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Abstract: The use of individual tree detection methods to support forest management inventories
has been a research topic for over two decades, but a formal assessment of these methods to
produce stand-level and region-level predictions of forest attributes and measures of error is lacking.
We employed model-based estimation methods in conjunction with the semi-individual tree crown
approach (s-ITC) to produce predictions and measures of error for tree volume (VOL), basal area
(BA), stem density (DEN), and quadratic mean diameter (QMD) at the scale of forest stands and
the entire study region. We compared the s-ITC approach against the area-based approach (ABA)
for predictions of region-level and stand-level attributes via model-based root mean squared errors
(RMSEs). The study was conducted at the Panther Creek watershed in Oregon, USA using a set of
78 field plots and aerial lidar information. For region-level attributes, s-ITC RMSEs demonstrated
changes between −31% and 17% relative to ABA models. At the stand level, median s-ITC RMSEs
generally increased, with changes between −29% and 414% relative to ABA models, but demonstrated
important reductions in stands where segmentation provided large increases in sample size and was
less prone to extrapolation than ABA models. The ABA demonstrated smaller RMSEs in stands
without sampled population units for all variables. Our findings motivate further research into niche
applications where s-ITC models may consistently outperform ABA models.

Keywords: small area estimation; tree segmentation; lidar; model-based inference; linear
mixed modeling

1. Introduction

Interest in leveraging tree segmentation for supporting forest management planning is an active
area of research in remote sensing and forest management literature. Forest managers are increasingly
attracted to benefits of tree segmentation methods, including opportunities for species prediction [1,2]
as a proxy for tree height for use in allometric models [3] and a widening scope of other potential
attributes such as presence of wildlife habitat [4] and tree mortality [5,6]. A common use-case for
tree segmentation methods is the prediction of forest inventory attributes at the scale of detected
tree crowns that can be used to construct maps of forest inventory attributes at very fine scales [3,7].
These crown-level predictions can provide a basis for forest inventory predictions at scales larger
than detected tree crowns by aggregating individual predictions to the stand-level. Individual tree
detection methods can serve as an alternative to the more operationally common area-based approach
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(ABA) [8], and this study compares the suitability of one such tree segmentation method for producing
stand-level predictions against the ABA.

Approaches for generating predictions of forest inventory attributes that leverage tree segmentation
methods are myriad and can be classified into two distinct categories: individual tree crown (ITC)
and semi-individual tree crown (s-ITC) [9,10]. In most manifestations, the ITC approach makes the
explicit assumption that a detected segment in the auxiliary data represents a physical tree, and a tree
matching method is employed to attach auxiliary information to a measured tree in the sample [11]
p. 114. The population, therefore, is a set of trees from which a sample is selected. The s-ITC approach,
in contrast, makes no such assumption, and a detected segment in the auxiliary data represents none,
one, or several trees. The s-ITC approach detects tree segments, i.e., polygons, in the auxiliary data
in a process similar to the ITC approach but does not involve linking detected trees to measured trees.
Rather, all trees within a detected segment are used to produce a response variable for that segment,
and modeling and prediction methods are carried out on these segments. The population for the s-ITC
approach is the set of these segments, which are population units composed of a varying number
of trees.

The s-ITC approach may be attractive for forest managers who desire predictions at the scale of
detected tree segments. The s-ITC approach is therefore an alternative in areas with complex and
multi-layered forest structures where ITC methods tend to have larger omission errors. However,
forest managers may be interested in aggregations of segment-level predictions, such as predictions at
the scale of forest stands or at the scale of an entire study region. In these cases, prediction methods
that use the ITC approach tend to be negatively biased due to omission error in the tree detection
and matching process [12,13]. Therefore, correction factors are needed to adjust aggregations of ITC
predictions, as in the case of stand-level or region-level predictions. For the s-ITC approach, bias from
omission does not exist if a compact tessellation of detected segments is made (i.e., the segmentation
method does not leave gaps) of the study area that include all trees. The s-ITC approach is still able to
provide predictions at the resolution of these segments, but the interpretation is that one segment is
equivalent to one tree lost.

In contrast, the more operationally common area-based approach (ABA) combines fixed radius
plots with coincident remote sensing data in a modeling procedure to produce forest inventory
predictions for a set of regular grid cells cast across the study area, which are treated as the population
of interest. The ABA is advantageous in that it does not require the measurement of tree positions
because only the position of the plot is required for georeferencing remote sensing auxiliary information.
However, in many implementations, the predictions are constrained to the resolution of the regular
grid and can preclude prediction of attributes at finer scales.

Importantly, the ABA has been used with explicit consideration of predictions for parameters of
interest, such as the total or the mean volume of timber in a forest stand, compartment, or county using
small area estimation (SAE) methods [14–17]. Model-based SAE methods provide several benefits
for forest management inventories. First, the use of linear mixed models affords the aggregation
of individual unit-level predictions, such as pixels or tree segments, to larger scales such as forest
stands or study regions. Second, model-based mean squared error estimators can be used to produce
assessments of uncertainty for these aggregated predictions for both sampled and unsampled stands
under the assumed model. For forest inventories that require stand-level predictions and assessments
of their stand-specific uncertainties, these two aspects of model-based SAE methods are attractive.

Model-based mean squared error estimators are frequently used to compare the reliability of
predictions between competing methodologies, e.g., [18–20], such as the ABA and the s-ITC approach.
These estimators can serve as an alternative to cross validation assessments, such as those used in [21],
a recent study that investigated the ITC approach and the ABA. Cross validation assessments are
restricted only to those stands that contain field plots and are typically constructed for the entire sample,
offering only one “global” assessment of uncertainty for all predictions [22] p. 242. Forest managers may
be interested in measures of uncertainty for predictions of particular stands, i.e., a “local” assessment
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of uncertainty, as well as for unsampled stands. Model-based mean squared error estimators offer
these measures assuming that model assumptions and their parameter estimates hold for the entire
population and are an attractive alternative for forest managers.

The question remains whether, between models based on the s-ITC approach and models based
on the ABA, which of the two approaches provides more reliable stand-level and region-level forest
inventory predictions. A model-based SAE analysis can provide insight into the reliability of forest
inventory predictions at these scales for these two alternative approaches. While model-based SAE
analyses have been conducted under the ABA, a similar assessment of using the s-ITC approach
is needed and can have implications for forest management planning, where the reliability of
predictions at the stand- and the region-levels can be of high importance. We employ model-based
SAE methods—specifically the unit-level model, which is a special case of the linear mixed effects
model [23] (pp. 78–81)—to produce predictions of four forest inventory variables, including stem
volume (VOL), basal area (BA), stem density (DEN), and quadratic mean diameter (QMD), for two
different population types: 1) a population of detected segments produced in the manner of s-ITC,
and 2) a population of grid cells produced in the manner of the ABA. Particularly, we focus on the
relative performances of these inventory models at the scale of forest management stands and at the
scale of the entire study region using model-based mean squared error estimates.

