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Abstract: The reassembling of severely damaged tangible heritage is a primordial task for archaeologists
who not only aim to further study the past but also to preserve ruined ancient monuments. As a
consequence, various researchers have proposed methods to automatically solve this problem by
computing and matching geometric properties of counterpart fragments. Although their results
are quite promising, experts still carry out this task manually by finding relationships between
distinctive matching cues, such as type of decoration, remaining traces, inscriptions’ content, etc.
The topic itself poses challenges to both automatic and manual approaches due to the high level
of damage ancient broken fragments have undergone over the centuries. Therefore, this paper
proposes a Puzzling Engine that combines crucial elements of automatic and manual methodologies to
empower experts with registration tools for reassembling fragmented heritage. Unlike similar hybrid
human-computer puzzling engines, our approach is capable of automatically proposing matches and
rough alignments solely based on the geometry of fractured surfaces. Based on these initial solutions
and a set of registration tools, experts can accurately solve the puzzle. The virtual environment has
been used and verified to find pairwise puzzle-pieces of actual antique wall decorated fragments,
resulting in new discoveries that experts could not have come up with by utilizing classic techniques.
Concretely, the contributions are twofold, (i) a feature-based registration pipeline that is able to
suggest both matches and alignments to the user and (ii) a virtual interface that integrates automatic
and user-assisted techniques to accurately puzzle fragmented surfaces.

Keywords: heritage reassembling; local 3D descriptors; feature matching

1. Introduction

Many ancient heritage sites have undergone numerous transformations over time to such a
degree that their archaeological remains have become fragmented. The incompleteness of such
monuments and artifacts prevents experts from further studying them. Consequently, the reassembling
of fragments is a paramount task not only for research purposes but also for heritage conservation.
The broken pieces are typically reassembled based on several factors, such as the place where the
fragments were found, the type of decoration, inscriptions content, etc. The task of identifying such
matching cues is cumbersome due to the severe damage ancient artifacts have suffered. As a result,
archaeological research is delayed since the duration of field digging campaigns is typically rather
limited, as is the time allowed in museums or archives to study the assets. Furthermore, manual
manipulation might jeopardize the objects’ physical and archaeological integrity. Therefore, experts
have resorted to 3D recording technologies to scan the fragments on-site and digitally reassemble
them later on in the laboratory. To this end, various digital platforms have been developed to provide
restorers with the tools for visualization in 3D space, as well as with tools for seamless alignment [1].
Although these approaches highly benefit the restoration process, digital puzzling requires specific
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expertise not only to retrieve potential matching relationships but also to interact with the recorded
models. This paper presents a Puzzling Engine that allows both experts and laymen without a
specific background to seamlessly interact with the recorded fragments by means of a set of tools for
visualization and registration.

This work is an extension of the Puzzling Engine introduced in [2]. We received an invitation from
the organizers of the International Committee of Architectural Photogrammetry (CIPA) symposium to
extend the conference paper, which describes a virtual interface that enables experts to reassemble
multiple wall broken fragments. Its main characteristics are threefold: (i) The 3D models interaction
along a 2D plane, (ii) the contour segmentation that allows to intuitively find common indentation
regions between counterpart fragments, and (iii) the registration tools to accurately solve the puzzle.
In this extended version, the contour segmentation is improved by incorporating a machine-learning
module to extract decorated surfaces. Moreover, computational modules for automatic matching
are included so that the engine itself is able to propose potential correspondences between similar
fragments. An overview of the computational elements that compose the proposed approach is
depicted in Figure 1. The steps presented in our workflow are adapted from the common pipeline for
automatic 3D registration, including segmentation, descriptors extraction, feature matching, and object
alignment. The segmentation process mainly aims at delineating the footprint of fractured regions by
extracting the area around the main decorated plane. Based on the obtained point-cloud, local features
are computed to accurately describe the contour surface in terms of its geometric properties. Along with
these features, geometric constraints such as normal coherence are taken into account to estimate
a set of consistent correspondences. These matched points serve in two ways: As a visual aid to
detect possible joint regions and as a basis to compute a rigid transformation for automatic solving.
The proposed pipeline is tested over numerous ancient decorated wall fragments of ancient Egyptian
tombs to showcase the potential of the Puzzling Engine. Although the obtaining matching results show
that for some pair of fragments the registration pipeline estimates accurate alignments, this approach
is not meant to substitute automatic objects reassembling methods. The goal is to complement manual
alignment tools with geometry-based matching algorithms to ease the puzzling of tangible heritage.

Figure 1. Overview of the proposed registration pipeline for pairwise puzzling. The Segmentation
stage aims at extracting both the main decorated surface and contour of wall decorated fragments.
These regions of interest are processed in the Automation stage, which consists of a feature-based
registration pipeline to propose alignment solutions. The final stage is the virtual interface that allows
the user to finely align matching points between counterpart fragments.
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The key contributions of the presented work are the following.

• Extraction of highly damaged wall decorated surfaces by combining machine learning methods
and plane-fitting;

• Normal Coherence-based adaptations of well-known 3D descriptors and feature correspondence
algorithms to tackle the automatic reassembling of digital heritage.

