 12.86) × 1024 molec./s.
Day to day variability in the different ring roads’ NOX emission flux values was also observed in our
measurements. At the same time, studying the NOX emissions from different ring road found that
on April 20th, the third ring’s NOX emissions flux was slightly higher than the fourth ring’s, because
the two ring roads were measured at different time periods. We then performed the emission flux
error budget and sensitivity analyses. The main emission flux error source was wind field uncertainty.
For some measurements, the main emission flux error source was either wind speed uncertainty or
wind direction uncertainty, rather than both. Actual time wind measurements in our experiments
decreased the NOX emission flux error by about 7%~50% compared to coarse wind measurements.
The emission flux error sensitivity study indicated that the emission flux error, in some cases, was highly
sensitive to wind speed uncertainty or wind direction uncertainty, rather than both. The emission flux
error had diverse sensitivity to wind direction uncertainty, which is a novel addition to the existing
literature on this topic. This also indicates that wind information is crucial for measuring Beijing’s NOX

emission flux values. The NOX/NO2 ratio uncertainty sensitivity analyses indicated that the wind field
uncertainty no longer dominates the emission flux errors when the NOX/NO2 ratio uncertainty is >0.4.
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Possessing actual time and height resolved wind measurements and provided a great advantage
for NOX emission flux measurements in Chinese mega-cities. The emission flux errors of different ring
roads caused by wind speed uncertainty and wind direction uncertainty were clearly distinguished.
Good spatial coverage also provides crucial information for traffic control policies in these cities.
Potential advantages of this method are that it can be used to validate the high spatial resolution NOx
emission flux derived the TROPOMI [42] and that it can be applied to many other mega-cities in China
since most of these cities have a ring road structure, a large scale, and many vehicles.
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