2. Materials

2.1. Study Area

The study was conducted in the Panther Creek watershed located in northwestern Oregon, USA.
The area is composed of approximately 2580 hectares of forest with elevations ranging from 100 m
to 700 m and an annual precipitation of 1500 mm. The forest types range from planted stands of
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) to natural stands of mixed species, including western
hemlock (Tsuga heterophylla (Raf.) Sarg), western red cedar (Thuja plicata Donn ex D. Don), red alder
(Alnus rubra Bong.), grand fir (Abies grandis (Douglas ex D. Don) Lindley), and other minor species.
Various forest management actions have been conducted in the area, and a patchwork of management
is apparent, including variable retention harvest, thinning, and recent reforestation.

Forest stands and other areas were delineated using visual photographic interpretation methods
using optical aerial images. A total of 144 delineations were produced, of which 14 were removed
in a later interpretation phase that revealed they were either non-forested (e.g., lakes, residential areas,
etc.) or recently harvested near the time of the field data collection date. The remaining 129 forest
stands compose what is referred to as the study region. Figure 1 displays the Panther Creek watershed
with the forest stand delineations.

2.2. Field Data

A field campaign conducted between July 2009 and May 2010 produced a set of 78 field plots
with a fixed radius of 16 m (approximately 0.08 ha in area) as part of a larger program not explicitly
implemented for the objectives of this study. The field sample collected from the Panther Creek
watershed contains a mixture of field plots from a probability-based sample selection mechanism
and a non-random sampling design. Stand species compositions were visually assessed using color
infrared photos to identify three groups: conifer, mixed conifer in association with hardwoods, and
riparian zones. The conifer stands were identified and divided into nine strata based on 90th percentile
lidar height. The mixed group and the riparian group each formed separate strata.

For the conifer group, two sampling procedures were performed, including a design-based sample
and a non-random sampling design intended for model-based estimation. For the design-based
sampling procedure, one stand in each of the nine conifer strata was selected using probability
proportional to size. Within each selected stand, three plot centers were randomly positioned. For the
non-random sample, one additional plot was selected within each of the nine stands by selecting a grid
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cell that represented median conditions in terms of number of first returns and 90th percentile lidar
height. For the mixed group and the riparian group, all stands were selected for sampling, and two plots
were randomly positioned in each stand. The remaining 36 plots were part of a separate non-random
sampling program intended to sample various soil structures in the study area and were not dependent
on forest conditions or structures [24]. The distribution of stands by the stand-specific sample size is
given in Table 1. It is evident that a range of stand-specific sample sizes were available, which can have
implications for stand-level model-based inferences (see Section 5.3). In total, 35 stands were sampled,
16 were part of the design-based sample, and 19 were part of the non-random sampling design.
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Figure 1. Vicinity map of the Panther Creek watershed situated in the northwest of Oregon, USA.
Forest stands are colored according to omitted, sampled and unsampled. Field plots are indicated in
blue. Universal Transverse Mercator (UTM) Zone 10 N coordinates are given at the margins of the
figure, with UTM grid lines demarcated in gray.

Field crews located the pre-allocated field plot centers using sub-meter grade GPS units and
installed plot centers at the GPS measured positions. These GPS measured positions were assessed
against an existing cadastral survey and were found to be within 0.25 m [24]. All trees within the
plot radius that had a diameter greater than 0.5 cm and exceeded 1.37 m in height were measured.
The diameters at 1.37 m up the stem and the total tree heights were measured. Each tree position was
recorded relative to the established plot center by measuring its horizontal distance to the nearest 0.1 m
and azimuth. For all trees, predictions of cubic stem volume were predicted using the National Volume
Estimator Library [25]. For the purposes of this study, the predicted cubic volume, including top and
stump, for each tree in the ground data tree list are treated as known quantities.

Table 1. Distribution of the number of stands by stand-specific sample size. A given column indicates
the number of stands that contain the number of field plots indicated in the top row. For example,
the first column indicates there are 94 stands with 0 field plots.

Number of Field Plots 0 1 2 3 4 5 7

Number of Stands 94 18 6 4 1 5 1
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2.3. Lidar Data Acquisition and Processing

The aerial lidar acquisition for this study was collected 15 July 2010 during leaf on conditions using
a Leica ALS60 sensor mounted on a Cessna Caravan 208B. The aircraft was flown at approximately
900 m above ground level with a scan angle of ±14◦ from nadir. The average pulse density for the
acquisition is 20.01 pulses per square meter. The raw lidar acquisition was normalized for terrain
elevation by filtering ground and non-ground points by applying the ground-filtering algorithm
developed in [26]. These ground points were used to form an intermediate digital terrain model
(DTM). Empty cells of this DTM were interpolated using a nearest neighbor interpolation algorithm to
produce the final DTM, by which the elevation underneath each lidar point was subtracted to produce
a normalized point cloud of the study area.

3. Methods

3.1. Constructing Population Units

3.1.1. Grid Cells

For the ABA, the population units are a set of grid cells that cover the entire study area, such that
the grid cell size equals the size of the field plots (≈0.08 hectares). For each grid cell (i.e., pixel) in the
population, a vector of lidar predictors was produced. Names and descriptions of lidar predictors are
provided in Appendix B Table A2. All grid cells were assigned to the stand that intersected with their
geometric center. Grid cells and field plots were considered to represent the same population type
for the purposes of this study. VOL (m3 ha−1), BA (m2 ha−1), DEN (stems ha−1), and QMD (cm) were
computed at this scale using the entire plot-level tree lists. Table 2 provides a glossary of terms used
in the remainder of the sections.
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Table 2. Glossary of frequently used terms in this study.

Term Definition

Grid cell A square area 0.08 hectares in size. The population unit for the ABA.

Population The set of all geographical units, either grid cells for the ABA or segments for the s-ITC approach,
used in the analysis.

Segment An irregular polygon of varying size produced by a segmentation procedure. The population unit
for the s-ITC approach.

Stand
An area of homogeneous forest structure used as a small area of interest. If a stand contains at

least one field plot it is considered “sampled”, if it does not it is considered “unsampled”. Stands
are indexed by i.

Stand-specific sample size
The sample size for a particular stand, denoted by ni. For the area-based approach, this refers to
the number of field plots in the stand. For the s-ITC this refers to the number of sample segments

in the stand, i.e., those segments contained in the field plots (Figure 2).
Study region The set of 129 stands included in the analysis.

ABA: area-based approach; s-ITC: semi-individual tree crown approach.
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3.1.2. Segments

For the s-ITC approach, the population is a set of segments derived from a canopy height model.
To produce a population of segments, we utilized a combination of a variable window local maxima
filter [27] and a Voronoi tessellation. For the entire study area, an intermediate canopy height model
was produced at a resolution of 0.33 m, where each pixel of the canopy height model represented the
lidar return of maximum height. A median filter with a 3 pixel × 3 pixel kernel was passed over the
intermediate canopy height model to produce the final canopy height model. Local maxima of this
canopy height model were found using a two-stage filter. A fixed window local maxima filter was
passed over the canopy height model such that a distance of at least 2 m must exist between detected
maxima. This provided a set of candidate maxima for a variable window local maxima filter that was
passed over the canopy height model in a second phase. For each candidate maximum, an allometric
equation defined a search window such that only the highest maximum in the search window was
retained as a final local maximum. We used the allometric equation defined in [27] that relates the
height of a given pixel to the search window width:

w(s) = a + b · z(s)2 (1)

where a and b are fixed coefficients, z(s) is the value of the canopy height model at position s, and w(s)
is the search window width in meters at position s. We modified the coefficients provided by [27] to
provide window widths consistent with the observed tree crown radii in the canopy height model
using visual inspection such that a = 2 and b = 0.004.