• Accurate user-assisted registration of wall broken fragments by means of projecting the input
assets into a generic plane so that both objects’ maneuvering and alignment transformations can
be carried out in 2D space.

The rest of the paper is organized as follows. Section 2 gives an overview of the existing
approaches for fragments reassembling. Section 3 describes in detail the proposed methodology
from the approach to extract the main decorated surface and fragment’s contour, to the automatic
alignment. The main core of the paper’s contribution is presented in Section 3.2, in which every step of
the automatic alignment workflow is explained. The procedure to compute the ground truth metrics
and performance assessment of the proposed computational modules are presented in Section 4.
Finally, the conclusion and future work are given in Section 5.

2. Related Work

With the advent of robust 3D recording technologies and techniques, novel approaches for
heritage reassembling have emerged. The accurate geometry of the obtained models has allowed
the expansion of algorithmic possibilities to solve cumbersome manual labor. The existing works for
archaeological artifacts reassembling in the three-dimensional space are divided into two branches:
Computer-assisted and fully-automated approaches. The former aim at providing experts with digital
tools to rapidly find matching cues. The latter rely on feature-based correspondence algorithms
to automatically register the broken assets. As the proposed work combines components of both,
the literature study outlines the significant works of both branches and their differences with the
proposed approach.

Computer-assisted reassembling methods support the manual alignment labor by means of a
virtual interface, through which users can maneuver the recorded assets in 3D space while identifying
potential matching surfaces. To accurately perform this task, researchers have proposed to segment
the input data into multiple regions of interest to serve as a basis to easily distinguish matching points.
These segmentation algorithms seek to extract geometry-based properties such as curves, normal
surfaces, carvings, and so on. For example, Benedict Brown et al. [3] developed a virtual environment
that is capable of finding shape-based pairwise matches of fresco fragments. These preliminary
solutions are valuable information for restorers to filter out geometrically incoherent puzzles. Along the
same lines, Mellado N. et al. [4] deployed a virtual reality environment to align broken archaeological
objects by computing a set of registration methods and constraints such as the Iterative Closest
Points (ICP) [5] algorithm, vertex distance, and normal coherence. Additionally, their system
takes into consideration the user’s feedback to enhance registration accuracy, thus functioning as a
real-time interactive registration platform. More recently, Papaioannou Georgios et al. [6] proposed
a comprehensive pipeline to reassemble 3D archaeological artifacts including ceramic vessels and
broken stone fragments of various shapes and sizes. The developed virtual environment includes a
set of segmentation methods as well as registration tools for either pairwise or multi-part matching.
These methods encompass fracture classification, region growing segmentation, curved-based features
extraction, and fragment penetration penalization methods for fine alignments.

On the other hand, automatic methods seek to find matching fragments by computing and
comparing high level geometrical properties. This is a challenging task since fragmented archaeological
assets have different characteristics so that specific matching cues are considered for puzzling.
For instance, poly-chrome ceramic broken fragments are generally composed of well-defined curves,
thus making shape-based matching heuristics along with color comparisons suitable approaches to
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find potential joint regions [7]. Similarly, the contour and thickness of pottery fragments are essential
features for the automatic reassembling of vessels [8]. Stone fractured fragments, however, are more
complex artifacts to deal with due to their erratic shape and erosive material. Therefore, researchers
have resorted to sophisticated geometric computations to numerically describe and match regions
of interest. The method proposed by Huan Qi-Xin [9] relies on discrete geometric operations [10]
computed over salient areas to estimate geometrical relationships among multiple fragments. The set
of obtained correspondences is processed by the Random Sample Consensus RANSAC method [11] to
remove false positives. Lastly, an accurate rigid body transformation is calculated from the resulting
matches, thus completing the automatic alignment workflow. Following the same registration process,
Zhang Kang et al. [12] proposed to estimate a matching template from the intact object’s surfaces
based on the Signature of Histograms of Orientations SHOT [13] descriptor and curvature-based
features. Then, potential matching relationships are computed by comparing the initial template to
the geometrical information of the fractured pieces. More recently, Qunhui Li et al. [14] presented a
pairwise matching approach that compares concave-convex patches extracted along boundary contour
surfaces. Afterwards, similar to the aforementioned approaches, the matched areas are accurately
aligned by means of the Iterative Closest Points algorithm.

The outlined automatic fragments reassembling methods have been successfully applied to puzzle
objects with intact broken surfaces. Consequently, the geometrical overlap between fragments is
sufficient for feature-based matching methods to find a vast number of correspondences. This property,
however, does not hold for archaeological fragments due to the fact that their fractured surfaces have
suffered significant damage, preventing automatic methods from computing reliable correspondences.
Therefore, the proposed Puzzling Engine is a hybrid approach that combines a set of registration
tools with automatic matching algorithms to ease digital puzzling. More specifically, similar to
computer-assisted methods, segmentation algorithms are implemented to extract regions of interest
such as boundary contours, curve-based local salient points, and the main planar decorated surface.
Moreover, inspired by automatic approaches, a set of matches automatically computed by the
engine based on the input models’ geometric properties, serves as starting point for user decisions.
These matching cues play a fundamental role in the puzzling process as they serve as either a
confirmation or starting point for restorers to propose alignment solutions. By exploiting the best
properties of such approaches, the proposed engine is capable of accurately puzzling heavily damaged
ancient heritage fragments.

3. Methodology

In this section we describe the algorithmic steps that composed the Puzzling Engine. These include
the extraction of regions of interest and the registration workflow to increase the degree of automation
of the virtual platform.

3.1. Segmentation of Main Decorated Surface

RANSAC is a well-proven method that fits parametric models to an arbitrary set of noisy
observations. In our previous work, this algorithm is deployed to extract the main decorated surface
by fitting a plane to the fragment’s model. For 93% of the dataset the surface of interest is correctly
extracted since the models contained a well-defined plane. However, when testing the algorithm for
highly-damaged block fragments, the success rate notably decreases. As noted in Figure 2, multiple
planes can be fitted to the fractured fragment but none of them correspond to the actual decorated
surface. This problem has to do with the fact that only 3D geometry is considered, leaving aside
important characteristics of heritage assets such as color and relief. In fact, these features are critical for
experts to identify the fragment’s main surface and start the puzzling process. Therefore, the decoration
color is taken into account as an extra constraint to consider an extracted plane as a decorated surface.
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Figure 2. Example of a case where RANSAC struggles to find the decorated surface due to the irregular
shape of the fragment.

This feature requires us to modify the original approach since we now introduce two additional
requirements: We must extract multiple dominant planar surfaces and also need a system capable
of scoring the amount of paint on the fragment. These modifications are included in Algorithm 1,
which outlines the step-by-step process to segment the main decorated surface. First, the fragment’s
dominant planes are computed by RANSAC based on a threshold condition. Afterward, for each
extracted entity, the percentage of paint or decoration is estimated by a color classifier. Finally,
the extracted plane with the highest paint percentage is designated as the main decorated surface.
The combination of both characteristics (color and planarity) highly reduces the number of false
positives as multiple potential extracted surfaces are evaluated. Since the success of the proposed
approach highly relies on the classifier, the next subsection is dedicated to explain the details of
such module.

Algorithm 1: Extraction of the main decorated surface S given a fragment F and a plane
threshold Th.

P = ExtractDominantPlanes(F,Th);
S = GetDecoratedSurface(P);
ExtractDominantPlanes (PCD, Th)

inputs :point-cloud PCD of a factured fragment , RANSAC Plane Threshold Th
output :List P of dominant planes extracted from PCD
do

Extract dominant plane Pi from PCD through RANSAC;
while Pi satisfies Th;
return P;

GetDecoratedSurface (P)
inputs :List P of dominant planes, BackgroundColorClassifier
output :Decorated Surface
foreach point-cloud Pi ∈ P do

Classify decoration colors through BackgroundColorClassifier;
Estimate decoration percentage dp;

return Pi with the highest dp;
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3.1.1. Training Data for the Background Color Classifier

The fragments’ deterioration poses multiple difficulties for the design of the decoration color
classifier. For instance, the prominent decoration colors cannot be directly mapped to a specific
tone palette because fragment surface erosion might have modified their intensities. In addition,
because of damage and vandalism that heritage assets have undergone over decades, some broken
fragments might present scratches and graffiti which prevent from intuitively distinguishing relief
decoration traces. The classification of decoration colors, as a consequence, unarguably requires human
intervention. Therefore, we use machine learning to design the classifier. The implementation details
of which are described in two parts, first an analyses of the training data is presented, after which the
results of the obtained model are discussed.

Instead of considering the remaining paint of the decorated surface as inliers or regular
observations, we use the colors of non-decorated surfaces to train the classifier. As these colors
reassemble the decoration background, we assume that the outliers of the trained classifier potentially
correspond to decoration colors. This is a convenient training approach since it solely requires us to
identify the decorated surface, exclude this region, and leave the remaining point-cloud as training
data. This process is done via a custom-made virtual platform that allows for smoothly maneuvering
the fragments in 3D space to identify the decorated surface. Once the operator finds the decoration,
he indicates four points across the decorated area; after which a region growing approach is conducted
to extract the complete surface. This results in two point-clouds: The main decorated region and the
rest. The former is used to create a ground-truth data-set to calculate the success rate of the proposed
method, whereas the colors of the latter point-cloud are processed to generate the training data.

In order to prevent over-fitting when training the model, the input colors are clustered in
n prominent background tones by means of the K-means algorithm [15], a method that groups
observations based on well-identified K centroids within the data-set. As such, this clustering
process is performed not only to create the training observations but also as a prior step to
classification. The training data is composed of the 6000 most prominent RGB colors obtained from
a set of 600 fractured fragments. Figure 3 shows the histogram of the training data along with
its pallet of prominent colors. The histogram’s distribution indicates that it is feasible to model a
machine-learning system with the acquired data since the range of RGB values can be delineated
by a well-defined learning frontier. This property is better understood observing the pallet of colors
(Figure 3 right), which shows that training samples are defined by the RGB-space of light brown tones.
These observations are expected as the particular scanned fragments are made of limestone.

Figure 3. RGB color histrogram of training samples and the 35 most prominent colors of the distribution.