The variable window local maxima output was a set of points in the study area. We used a Voronoi
tessellation over these points to provide the final set of segments for analysis (Figure 2). This procedure
is similar to that of the segmentation procedure proposed by [7] but does not constrain the individual
segment extents based on low values in the canopy height model. This was considered appropriate
as we desired a compact tessellation of the study area (i.e., a division leaving no gaps) that would
eliminate the possibility of omitting trees from the sample (see Section 5.2).

For each segment, a vector of lidar predictors was derived by clipping the study-area-level point
cloud by the polygon of each segment. In total, a set of 30 predictors were computed for each segment
(Appendix B). In the same manner as the grid cells, segments were assigned to the stand that intersected
with their geometric center. Each segment that was entirely within the plot radius plus the addition of
a small constant of 0.5 m was considered a sample segment. For each sample segment, VOL, BA, DEN,
and QMD were calculated using those trees contained inside the segment. Mean values and standard
deviations of VOL, BA, DEN, and QMD for the field plots and the segments from their respective
samples are given in Table 3. Differences between the means and the standard deviations across field
plots and segments are apparent. This can be a result of fewer segments included in the sample when
segments are large, i.e., in stands with larger crown widths. The segments express a wider range of
values, including segments with no trees (i.e., a minimum of zero).

3.2. Unit-Level Model

For both the ABA and the s-ITC approaches, we employed the unit-level model, which provides
predictions of grid cells and segments, respectively, while accommodating potential stand-level random
effects via linear mixed models. Linear mixed models anticipate potential differences between stands
that are accommodated by the specification of stand-level random effects. Predictions for individual
population units are aggregated to the scale of individual stands or the study region to produce
predictions and mean squared errors at these two scales. This enables comparison of the uncertainties
of ABA and s-ITC at these scales. Please refer to Appendix A Table A1 for a summary of the major
notation we use in the following subsections.
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Table 3. Sample means, standard deviations, and ranges for forest inventory attributes for the sample
of field plots and the sample of segments. Note: for the mean and the standard deviations, a weighted
mean was calculated for each plot using segment and plot areas as weights, respectively, and means
and standard deviations of these scaled observations are reported in the table.

Attribute Source Mean Std. Dev. Minimum Maximum

VOL
(m3 ha−1)

Field Plots 601.3 389.4 3.3 1733.3
Segments 542.6 340.8 0.0 1975.3

BA
(m2 ha−1)

Field Plots 48.7 23.7 1.8 102.0
Segments 46.0 22.3 0.0 148.5

DEN
(stems ha−1)

Field Plots 31.9 12.8 160.6 1519.9
Segments 30.1 12.1 0.0 4019.9

QMD
(cm )

Field Plots 659.3 277.2 5.3 69.1
Segments 687.8 302.2 0.0 82.8

VOL: tree volume; BA: basal area; DEN: stem density; QMD: quadratic mean diameter.

For both approaches, we defined the general linear mixed effects model:

y = Xβ+ Zv + e (2)

where y =
(
y11, . . . , yMNM

)T
is a vector of per-unit area values where yi j denotes the jth observation

in the ith stand, M represents the total number of forest stands, and Ni represents the number of
population units in the ith stand. For example, if we consider VOL attribute, y is a vector of observations
of stem volume per hectare for a grid cell or a segment. X is a N x p design matrix of lidar covariates
and a column of ones to accommodate an intercept. β is a p x 1 vector of regression coefficients. Z is an
N x M matrix that assigns population units to forest stands. For example, the elements of the jth column
of Z takes a value of 1 if the ith element of that column is in stand j and 0 otherwise. v = (v1, . . . , vM)T

is a M x 1 vector of random effects such that v ∼ MVN(0, G). e =
(
e11, . . . , eMNM

)T
is a vector of

model errors that explain deviations from the stand-level random effect such that e ∼ MVN(0, R).
Additionally, v is independent of e. This defines the basic unit-level model (e.g., [19,23]).

Because there is a mismatch in population units between a model developed using circular field
plots and the population units upon which predictions are made, i.e., grid cells, we use the general
term “ABA model” when referring to Equation (2) if a set of field plots was used to construct the model
and “s-ITC model” when referring to Equation (2) if a set of segments was used to construct the model.
Additionally, Equation (2) is defined for the entire population but in some instances it is necessary to
refer only to portions of matrices and vectors that corresponded to sample units. To do so, we use
the sub-index S to refer to a matrix or vector that has rows corresponding to unobserved population
units removed.

Specific structures were assumed for the variance–covariance matrices G and R. Here, we adopt
particular model assumptions that specify further the general treatment of Rao and Molina [23]
Ch. 7. The random effects were assumed independent and identically distributed such that G = σ2

vIM.
Additionally, we incorporated the possibility for heteroskedasticity on the residuals with a general
variance function model (e.g., [28] p. 206):

Var(ei j

∣∣∣∣vi) = σ2
e mcp2η

i j (3)

where mcpi j is a variance function covariate that represents the most correlated predictor, σ2
e is the

residual variance, and η is a constant that accounts for heteroskedasticity. It will be convenient to use the
relationship mcpηi j = ki j for later formulae, where ki j is a unit-specific variance weight. We incorporated
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the possibility for spatial correlations between population units in the same area using a spherical
correlation function:

Corr
(
ei j, ei′ j′

)
=

1−
{

3
2

(
||r||
φ

)
−

1
2

(
||r||
φ

)3
}
, i = i′

0, i , i′
(4)

where ||r|| is the Euclidean distance in meters between the population units indexed by i j and i′ j′

computed using the centroid of the population unit geometry. Model errors were assumed to be
independent across different areas, thus the resulting models had block diagonal variance–covariance
structures. The variance–covariance matrix R can be constructed using Equations (3) and (4):

R =
diag
1≤i≤M(Ri)

where
[Ri]kl = Corr(eik, eil)

√
Var(eik|vi)Var(eil

∣∣∣vi)

and diag is an operator that constructs a block-diagonal matrix using the matrices indicated in the
expression. The block-diagonality implies that segments or grid cells within stands may be correlated,
while segments or grid cells in different stands are uncorrelated. The indices k and l refer to the row
and the column, respectively.