3.1.2. SVM Model

The training data is fed to a computational module that aims at identifying decoration by
detecting observations whose properties differ from the training samples. Hence the nucleus of
this module is an outlier detector. Multiple probabilistic techniques such as the Isolation Forest [16],
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Local Outlier Factor [17], and One-Class Support Vector Machine (SVM) [18] have been proposed
to detect abnormal data from a set of regular observations. In general, SVMs generate either a
classification or a regression function that separates the observed data into multiple groups or classes
through an N-dimensional hyperplane. One-Class SVM, more specifically, calculates an input-output
mapping function, which estimates whether an observation is an outlier or inlier. This unsupervised
approach is robust against irregular sampling distributions since it employs non-linear regression
kernels to delineate the boundary of inliers. These characteristics make this model a suitable option to
detect background colors.

Although at first glance the RGB-space of training samples seems to be defined by brown-like
colors, their irregular distribution in the color space suggests modeling the One-Class SVM through a
Radial Basis Function (RBF) kernel rather than a hyperplane. Figure 4 shows the obtained classification
results in 2D space for two possible combinations: Green-red and blue-red. The training data is marked
with white circles and the abnormal observations are depicted by yellow points. The latter are potential
decorated colors and all points within the learned frontier correspond to background. Note that some
irregular observations lie quite close to the decision boundary. This phenomenon is due to the gradual
erosion of paint that turns vivid colors into pastel tones, affecting both decoration and background.
Even though this issue makes the model prone to yield false positives, these errors do not influence the
overall classification performance for the decorated surface extraction. The decoration/background
classifier’s output is solely used by Algorithm 1 to estimate the rough amount of decoration paint on an
extracted plane and determine its likelihood of being the main decorated fragment’s surface. Therefore,
the misclassified points can be permitted since we are interested in computing an approximate
percentage of paint on a surface rather than accurately delineating the decorated points.

Figure 5 shows some significant results of the proposed approach for the main decorated surface
segmentation. The segmented point clouds were obtained by considering both color decoration and
planarity. To clearly show the classifier’s outcome, the segmented point-cloud and the k-means
clustering for k = 10 are depicted. The background points are colored green and the outliers
(corresponding to paint) are blue. Additionally, based on the obtained classifier, the resulting dominant
colors are labeled as inliers for background and as outliers for potential decorated points. As expected,
the majority of outliers, specially those tones that tend to red or blue, correspond to actual decoration.
As mentioned, although there are misclassified points, these false positives do not influence the
extraction results since the background classification is only used to estimate the percentage of
decoration on the surface. As noted in the last fragment (bottom right), the classifier did not detect any
decoration color. Therefore, planarity is considered to determine the main decorated surface.

Figure 4. Resulting trained-frontier for the background color classifier considering two color
channel combinations.
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Figure 5. An example of main decorated surface extraction. The classified point-cloud depicts
background colors marked in green and decoration colors marked in blue. Next to each point-cloud,
the prominent colors of the surface are shown along with their label according to the classification result.

3.2. Automation

The previous section focused on the method to improve the segmentation of the main decorated
plane, which serves as a baseline to extract a fragment’s contour. This section describes the
computational components integrated into the Puzzling Engine to increase its degree of automation.
More specifically, Figure 6 shows the algorithmic modules of the registration pipeline that are
implemented for the engine to be capable of estimating matches and propose alignment solutions.
The input of this registration workflow is twofold: The segmented contour surface of both a query
object and a target object. The first step consists of extracting salient points from the input data to
describe their geometric properties. These descriptions are carried out locally, which means that for
each region of interest a 3D feature descriptor is constructed. The obtained floating point descriptors
are matched in Euclidean space, resulting in a dense set of putative correspondences. A novel method
for outliers removal is introduced in the pipeline to reduce the number of false positive matches.



Remote Sens. 2020, 12, 2526 9 of 19

This technique uses geometric-based matching heuristics to filter out incoherent matches and is
described in Section 3.2.2. The final set of estimated correspondences is deployed to calculate a 3D
rigid body transformation between input surfaces, resulting in an alignment solution that can be
improved by the user by means of the set of registration tools presented in our previous work.

Figure 6. The pipeline for automatic registration of fractured fragments. The rectangles marked with
dotted lines indicate the additional stages incorporated in the pipeline to cope with the geometrical
constraints of heritage assets.

3.2.1. Feature Extraction and Description

3D feature-based methods aim to describe an object in terms of its geometric properties. Typically,
this description is either based on the 3D object as a whole or on regions of interest, hence their
classification as global and local features respectively. Both approaches have been applied to tracking
systems, localization modules, object retrieval, automatic registration, etc. Due to the wide range
of applications, these methods have been extensively studied over the last few years. The ideal
descriptor exhibits a good trade-off between compactness, low-computational burden, robustness
against nuisances, transformation-invariance, and distinctiveness. By taking these evaluation metrics
into consideration, Han Xian-Feng et al. [19] presented a review of both global and local 3D descriptors
and their performance on point-clouds for various applications. The assessment indicates that
local descriptors are well-suited for 3D registration and matching applications. Unlike global-based
approaches, local descriptors proved to compute accurate geometric descriptions of regions of interest,
while also being robust against occlusions, noisy points, and data incompleteness. These characteristics
make this approach viable to tackle the problem of automatic fragments reassembling.