3.3. Target Parameters

We considered target parameters that were linear combinations of the model coefficients β and
the error vectors v and e [20] (p. 98). For example, a target parameter may represent a mean of a forest
attribute for a stand or a study-region mean (i.e., a mean of all population units in the study region).
Let µα represent a generic target parameter for a set of population units indexed by α. In all cases,
the parameter can be expressed as a linear combination of the model components:

µα = lT
αβ+ mT

αv + qT
αeα. (5)

Such a generic formulation affords the construction of different target parameters for specific cases
common to forest inventories, e.g., stand-level or region-level means, by constructing different vectors
l, m, and q. We considered target parameters at the stand-level for all stands in the study area and
target parameters for the entire study region. First, we considered stand-level means. This implies:

li =


∑Ni

j=1 hi jxT
ij

hi·


T

(6)

where hi j refers to the size of a population unit indexed by i and j, i.e., the size of a population unit
in m2, Ni is the number of population units in the ith stand, and hi· =

∑Ni
j=1 hi j is the sum of population

unit areas in stand i. Therefore li is a weighted mean of the unit-level predictor vectors in the ith area.
Note that, in the case of stand-level-mean prediction, mi is a vector of zeroes except for the ith position
that contains a one. We use the notation µi when referring to a stand-level parameter. Additionally,
we reserve the notation ni to refer to the number of sample segments or field plots within stand i.
Second, a study-region mean was constructed by letting:

lτ =

 1
h··

M∑
i=1

Ni∑
j=1

hi jxT
ij


T

(7)
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and

mτ =

(
h1·

h··
, . . . ,

hM·

h··

)T

(8)

which are the weighted means of the predictor vectors and a vector of area proportions for each stand
in the study region, respectively, where h·· =

∑M
i=1 hi· is the sum of the areas of all stands. We use the

notation µτ when referring to the study-region-level parameter.
For both parameter types, the term qT

αeα is the weighted mean of the errors of a set of population
units. For large Nα, i.e., for large numbers of grid cells or segments, this term becomes negligible and is
typically disregarded for models with independent errors [20] p. 98. Thus, in the case of independent
errors, we considered target parameters of the form:

µα = lT
αβ+ mT

αv. (9)

3.4. Predictions for Target Parameters

Predictions for the target parameters were obtained using the empirical best linear unbiased
predictor (EBLUP). We reserve the notation µ̂α to refer to a prediction of µα made with the EBLUP.
First, we obtained an estimate of the variance parameters λ = (σ2

v, σ2
e )

T via restricted maximum
likelihood (REML) using the R package nlme [29]. Estimation of the variance parameters provided
a basis for the estimated variance–covariance matrix V̂S = ZSĜSZT

S + R̂S because V̂S depends only on

λ̂ =
(
σ̂2

v, σ̂2
e

)T
. An estimate of the regression coefficient vector βwas obtained:

β̂ =
(
XT

S V̂S
−1 XS

)−1
XT

S V̂S
−1yS. (10)

A prediction for the target area parameter could be made using the EBLUP:

µ̂α = lT
αβ̂+ mT

αv̂ (11)

where the predicted area-level random effect vector is:

v̂ = ĜZT
S V̂−1

S

(
yS −XSβ̂

)
. (12)

Note that, for unsampled stands, v̂i = 0, and we obtained the synthetic predictor µ̂i = lT
i β̂.

3.5. Model Selection

For some general attribute ζ ∈ {VOL, BA, DEN, QMD} and population unit type
κ ∈

{
grid cell, segment

}
, we sought the selection of a model that satisfied linearity between predictors

and the response, whose Pearson’s standardized residuals expressed homoscedasticity. Models were
selected using a three-phase procedure. In the first phase, the objective was to select variables for
the fixed part of the model, thereby attaining a preliminary estimate of the slope coefficients β.
From an initial pool of thirty predictor variables, the five best candidate models for a given level of
p ∈ {1, 2, 3, 4, 5} predictors plus an intercept were found via adjusted R2 by an exhaustive search
implemented by the leaps package in R [30]. This resulted in a set of 25 candidate models, five for
each level of p. Denote the models from this first phase as modζκ1. The models in modζκ1 were plotted
by their adjusted R2 values and number of predictors, and parsimony was determined by finding
the number of predictors at which adjusted R2 began to level off. Models around this region were
explored further via graphical inspection of residual plots. Those models that exhibited linearity
moved to the second phase and composed the set of models denoted as modζκ2. In the second phase,
heteroscedasticity was introduced by applying variance weights using the variance function described
in Equation (3) using 0, 0.5, and 1 as values for η. The models in modζκ2 were refit with this variance
function. The standardized residuals were inspected, and those models where the residual variance
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stabilized moved to the third phase and composed the set modζκ3. Models in this set had spatial
correlation structures Equation (4) added. We inspected empirical semi-variograms for each model.
Models that exhibited patterns of spatial correlation in the empirical semi-variogram retained their
spatial structure, and models that did not had the spatial structure removed. If more than one model
remained, the model with the largest adjusted R2 was selected as the final model. In total, eight models
were selected as final models, two (one s-ITC model and one ABA model) for each of the four attributes.

3.6. Mean Squared Error Estimators

The mean squared error estimator for the predicted target parameter µ̂α is a function of the
estimated variance component vector λ̂ and can be expressed as the sum of three components, assuming
the sampling fraction, ni

Ni
, for all areas is negligible:

ˆMSEα = g1α
(
λ̂
)
+ g2α

(
λ̂
)
+ 2g3α

(
λ̂
)

(13)

The first term quantifies uncertainty caused by the random-effect variance, i.e., as if the variance
components are known:

g1α
(
λ̂
)
= mT

α

(
Ĝ− ĜZT

S V̂−1
S ZSĜ

)
mα. (14)

The second term quantifies uncertainty in the estimate of the coefficient vector β:

g2α
(
λ̂
)
= dT

α

(
XT

S V̂−1
S XS

)−1
dα (15)

where dT
α = lT

α − bT
αXS and bT

α = mT
αĜẐT

S V̂S. The third term quantifies the uncertainty of the random
effect variance estimate, which is not accommodated by g1α that treats the variance components
as known:

g3α
(
λ̂
)
= tr


∂bT

α

∂δ

V−1
S

∂bT
α

∂δ

T
=
Vs

 (16)

where
=
Vs is the inverse Fisher information matrix (see [23] p. 180). Equations (13)–(15), as well as other

relevant details are described in [23] (pp. 108–109).
In addition to the mean squared error estimator, we also produced the root mean squared

error estimator:
ˆRMSEα =

√
ˆMSEα, (17)

An approximate 95% confidence interval:

CIα = µ̂α ± 2 · ˆRMSEα, (18)

Estimates of the coefficient of variation:

ˆCVα =
ˆRMSEα
µ̂α

· 100 (19)

and the relative change, expressed as a percentage, between s-ITC and ABA root mean squared errors:

δRMSE,α =
ˆRMSEs−ITC,α − ˆRMSEABA,α

ˆRMSEABA,α
· 100. (20)

Positive values of δRMSE,α indicate a larger s-ITC root mean squared error relative to the ABA root
mean squared error in the area indexed by α. A δRMSE,α of −50%, for example, indicates that the RMSE
for the s-ITC model is half as large as that of the ABA model.
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4. Results

4.1. Selected Models

The standardized residuals of the eight models are displayed in Figure 3, and their parameter
estimates are presented in Table 4. Figure 3 indicates some minor heteroscedasticity remaining in the
DEN and the BA models for predictions exceeding 25 m2 ha−1 and 500 stems ha−1, even after the
inclusion of the variance function, but otherwise the ABA and the s-ITC models appeared to have
homoscedastic and symmetrically distributed residuals. ABA models appeared to have smaller residual
variance than s-ITC for all attributes, i.e., their spread covered a smaller interval. Across population
types, a number of differences in model parameter estimates were apparent, as reported in Table 4.
For all inventory attributes, s-ITC models had consistently larger random effect variance estimates,
i.e., σ̂v, than the respective ABA models. Most notably, the ABA models for VOL and BA had near-zero
estimates for σ̂v. The variance function model term η was consistent for VOL and BA but was not
required (i.e., η = 0) for the QMD model in the ABA case to correct heteroscedasticity. For the DEN
ABA model, non-zero values of η did not fully correct the heteroscedasticity beyond what was achieved
with η = 0. None of the model residuals demonstrated strong spatial correlation after the inspection of
empirical semi-variograms, thus we treated the errors of the unit-level observations as independent.

Remote Sens. 2020, 12, x  11 of 26 

 

Positive values of 𝛿𝑅𝑀𝑆𝐸,𝛼 indicate a larger s-ITC root mean squared error relative to the ABA 

root mean squared error in the area indexed by 𝛼. A 𝛿𝑅𝑀𝑆𝐸,𝛼 of −50%, for example, indicates that the 

RMSE for the s-ITC model is half as large as that of the ABA model. 

4. Results 

4.1. Selected Models 

The standardized residuals of the eight models are displayed in Figure 3, and their parameter 

estimates are presented in Table 4. Figure 3 indicates some minor heteroscedasticity remaining in the 

DEN and the BA models for predictions exceeding 25 𝑚2ℎ𝑎−1 and 500 𝑠𝑡𝑒𝑚𝑠 ℎ𝑎−1, even after the 

inclusion of the variance function, but otherwise the ABA and the s-ITC models appeared to have 

homoscedastic and symmetrically distributed residuals. ABA models appeared to have smaller 

residual variance than s-ITC for all attributes, i.e., their spread covered a smaller interval. Across 

population types, a number of differences in model parameter estimates were apparent, as reported 

in Table 4. For all inventory attributes, s-ITC models had consistently larger random effect variance 

estimates, i.e., �̂�𝑣, than the respective ABA models. Most notably, the ABA models for VOL and BA 

had near-zero estimates for �̂�𝑣. The variance function model term 𝜂 was consistent for VOL and BA 

but was not required (i.e., 𝜂 = 0) for the QMD model in the ABA case to correct heteroscedasticity. 

For the DEN ABA model, non-zero values of 𝜂 did not fully correct the heteroscedasticity beyond 

what was achieved with 𝜂 = 0. None of the model residuals demonstrated strong spatial correlation 

after the inspection of empirical semi-variograms, thus we treated the errors of the unit-level 

observations as independent. 

 

Figure 3. Pearson’s standardized residuals of ABA (green) and s-ITC models (orange) for the four 

forest attributes. 

Table 4. Selected predictors and parameter estimates for the s-ITC approach and the ABA. 

Attribute Model Predictor Coefficient Std. Error 𝜼 �̂�𝒗 �̂�𝒆 

Figure 3. Pearson’s standardized residuals of ABA (green) and s-ITC models (orange) for the four
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Table 4. Selected predictors and parameter estimates for the s-ITC approach and the ABA.

Attribute Model Predictor Coefficient Std. Error η ^
σv

^
σe

VOL
(m3ha−1)

ABA
Intercept
mean_z

mean_z_sq

−8.09
10.50
0.83

12.90
4.02
0.15

0.5 0.00 1 7.37

s-ITC Intercept
mean_z_sq

−20.27
1.25

16.66
0.04 0.5 61.65 8.23
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Table 4. Cont.

Attribute Model Predictor Coefficient Std. Error η ^
σv

^
σe

BA
(m2ha−1)

ABA Intercept
P_60

0.74
1.98

1.50
0.08 0.5 0.00 1 2.33

s-ITC Intercept
vol_cov

−2.24
2.50

1.69
0.08 0.5 5.7 3.53

DEN
(stems ha−1)

ABA
Intercept

P_80
vol_cov

935.42
−33.84
34.32

77.92
7.06
9.21

0.0 73.17 228.14

s-ITC
Intercept

canopy_relief_ratio
P_95

210.17
1301.40
−10.26

96.32
152.93

3.41
0.5 175.32 614.55

QMD
(cm)

ABA
Intercept

canopy_relief_ratio
P_60

16.79
−28.59

1.26

3.57
7.88
0.08

0.0 1.43 5.83

s-ITC
Intercept

P_80
Pct_r_1_above_2m

1.68
0.99
3.09

0.98
0.05
0.87

0.5 2.72 1.54

1 Indicates a value less than 0.001.

4.2. Estimation for the Study Region

For the entire study region, we produced predictions of the target parameters using the respective
ABA and s-ITC models by aggregating unit-level predictions (Section 3.3). Table 5 displays the
predictions along with their ˆRMSEτ and ˆCVτ. Some moderate differences existed among predictions
generated with ABA and s-ITC models, most notably for VOL. The error components g1τ and g3τ were
negligible for all models. When many stands were aggregated to produce an estimate for the study
region, the mean of the random effects approached zero as the number of sample areas increased as
a result of the assumption E(v) = 0. Therefore, g1τ and g3τ, which consider the uncertainty imparted
by the random effects and the estimate of the random effect variance, respectively, both became
negligible. This left g2τ as the remaining source of error. ˆRMSEτ and ˆCVτ were comparable between
population types, with ABA models outperforming s-ITC models for BA and DEN, while s-ITC models
outperformed for QMD. Both models performed comparably for VOL.

Table 5. Predictions of forest attributes and error components at the scale of the study region. Note that,
for all models, g1τ and g3τ were < 0.01 and are not included in this table.

Attribute
^
µτ

g2τ ĈVτ ˆRMSEτ δRMSE,τ
ABA s-ITC ABA s-ITC ABA s-ITC ABA s-ITC

VOL(
m3ha−1 ) 395.73 417.22 159.94 166.05 3.12% 3.09% 12.65 12.89 1.90%

BA(
m2ha−1 ) 35.32 36.03 1.06 1.50 2.91% 3.40% 1.22 1.03 −15.57%

DEN
(
stems ha−1 ) 696.27 701.13 1225.02 1690.60 5.03% 5.86% 35.00 41.12 17.49%
QMD
(cm ) 25.37 24.97 0.77 0.36 3.47% 2.39% 0.87 0.60 −31.03%