Local features methods rely on two fundamental steps: Keypoints extraction and feature
description. The former step aims to find salient points of interest, whose neighboring regions are
geometrically distinctive. The latter step constructs descriptors by means of diverse computations such
as local-transformations, normal histograms, curvatures, and so on. Guo Yulan et al. [20] conducted
a detailed evaluation of the most used local features by exploring different combinations between
keypoints extractors and descriptors considering not only the final application but also the acquisition
technique of the input data. According to the obtained results, for dense point-clouds recorded with
3D professional scanners, the ISS3D [21] feature extractor combined with either of these descriptors:
Rotational Projection Statistics (RoPS) [22], Fast Point Feature Histograms (FPFH) [23], or Unique
Shape Context (USC) [24], are suitable approaches for matching.

The ISS3D algorithm extracts points of interest by calculating shape-based discriminative
measurements from clusters of points defined across the point-cloud. As for 3D features, the FPFH
algorithm is a discriminative descriptor that computes a histogram of features from a set of geometrical
operations such as normal surface and curvature. Along the same lines, inspired by the 3DSC
feature [25], the USC descriptor computes a floating point vector that describes local regions in terms
of their shape while offering a good balance between memory footprint and matching accuracy. Unlike
the aforementioned features, the RoPS descriptor computes transformation-based geometric properties
of salient regions by performing statistical calculations on points lying on the mesh’s surface. Therefore,
this feature requires input not only from the mesh’s vertices but also the triangles of the polygonal
structure. As we are processing point clouds, the FPFH and USC descriptors are tested to describe the
segmented contour surface of similar fragments in terms of their geometric properties.



Remote Sens. 2020, 12, 2526 10 of 19

Once the contour surface’s features are extracted and described, the resulting floating arrays are
matched following the Nearest Neighbor Search (NNS) approach [26]. To efficiently perform this
process, the descriptors are arranged into a k-d tree structure, speeding up the search for similar
floating-point vectors. This matching approach has been widely used to rapidly find similar numerical
vectors from large datasets and applied to match features of both images and 3D surfaces. The first set
of obtained correspondences is highly prone to false positives because the distance in feature space
is not a strong matching criterion. This problem is due to the lack of overlap and similar geometry
footprint between fractured surfaces. For example, if counterpart fragments match together, the normal
surfaces of their joint regions point in opposite directions. This results in two negative outcomes:
Numerous mismatches and nonsense alignments. In order to overcome these difficulties, we introduce
normal-coherent-based matching heuristics in the registration pipeline. More specifically, as shown
in Figure 6, these heuristics are applied to the target fragment’s contour and to the set of putative
correspondences prior to estimating the transformation for fragments alignment.

3.2.2. Normal Coherence Feature Matching

Inspired by the pairwise alignment heuristics introduced by Mellado Nicolas [4] to
semi-automatically reassemble archaeological artifacts, the idea behind normal coherence is adapted
in order for matching algorithms to cope with the typical issues when dealing with archaeological
data. Normal Coherence is a registration metric that evaluates the likelihood of counterpart fragments
matching by comparing the normal direction of a pair of points. As shown in Figure 7, the normal
orientations of geometrically-related surfaces point at opposite directions. Although this property
is fundamental to determine matching surfaces, their descriptors will not be similar because the
normals vectors differ in orientation. Therefore, the normal vectors of target objects are inverted in
order for potential matching regions to exhibit similar geometric properties. This way, the matching
process between local descriptors is calculated from an unchanged query object against descriptors
of a target point-cloud with altered normals. The feature matching step, however, might still yield
normal incoherent correspondences due to the erratic shape of the input surfaces. To filter out false
positives, the normal orientation of matching points is checked when performing RANSAC, so that
the estimated set of correspondences meet the normal coherence matching conditions. This approach
was already deployed to fit planes to indoors scenes by Qian Xiangfei et al. [27]. In which sampling
points with different orientation properties are discarded prior to fitting the input data to the plane
equation. In our case, non-coherent points are removed in each RANSAC iteration before estimating
the optimal rigid transformation.

Figure 7. The normal coherence constraint. The target contour’s normal surfaces are flipped to meet
the normal-coherence criterion and obtain similar descriptors.
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The last stage of the automatic registration workflow consists of translating and rotating the
points of the query fragment according to the transformation estimated by RANSAC. Thus the query
fragment is roughly aligned with respect to the target fragment. This alignment might serve as a
starting point for the user to puzzle the input fragments. Once the user estimates an alignment through
the virtual interface, a fine registration is automatically performed through the engine by deploying
ICP on the closest points of counterpart fragments. This process only takes into account alignments
along x, y axes and roll angle since fragments are already aligned with respect to the z axis.