4.3. Estimation for Stands

For each stand, we produced a prediction of the stand-level target parameter using the respective
ABA and s-ITC models. This result conveys the level of coherence between the two alternative
approaches and can highlight important differences in the models where they exist. Figure 4 displays
these stand-level predictions and whether that stand was sampled. Between ABA and s-ITC models,
a high level of agreement, i.e., the points in the figure clustered around the diagonal line, was apparent
for VOL, BA, and QMD. For VOL, small differences existed at point predictions exceeding 500 m3/ha,
with the s-ITC model producing larger predictions than the ABA model. The differences were larger
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for unsampled stands than sampled stands. For BA, differences existed at the extreme small end of the
predicted values, i.e.,< 5 m2/ha, with the ABA model producing larger predictions than the s-ITC
model. This same pattern existed for QMD occurring at predicted values < 15 cm. The differences
between ABA and s-ITC models were most apparent for DEN. The grid cell model appeared to saturate
at a level of 900 stems per hectare, with marked differences in the upper range of segment predictions.
The confidence intervals for ABA, indicated by the vertical bars, and the confidence intervals for s-ITC
reflected the uncertainty of each stand-level prediction. For VOL and BA, the confidence intervals were
wider for the s-ITC models than for the ABA models. For DEN and QMD, the confidence intervals were
relatively consistent between ABA and s-ITC models, i.e., they were approximately the same width.
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Figure 4. Predictions of area-level parameters for VOL, BA, DEN, and QMD for s-ITC models and
ABA models. Whether or not the stand had at least one field plot is indicated by the color of the point.
The confidence intervals are shown as horizontal bars for s-ITC and vertical bars for ABA.

For all stand-level target parameter predictions, we produced the model-based mean squared
error estimates of sampled and unsampled stands and coefficients of variation in Table 6. With the
exception of DEN, the ABA models had median ĈVi and ˆRMSEi that were less than those of the s-ITC
models for both sampled and unsampled stands. For models where the estimated random effect
variance was near zero, this implied that no substantial error was introduced from the random effect
component. This was the case for ABA VOL and BA models, and the difference between the measures
of error between sampled and unsampled stands was accordingly negligible.
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Figure 5 indicates the relative decrease in ˆRMSEi as it related to an increase in the number of
sampled units when going from an ABA model to an s-ITC model. This increase in sample size
was expressed as the ratio of the number of segments to the number of field plots for a given stand.
Points that fell below the horizontal black line indicated stands where the s-ITC model achieved a smaller

ˆRMSEi than the respective ABA model. This tended to occur in stands where the number of segments
was much larger than the number of field plots. We refer to this increase in stand-specific sample size
as “segment induced replication.” When segment induced replication was large, the decrease in ˆRMSEi
relative to the ABA model tended to be large. This effect was most clear for DEN and QMD models,
with more erratic behavior for the VOL and the BA models. When segment induced replication was
small, ˆRMSEi tended to increase from ABA to s-ITC models for all variables. This effect was most
extreme for VOL and BA models.
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Figure 5. The ratio of the stand-specific sample size of segments to field plots plotted against δRMSE, i,
for VOL, BA, DEN, and QMD in sampled stands. A simple linear regression (red) was fit to each
attribute to demonstrate the trend, with slopes and intercepts reported for each attribute.

Figure 6 displays the error components, g1i, g2i, and g3i, for sampled stands, ranked by the ratio
of segments to field plots in ascending order. For models where the random effect variance was large,
such as VOL, BA, and QMD s-ITC models, the relative share of g1i was a very large portion of the total
mean squared error for many of the sampled stands, i.e., in many cases, it accounted for the majority of
the mean squared error in a specific stand. For models where this was not the case, such as DEN s-ITC
model as well as DEN, BA, and VOL ABA models, the relative share of g1i was small. For most stands,
all s-ITC models with the exception of DEN appeared to have a smaller value of g2i than the respective
ABA model, with a notably smaller share of the total mean squared error estimate. The ordering
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within each pane of the figure, from least (top) to greatest (bottom) segment induced replication,
demonstrated the impact of segment induced replication on the individual error components as well
as the overall mean squared error estimate. While segment induced replication appeared to reduce
all three components in most cases, the impact was most clear for g1i for all s-ITC models with large
random effect variance estimates. The g3i term was largest for the ABA QMD and the DEN models and
the s-ITC DEN model. This term did appear to be mitigated by increase in sample size for the s-ITC
model but much less so for the case of the ABA model. Note that, for specific stand-level predictions,
the g1i and the g3i error components were sizeable, unlike predictions made for the study region,
because they did not benefit from aggregating predicted random effects (Section 4.2).

Remote Sens. 2020, 12, x  16 of 26 

 

 

Figure 6. Error components for segment and cell models for VOL, BA, DEN, and QMD in sampled 

stands. Component rows are ranked by the ratio of the number of segments to the number of field 

plots (as in Figure 5) in ascending order. 
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stands. Component rows are ranked by the ratio of the number of segments to the number of field
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Figures 7 and 8 display the error components g1i and g2i plotted against the stand-specific
sample size ni, i.e., the number of field plots or number of segments, and the area-level prediction
µ̂i, respectively. The ABA models for all attributes tended to have smaller g1i error components and,
for models with small random effect variance estimates, such as VOL and BA models, these error
components were uniformly small across all available sample sizes. In contrast, the s-ITC models,
which tended to have larger random effect variances, required much larger sample sizes to achieve the
same level for the g1i component. For the g2i component, it was apparent for VOL, BA, and QMD that
predictions that tended to be far from the mean generally exhibited larger values for g2i, especially for
upper and smaller tails of the BA models and the upper tail of the VOL models. Some extreme values
for g2i were apparent for ABA VOL, BA, and QMD models in particular. Note that the distinct patterns
for VOL, BA, and QMD in Figure 8 were the result of a fewer number of coefficients in these models
and the form of the g2α expression (Equation (15)).
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to the respective random effect variance estimate (Table 4).
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5. Discussion

5.1. Contribution of Error Components

We observed a mixture of results between s-ITC and ABA models. For the estimation at the scale of
the study region, the two approaches provided similar RMSEs. For the stand-level estimation, the ABA
provided predictions with lower RMSEs for unsampled stands (Table 6), while the s-ITC models
were able to provide lower RMSEs in some sampled stands (Figure 5). Inspecting the behavior of the
error components for individual stands can provide insight into the differences between these two
approaches and their RMSEs. We identified changes in stand-specific and global sample sizes between
the two approaches as important contributors to these differences by examining the stand-level error
components g1i, g2i, and g3i in turn. For the interested reader, please refer to [23] (pp. 176–179) for
technical descriptions of the error components for the simpler case of homoscedastic unit-level models.

We observed that s-ITC models benefited from an increase in stand-specific sample size relative
to the ABA models, and that this increase reduced the impact of the g1α error component (Figure 7).
For VOL and BA models, g1i for ABA models was near zero and approximately equal for any given
level of ni. While it was possible for g1i to reduce to a level similar to that of the ABA models, it required
much larger increases in sample size relative to the ABA in the realm of a 50-fold increase for the DEN
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model and a 75-fold increase for VOL, BA, and QMD models. The source of this increased sample
size came primarily from the particular segmentation method used. For the variable window locam
maxima (VWLM) and Voronoi method, shorter values of the canopy height model implied larger
numbers of detected treetops in a given vicinity, which in turn increased the number of polygons
produced from the tessellation. The degree to which this segment induced replication reduced g1i is
also a function of fixed plot radius, as this limits the number of segments included in the sample as
plot radius declines. In our study, the plot radius was 16 m, which is typically regarded as a large plot
size for forest management inventories.