4. Evaluation of Registration Pipeline

The previous section focused on the automatic registration algorithms of the Puzzling Engine.
The aim of this section is to evaluate the fragments alignment workflow. To this end, we employ a
large dataset of ancient Egyptian fragments, which were excavated over the last decade. Due to field
research time limitations and the sheer quantity of archaeological assets, it is unfeasible to find similar
fragments and puzzle them on site. Moreover, their high degree of deterioration hampers experts to
easily identify intuitive joints. Since fragments are not clustered according to distinctive characteristics
such as color, shape, size, excavation place, etc., the proposed pipeline is used to perform a massive
search for potential matching possibilities. The results of this brute force matching are evaluated
by experts to determine which of them are actual fits. After discarding false positives, the correct
matching solutions are manually aligned via the puzzling engine tools. The final accurate alignments
approved by experts serve as ground truth metrics to compare the proposed Normal-Coherence-based
matching approach against similar featured-based registration methods. The evaluation criteria include
a comparison of computed 3D-rigid body motions with ground truth transformations, processing time
of matching algorithms, and frame rendering of the virtual platform.

4.1. Dataset of Fractured Fragments

Our data-set is composed of a large group of broken decorated wall fragments that were found
in the elite cemetery of Dayr al-Bersha, Egypt. The fragments originally belonged to the colossal
decorated tombs that date back to the Middle Kingdom period of ancient Egypt, from 1975 BC
to 1640 BC. The current ruinous state of the site, due to natural catastrophes, looting activities,
and historical events, led researchers of KU Leuven University to preserve and further study the site.
During their on-site missions, they excavated thousands of decorated stone blocks of different sizes
and characteristics. On average, the size ranges from 10 cm to 50 cm long, are made of limestone,
and in most of cases contain a flat surface with decoration. This is a region of interest for experts since
it contains remaining traces of either inscriptions or drawings that are identified through decoration
colors or relief-based carvings. The main characteristic of this collection, for the current research
purpose and according to experts, is that the likelihood of finding some fragments matching together
is high. However, due to the great amount of fragments, this is a laborious task.

The digital acquisition of ancient archaeological artifacts poses multiple challenges. For the
wall-decorated fragments, in particular, it is primordial to be able to capture every surface of the
object while preserving their archaeological properties. Additionally, in order for the registration
algorithms to yield reliable results, the input data must satisfy accuracy requirements in terms of
homogeneous brightness, scale, and geometric information. Hence structured light technology is
deployed to produce accurate dense models of the fragments. More specifically, the 3D scanner Einscan
Pro Plus [28] is used for acquisition since it is equipped with an external camera and two flashlights to
capture color under controlled light conditions. Furthermore, it is capable of recording point-clouds at
a 0.2–3 mm point distance resolution. Finally, the raw 3D data is processed to generate 1500 polygon
mesh models, whose number of faces varies from 0.4 to 1.4 M.
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4.2. Brute-Force-Based Approach for Ground Truth Metrics

To obtain ground truth registration metrics from the digitized fragments, a brute force matching is
conducted on the basis of the proposed registration pipeline, combined with the manual alignment tools
of the engine. First, the contour point-clouds of the main decorated surfaces, which were extracted
when generating the color classifier’s training data, serve as input for the proposed registration
workflow. The ISS key-point extractor is combined with FPFH and USC descriptors, complying with
the Normal Coherence requirements. To err on the side of caution, both the feature extractor and
descriptors were computed for different search radii. Then, a brute force matching is performed
for all computed descriptors not only to estimate correspondences but also to calculate a rigid-body
transformation for automatic alignment. This results in a vast group of potential pairwise puzzles.
Consequently, the second step consisted of filtering out erroneous solutions and improving the
estimated rigid transformations. The latter is done by experts via the registration tools of the puzzling
engine. For sake of computing consistent ground truth metrics, the puzzling engine is slightly modified
to allow the user to solve the puzzle by only maneuvering the query fragment. Once a fine alignment is
manually determined, the engine computes the rigid body motion that transforms the query fragment’s
initial position to the manually modified position. This process is done by means of Singular Value
Decomposition (SVD), a factorization method that computes the optimal rotation and translation
between a group of transformed points. The final set of obtained transformation matrices serves as
ground truth metrics.

The aforementioned steps are computationally expensive since they entail time-consuming
mathematical operations. We are dealing with hundreds of mesh models and the computational
complexity of the brute force matching process itself is O(n2), where n is the number of
fragments. Therefore, this problem is addressed through ubiquitous computing using HTCondor [29],
an open-source software solution that allows for performing intensive tasks while fairly distributing
the computational burden over multiple computational cores. Figure 8 shows an overview of the
computational processes that are managed by HTCondor. Prior to brute force matching, feature
extraction and description processes are submitted to HTCondor so that these tasks are performed in
parallel for every single fragment. The output of such processes consisted of a list of keypoints and
descriptors encoded into binary files for each fragment. Once descriptors are computed, HTCondor
manages the pairwise brute force matching for all possible fragment combinations and descriptor
configurations (FPFH and USC with different search radii). The brute force matching process yielded
60 pairwise solutions in total. After these results were revised and improved by experts, the final
group of actual puzzles consisted of 12 solutions. Thus, the precision of the brute force approach is
0.2. The recall cannot be determined since we do not know the actual number of pairwise solutions.
The final group of pairwise solutions determined by experts is illustrated in Figure 9. Although this
nondiscriminatory matching process is certainly prone to yield numerous false positives, it helped
determine ground truth metrics from a dataset where it was uncertain to find puzzles.

Figure 8. Jobs distribution in HTCondor to perform brute force matching.
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Figure 9. Brute force matching results: Pairwise solutions resulting from brute force matching approach.
The matches were revised by experts who also refined the fragments’ alignment through the puzzling
engine. The obtained rigid transformation are used as ground truth metrics to evaluate the proposed
registration modules.

4.3. Accuracy of Normal Coherence-Based Registration Methods

We set up an experiment which seeks to evaluate the accuracy of 3D rigid body transformations
estimated by the Normal Coherence-based registration algorithms. The ground truth transformation
matrices estimated in the previous step are compared to a set of arrangements of features and matching
methods. The experimental setup results serve as indicators to assess which algorithms combinations
are suitable to increase the degree of automation of the puzzling engine. These include: FPFH +
normal coherence rejector, FPFH + distance threshold rejector, USC + normal coherence rejector, and USC +
distance threshold rejector. The accuracy comparisons are conducted by examining the error statistics
proposed by Eggert D.W. et al. [30]. These metrics include the norm of difference between estimated
translation vectors, ‖T̂alg− T̂true‖ and the norm difference of unit quaternions representing the rotation,
‖q̂alg − q̂true‖. Finally, the obtained reference transformation matrix and the one estimated from the
set of correspondences are applied to the query fragment’s point-cloud. The Root Mean Square (RMS)
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error of the distance between such points is calculated by Equation (1), where N is the number of points
and PCDalg and PCDtrue are the transformed point-clouds of registration algorithms and ground truth
data respectively:

RMSerror =

√√√√√ N
∑‖PCDalg − PCDtrue‖2

N − 3
. (1)

The goal of this registration metric is to measure the accuracy of the computed transformation
matrices’ elements. The metric comparisons are carried out in Euclidean space for both the
3-dimensional translation vector and the 4-element vector of orientation quaternions extracted from the
3× 3 rotation sub-matrix. Moreover, the RMS error of automatic alignments is calculated to measure
the overall influence of the estimated transformation when applying it by the query fragments’ points.

Figure 10 shows the results for every pairwise solution. Each puzzle is listed according to its
corresponding reference number indicated in Figure 9. The errors are represented in units of the
puzzling engine’s global coordinate system, which are given in centimeters since the recorded models
were scaled from millimeters to centimeters. As noted in Figure 10a,b, translation and rotation plots,
for most of the solutions the combination of FPFH and NC yields better results since the error difference
is close to zero. When NC is considered for the FPFH descriptor, the results are highly improved.
For instance, for solutions 0, 2, 8, and 11, the translation error difference between FPFH and FPFH NC is
larger than six units. The same behavior can be observed in the rotation plot, but in this particular case
the errors are much smaller. Rotation and translation errors provide an insight into the variance of the
estimated rigid body transformations’ parameters. However they do not provide us with information
on the registration accuracy.

(a) Translation errors (b) Rotation errors (Quaternions)

(c) Root Mean Square errors (d) Root Mean Square errors displayed in Log scale

Figure 10. Evaluation of 3D rigid body transformations computed by matching USC and FPFH local
descriptors based on multiple statistic errors. Additionally, the normal-based matching heuristics are
included to highlight the positive impact of the proposed modules.
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The RMS error, on the other hand, measures the registration performance or the difference in
distance between aligned models. This metric evaluates the rigid body transformation when applied
to the query fragment. Hence a close-to-zero error means that the automatic alignment is similar
to the ground truth. As expected, the FPFH feature with the NC matching approach yielded better
results since errors fluctuated between 0 and 10−3 for 50% of the found solutions. This means that only
slight manual alignments are necessary to accurately register the fragments. To illustrate registration
errors, Figure 11 depicts the pairwise solutions zero, six, and 12. These correspond to the combinations
FPFH + NC, USC + distance threshold rejector and USC + NC, whose errors are 0.00018, 1.40775,
and 1.72560 respectively. As noted in Figure 11a, when the error is very low, there is an imperceptible
difference with the ground truth alignment. However, when errors are larger, misalignments start to
become much more visible. For example, Figure 11b shows an incorrect alignment since the query
object is penetrating the target fragment’s surfaces (see orange line). In Figure 11c, although there is no
overlap between fragments and at first glance the alignment seems correct, when comparing the result
to the ground truth, the query fragment’s rotation and translation are erroneous.
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Figure 11. Examples of automatic matching results. On the left side, the computed correspondence
points are visualized though matching lines. On the right side, the estimated rigid body transformation.