Table 6. Medians of estimated mean squared errors for stands partitioned by sampled (S) and
unsampled (U) stands.

Attribute Sampled Median ĈVi Median ˆRMSEi Median δRMSE,iABA s-ITC ABA s-ITC

VOL
(m3 ha−1)

S 2.3% 4.9% 9.7 29.9 208.2%
U 4.5% 18.7% 9.4 48.4 414.9%

BA
(m2 ha−1)

S 2.3% 6.1% 1.1 2.5 127.3%
U 4.6% 21.0% 1.2 5.4 350.0%

DEN
(stems ha−1)

S 4.8% 3.7% 32.3 22.8 −29.4%
U 12.1% 26.4% 89.4 183.0 104.7%

QMD
(cm)

S 3.5% 5.8% 1.2 1.7 41.7%
U 10.0% 12.7% 1.9 2.6 36.8%

The error component g2i could be considered a source of uncertainty that involved the reliability
of the estimate of the regression coefficients and the particular predictors used to make a prediction
for a given stand. If the predictors in the stand were largely different than the predictors used to fit
the model, for example, in a forest stand with extremely tall trees, then g2i could be expected to be
large. Generally speaking, this implies that predictions for stand-level means that tend to be far from
the global mean tend to have larger values of g2i, which can be observed in Figure 8. The patterns for
g2i observed in Figure 8 demonstrate some advantages of the s-ITC method not observed for the g1i
component. Namely, the ABA models require a larger degree of extrapolation, shown by the extremely
large g2i values for ABA VOL, BA, and QMD models. This is an intuitive result, because the s-ITC
models have access to a much larger global sample size as a result of the segment induced replication
and, additionally, a sample that contains a much wider range of predictor values compared to that of
the ABA models.

The g3i error term accounted for the uncertainty of the estimate of the model parameters,

λ =
(
σ2

e , σ2
v

)T
, themselves. For the unit-level model with block-diagonal covariance structure, this term

is known to be o
(
m−1

)
[31], i.e., the g3i error component declines with an increase in the number of

sampled areas. However, in our case, the number of sampled areas was moderate (m = 35), and several
models demonstrated large values of g3i, specifically the QMD and the DEN ABA models and the
DEN s-ITC models. Such a result is intuitive. Models that have a large random effect variance are
at risk of larger g3i, all else being equal, because the random effect variance itself is a large source
of uncertainty. Additionally, larger stand-specific sample sizes, as in the case of the s-ITC models,
may lead to a reduction in g3i (see [23]).

5.2. Peculiarities of a Segment Population

A number of features of a population of segments distinguish it from a population of regular grid
cells used in the area-based approach. Most apparent is that the average size of segments are much
smaller than that of grid cells (Figure 2). This change in size may make observations of segments more
prone to measurement error of observed variables within each population unit. To calculate forest
attributes of a segment requires knowledge of the position of each tree within the larger fixed-area



Remote Sens. 2020, 12, 2525 19 of 24

plot. As segment size declines, the probability of mis-assigning a tree to one segment increases
if measurement error of tree positions is present. In our study, we treated the tree positions as
known, but further research could propagate this additional source of error into estimates of ˆRMSEi.
For operational applications, it should be stressed that the required measurement of tree positions
presents an increase in the cost of field data collection campaigns, which is not strictly required for
the ABA.

Sampling a segment population via fixed radius plots implies a spatial structure of sample
observations that are tightly clustered, which presents an opportunity to estimate potential spatial
correlation parameters. In an early phase of the analysis, we did not observe strong patterns in empirical
semi-variograms for the s-ITC or the ABA that indicated any residual spatial correlation. While many
pairwise distances are available at close ranges for s-ITC, e.g., those pairs that exist in the same fixed
radius plot, relatively few exist outside of this range. A lack of pairwise observations at close- and
mid-range distances often precludes reliable estimation of spatial correlation parameters. A failure
to observe spatial correlation patterns in the available data should not be conflated with a lack of
its presence in the actual state, and the decision to ignore a possible spatial correlation can lead to
a risk of underestimating the mean squared error of stand-level predictions, as discussed for the ABA
in [16]. Assessing the impact of ignoring a potential spatial correlation requires specialized datasets
not typically found in operational forest inventories [32] or simulation studies [16], and we leave such
a question for the case of s-ITC for further research.

When constructing target parameters for both ABA and s-ITC models, a geometric mismatch
occurs (e.g., Figure 2) between stands as they are delineated, as they are constructed from a set of
cells assigned to that stand and as they are constructed from a set of segments assigned to that stand.
We observed mean absolute deviations of 0.12 (0.7%) hectares and 0.3 (1.7%) hectares between segment
and cell populations, respectively, as they differed from the stand boundaries, and we expected the
impact on stand-level and study region predictions to be minor. These differences were not accounted
for in the presented mean squared error estimators but may lead to discrepancies in the estimate of
stand-level means. For the s-ITC, the impact of this geometric mismatch would be smaller than that
of the ABA given the observed mean absolute deviations, which is one potential advantage of the
method. If stand-level predictions are desired for the area-as-delineated, setting hi· to the delineated
area during the construction of li is one potential alternative, which is equivalent to rescaling the
mean prediction to the desired area. Further corrections such as splitting population units by stand
boundaries, tightly related to resolution dependence [33], may introduce bias for unit-level predictions
and beget further research before serious consideration can be given.

The segmentation method we employed used a Voronoi tessellation of a set of tree height positions
that were detected from a canopy height model. This is a deviation from previous s-ITC studies that
used segmentation methods based on watershed segmentation [9,10] and is a simpler method compared
to other state-of-the-art tree segmentation methods, e.g., [34–36]. While the Voronoi tessellation is
simple, it guaranteed that we were able to construct the correct target parameter (e.g., the mean
volume of a forest stand) by summing the response variables of the individual Voronoi segments
weighted by their area (Equation (5)). Methods that produce segments by constraining the shape of
the crown observed in the auxiliary data risk the omission of trees in the actual state if, for example,
trees exist outside of the identified segments. If an analyst constructs a target parameter from these
types of segments, there is a risk that the target parameter will not reflect the actual state. Stand-level
predictions from segments of this type are therefore at risk of bias for the “true” target parameter that
includes all trees.

While the Voronoi tessellation in tandem with the VWLM detection method is appropriate for
the purposes of assessing stand- and region-level predictions, we did not examine the impact of
different segmentation configurations or methods. However, we view our analysis as an important
step in accommodating these diverse methods under a formal assessment of uncertainty at different
scales. Further research could explicitly address the impact of the quality of the segmentation on
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segment-, stand-, and region-level predictions and compare different methods while maintaining explicit
consideration for the “true” target parameter mentioned previously. We acknowledge developments
in stochastic geometry, as examined in [37], as a potential source of existing methodology for solutions
that may facilitate such an analysis.