This experimental framework shows that the proposed registration pipeline is well-suited to
reassemble heritage fragments. In spite of the fact that this approach might estimate misalignments,
the matching lines proved to serve as a visual guide to rapidly identify potential matching regions.
Moreover, the normal coherence approach highly improves the registration performance, so that for
some fragments only minor alignment corrections are needed. When this approach is combined with
the FPFH feature the registration error is close to zero. Therefore, these algorithms are integrated into
the game engine to complement the manual registration tools.
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Time-Processing Metrics

Real-Time performance is an important evaluation metric when developing a User Interface.
It indicates how fast the engine’s algorithms respond to user operations under different types of
input data. In addition, it provides insights into the algorithms’ efficiency in terms of time-processing
and memory footprint. Time complexity and frames per second (fps) are two metrics that provide
fruitful information to evaluate such a performance. The puzzling engine computes two tasks on
the fly: 3D rigid body maneuvers and pairwise matching. Therefore, we estimate both the explored
feature correspondence algorithms’ time complexity as well as the engine’s fps. The experiments are
performed on the following system: Intel Core i7-7700 at 2.6GHz, 16GB RAM memory, graphic card
Nvidia GTX1050, 1493MHz GPU clock, Dell, Ghent, Belgium.

Table 1 shows the processing time of the feature matching algorithms. The first two columns
correspond to the point-cloud density of query and target models. The other columns indicate
the deployed feature descriptors along with their array length. The processing time is given in
milliseconds and only measures the matching process. This constitutes arranging the descriptors
arrays into k-d trees, removing false positives and euclidean distance-based comparisons. Note that
matching FPFH features is far faster than USC due to their compactness: The former are constructed of
a 33-elements array, whereas the latter descriptor contains 1960 elements. The time complexity of the
NC-based matching is higher since it entails an extra iterative step to discard non-Normal-Coherent
correspondences. As for the engine’s rendering, Figure 12 illustrates the fps over a period of time,
during which multiple tasks are performed, such as fragments maneuvering, loading multiple mesh
models, rendering matching lines, registration, and so on. The fps is quite stable since the average fps
is 40.79 and a standard deviation of 1.69 over 60 s. The obtained results satisfy the 30 Hz real-time rate
requirement, which guarantees a smooth interaction between user and 3D models.

Table 1. Processing time that takes to compute the registration pipeline of Figure 6.

# Query Points # Target Points USC NC 1960 [ms] USC 1960 [ms] FPFH NC 33 [ms] FPFH 33 [ms]

1322 1254 8239 6554 89 87
1322 748 5546 4229 115 81
1465 4331 21,500 21,485 246 221
1490 2086 11,684 11,173 154 120
1708 4458 29,442 24,982 243 215
2085 5010 34,774 34,149 278 268
2091 1394 12,328 10,343 163 109
2414 2085 19,021 17,066 189 177
2653 3550 31,065 30,989 262 239
3273 5925 67,855 58,231 332 299
3324 2931 32,272 30,229 276 234
4116 2026 30,931 30,035 242 219
5272 1925 33,128 34,302 261 257
6228 3072 57,280 56,295 369 352
6745 5925 132,375 114,226 492 434
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Figure 12. Rendering performance of the Puzzling Engine over a period of time. Actions like loading
fragments, displaying matches, and applying transformations are carried out during this interval.

5. Conclusions

In this paper a novel Puzzling Engine was proposed for ancient wall-decorated fragments
that takes elements of both kinds of reassembling approaches: User-assisted and fully automatic.
On the one hand, the puzzling process is performed through a virtual interface that facilitates the 3D
manipulation of objects as well as segmenting high level properties of the fragments to intuitively
discern matching regions. On the other hand, it takes the key approach of automatic registration
pipelines in order to increase its degree of automation when the user is looking for matching regions
for alignment. The experimental framework consists of finding pairwise puzzle solutions from a set
of more than one thousand wall decorated blocks made of limestone. As proven in the experiments,
this puzzling engine was capable of matching fractured stones even in cases where erosion had
highly deteriorated the decoration or the matching surface. Although for some fragment samples the
registration pipeline alone was capable of computing accurate alignment transformations without user
interaction, this approach does not intend to compete against automatic reassembling approaches.
The Puzzling Engine aims to support restorers in the matching labor by means of comprehensive and
sophisticated registration tools.

As a second key result, this paper presents a study of widely-used 3D features in the context of
fragments reassembling. Even though these features have been broadly deployed for object retrieval
and robot navigation applications, the proposed work proves that they can be applied to digital heritage
reassembling as well. However, the typical feature-based registration pipeline by itself does not provide
accurate correspondences. Therefore, we propose to incorporate Normal-Coherent-based matching
heuristics to the pipeline in order to obtain reliable matches. The obtained results are quite favorable
and provide insights into possible ways to automatically match heavily deteriorated fractured surfaces.
Although the puzzling engine requires human expertise to yield accurate results, manual assistance is
needed only in the last stage of the registration workflow: Matching validation and fine alignment.
Hence future work aims at increasing the degree of automation by a merge between local and global
approaches. For instance, shape-based matching of boundary contours for rough alignment and
local geometric features for fine registration. This approach might be complemented by considering
additional matching cues such as decoration content, or curves continuity of hieroglyphics between
counterpart fragments. Additionally, a culling step to filter out incompatible assets, prior to performing
the registration pipeline, would reduce the computational burden of the brute force searching. This can
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be done by considering the scale, color, and global shape of the fragment before computing more
complex geometry-based matching operations. These additional matching characteristics can be
applied to puzzle not only decorated stone fragments but also other types of 3D heritage artifacts such
as broken pottery, ancient figurines, sculptures, etc.
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