5.3. Implications for Forest Management Inventories

As lidar-assisted forest inventories continue to support forest management decisions, explicit
consideration of the uncertainty at the resolution where decisions are made is needed. For many forest
management organizations, this decision making process is done at the stand level [38] (pp. 13–14).
At the same time, the interest and the technology around tree segmentation has seen marked increase
in recent years [39,40], yet studies that examine the appropriateness of segmentation methods to
support stand-level decision making are rare.

Several studies have investigated small area models and their measures of error for some forest
attributes in the context of the ABA. One study [19] investigated unit-level models for predicting
VOL in southeastern Norway. Importantly, this study obtained random effect standard deviation
estimates, i.e., σv, in the range of 30 to 38 m3/ha, depending on whether or not heteroskedasticity
was considered. Similarly, [41] obtained a σv estimate of 2.39 m3/ha for a study area in southwestern
Oregon. Both of these estimates are larger than our estimate, which was negligible (Table 4). The impact
that estimates of σv may have on the mean squared error estimates of stand-level predictions, especially
for unsampled stands (Table 6), suggesting that careful consideration should be given for the estimate
of this parameter. Recent studies have investigated the estimation of σv under different sampling
scenarios using simulated data [16,42,43] and suggest that small stand-specific sample sizes may
introduce a negative bias in the estimation of stand-specific, model-based mean squared errors under
the unit-level model. Our study area had sample sizes that widely varied from stand to stand (Table 1),
and in this situation, the possibility of negative bias is not as clear. In any case, the sensitivity of
estimates of σv discussed in the previously cited studies warrants further research under different
sampling designs, field plot configurations, and estimation methodologies.

Small area models and the behavior of their mean squared error estimates can provide an indication
where one inventory system may provide more reliable predictions than an alternative system,
i.e., predictions with smaller ˆRMSEi or ˆRMSEτ. Our results indicated that neither the ABA nor
the s-ITC approaches provided clear advantages across all four attributes in both region-level and
stand-level estimation cases. Still, a number of important implications are supported by our findings.
First, for the case of stand-level predictions in unsampled stands, the ABA demonstrated more reliable
performance for all four attributes (Table 6). This suggests the ABA is more suitable for forest inventories
where there is a large number of unsampled stands relative to sampled stands or where management
decisions need to be made for unsampled stands. Moreover, the ABA does not strictly require the
measurement of tree positions, which is necessary for the s-ITC approach. However, for the case of
sampled stands, the s-ITC approach demonstrated reductions in ˆRMSEi for all four attributes, which is
driven by segment induced replication (Figure 5). This suggests that forest inventories that contain
primarily smaller trees, which beget large increases in sample size relative to the ABA, may benefit
from this phenomenon. Additionally for VOL, BA, and QMD models in particular, the s-ITC models
also demonstrated lower levels of extrapolation at extreme prediction ranges (Figure 8), a phenomenon
that has been noted for s-ITC in previous literature [44]. These two situations are niches where s-ITC
models may be able to support reductions in ˆRMSEi relative to their ABA counterparts.

S-ITC also comes with a number of other benefits, such as an increase in the spatial resolution
of unit-level predictions, increased interpretability of population units, and the ability to predict
unit-level attributes such as maximum diameter or dominant species for elements whose size is closer
to actual trees. While these benefits of s-ITC may be attractive for operational forest inventory systems,
we present here a possible analysis that could be conducted when considering the implementation of
s-ITC in support of stand-level forest inventory reporting. The methodology can be applied in many
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situations with similar configurations for the lidar acquisition and field data and can accommodate
the comparison of s-ITC and ABA in other regions and forest types. Importantly, the estimate of the
stand-specific mean squared errors, which play a large part in determining the reliability of s-ITC or
ABA for stand-level reporting, can be conducted using only stands where field plots exist, greatly
reducing the computational effort required to compare the two approaches in an initial screening
phase. We recognize that s-ITC is one of many possible methodologies to conduct forest inventory
assessments using tree segmentation [3,45] and view the incorporation of these other methods into
SAE methodology as a basis for further research.

6. Conclusions

We observed a mixture of results when comparing the performance of models using the s-ITC
approach and the ABA using model-based mean squared error estimators. For predictions made at the
scale of the study region, s-ITC and ABA models achieved similar levels of error for all four attributes.
For stand-level predictions in unsampled stands, the ABA was more reliable for all attributes, driven by
smaller random effect variance estimates. In sampled stands, the s-ITC approach was able to leverage
an increase in sample size to achieve smaller errors for all attributes in some stands and exhibited
a smaller risk of extrapolation for VOL, BA, and QMD. This study contributes a formal assessment of
the error properties of s-ITC predictions at the scale of forest stands and the study region, which can
directly inform forest management planning at these scales.
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Appendix A

Table A1. Glossary of major notation for target parameters and the unit-level model.

Target Parameters and Their Components

Notation Description Notation Description

µα
The target parameter for an area indexed by α (τ for the study region,

i for stand).
hi j

The area occupied by the jth population
unit in the ith area in hectares.

hi· The sum of the areas of the population in the ith area in hectares. h··
The sum of the areas of all population

units in the entire study region in
hectares.

Models and Their Components

Notation Description Notation Description

y A vector of observable quantities of the response variable for all
population units. e A vector of residuals.

X A design matrix of lidar covariates and an intercept for all
population units. β A vector of regression coefficients.

Z A matrix that assigns population units to areas. G The variance-covariance matrix of v.
v A vector of realized random effects. R The variance-covariance matrix of e.
σ2

e The residual variance. σ2
v The random-effect variance.

Ni The number of population units in stand i. ni

The sample size in stand i, i.e., the
number of field plots (ABA) or the

number of segments (s-ITC)

Results Assessment Measures

Notation Description Notation Description

ˆRMSEα
The model-based root mean squared error for the predicted

target parameter. δRMSE,α

The relative change between s-ITC and
ABA model-based root mean squared

errors.

CIα
The approximate confidence interval for the predicted

target parameter.
ˆCVα

The estimated coefficient of variation of
the predicted target parameter.
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Appendix B

Table A2. Descriptions of lidar predictors considered for ABA and s-ITC models.

Predictor Name Description

p_1, p_10, p_20, p_25, p_30, p_40, p_50, p_60, p_70, p_75,
p_80, p_90, p_95, p_99

The percentile of the z-dimension indicated by the trailing number.
For example, p_95 describes the elevation at which 95% of the lidar

points fall below.
max_z The maximum z value.
min_z The minimum z value.

mean_z The mean z value.
stddev_z The standard deviation of the z values.

var_z The variance of the z values.
mean_z_sq The square of the mean z value.

vol_cov The product of the mean z value and the pct_r_1_above_2 metric.
pct_all_above_2 The proportion of all returns above 2 m.

pct_all_above_mean The proportion of all returns above the mean z value.
pct_r_1_above_2 The proportion of first returns above 2 m.

pct_r_1_above_mean The proportion of all returns above 2 m.

r_1, r_2, r_3, r_4 The number of returns indicated by the trailing number. For
example, r_1 indicates the number of first returns.

area The area of the population unit (only included for s-ITC models)
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