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Abstract: Most of the shrinking cities experience an unbalanced deurbanization across different 

urban areas in cities. However, traditional ways of measuring urban shrinkage are focused on 

tracking population loss at the city level and are unable to capture the spatially heterogeneous 

shrinking patterns inside a city. Consequently, the spatial mechanism and patterns of urban 

shrinkage inside a city remain less understood, which is unhelpful for developing accommodation 

strategies for shrinkage. The smart city initiatives and practices have provided a rich pool of 

geospatial big data resources and technologies to tackle the complexity of urban systems. Given this 

context, we propose a new measure for the delineation of shrinking areas within cities by 

introducing a new concept of functional urban shrinkage, which aims to capture the mismatch 

between urban built-up areas and the areas where significantly intensive human activities take 

place. Taking advantage of a data fusion approach to integrating multi-source geospatial big data 

and survey data, a general analytical framework is developed to construct functional shrinkage 

measures. Specifically, Landsat-8 remote sensing images were used for extracting urban built-up 

areas by supervised neural network classifications and Geographic Information System tools, while 

cellular signaling data from China Unicom Inc. was used to depict human activity areas generated 

by spatial clustering methods. Combining geospatial big data with urban land-use functions 

obtained from land surveys and Points-Of-Interests data, the framework further enables the 

comparison between cities from dimensions characterized by indices of spatial and urban functional 

characteristics and the landscape fragmentation; thus, it has the capacity to facilitate an in-depth 

investigation of fundamental causes and internal mechanisms of urban shrinkage. With a case study 

of the Beijing-Tianjin-Hebei megaregion using data from various sources collected for the year of 

2018, we demonstrate the validity of this approach and its potential generalizability for other spatial 

contexts in facilitating timely and better-informed planning decision support. 

Keywords: functional urban shrinkage; urban built-up area; human activity area; geospatial big 

data 

 

Introduction 

The “urban shrinkage”, first put forward by [1] as an alternative paradigm of urbanization that 

is completely different from the traditional “urban growth”, has become an important topic in urban 

studies. Research on this phenomenon has been carried out in Germany [2], the United States [3], and 
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other countries. Urban shrinkage took place in China more than two decades ago and has had 

profound economic, social, and environmental impacts [4]. With the Chinese economy slowing down 

in recent years, it has received much attention from both researchers and policymakers [5,6]. Several 

studies found that more than 20% of Chinese cities have experienced or been experiencing shrinkage 

[7,8]. As China has entered the new era of spatial planning [9], the traditional paradigm of growth-

oriented planning is being replaced by a new paradigm that reinforces the coordination between 

various spatial systems and plans, posing new opportunities as well as challenges for the 

understanding of urban shrinkage. 

A new planning model known as “smart shrinkage” was proposed to address the challenges 

caused by urban shrinkage [10,11]. This model emphasizes accommodating shrinkage, diversifying 

the economy, and prioritizing adaptive strategies and policies that can attract and preserve 

investments, given the local context that may vary across places within a city. Before tailoring the 

shrinkage-mitigating strategies to local conditions, we must recognize the shrinking areas that are of 

great interest. Most existing measurements to identify urban shrinkage are at the city level and are 

unable to capture the local shrinking patterns inside a large city that are often spatially 

heterogeneous. Furthermore, these measurements mainly take a single indicator or a combination of 

several ones to identify shrinking cities based on the longitudinal changes of indicators, which 

inevitably neglects the functional relationship between shrinkage-related factors, e.g., the human 

activities and built environment. More importantly, the mismatch between the relevant factors may 

unveil causes for urban shrinkage. 

As geospatial big data proliferated in recent years, unprecedented opportunities surface to 

supplement reliable but costly survey data for urban studies with high spatiotemporal resolution 

data collected cost-efficiently, such as volunteered location-based big data and remotely sensed data. 

Various sources of data collected by all types of sensors and a number of newly developed models 

and tools have been utilized to gain new insights into optimizing the efficiency of city operations and 

services and into connecting citizens with their urban environments under the umbrella of the Smart 

City concept [12–14]. Applying smart city technologies to the investigation in the context of city 

shrinkage instead of growth becomes a promising approach to facilitating the study and management 

of urban shrinkage. 

This paper aims to close the gaps in existing measurements of urban shrinkage discussed above 

by proposing a new concept, namely functional urban shrinkage, to guide the development of better 

measures for the delineation of local shrinking areas within cities. Taking advantage of a data fusion 

approach to integrate multi-source geospatial big data and survey data, a general analytical 

framework is developed to construct the functional shrinkage measure, which aims to capture the 

spatial mismatch between urban built-up areas and the areas where significantly intensive human 

activities take place, dubbed as the functional shrinkage area. Specifically, Landsat-8 remote sensing 

images were used for extracting urban built-up areas by supervised neural network classifications 

and Geographic Information System (GIS) tools, while cellular signaling data from China Unicom 

Inc. was used to detect human activity areas by spatial clustering methods. Once the functional 

shrinkage areas for a city are delineated, the framework further examines the spatial distributions, 

morphological features, and urban land-use compositions of these areas, and it enables the 

comparison of functional urban shrinkage patterns between cities from these dimensions by 

combining geospatial big data with urban land-use functions obtained from land survey data and 

Points-Of-Interests (POI) data. Therefore, the framework for functional urban shrinkage has the 

capacity to facilitate an in-depth investigation of the fundamental causes and internal mechanisms of 

urban shrinkage. With a case study of the Beijing-Tianjin-Hebei megaregion (BTH) using data from 

various sources collected for the year of 2018, we demonstrate the validity of this approach and its 

potential generalizability for other spatial contexts in facilitating timely and better-informed planning 

decision support. 

The rest of this paper is organized as follows. The next section reviews related research on urban 

shrinkage in China and existing approaches to measuring urban shrinkage. Section 3 proposes the key 

concept of functional urban shrinkage and a general analytical framework for developing the functional 
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shrinkage measures, and further details the data and methodology to support the implementation. Results 

are presented in Section 4 and further discussed in Section 5 in terms of shrinkage-related factors and 

mechanisms. Finally, conclusions are drawn, and the future work is envisaged. 

Literature Review 

2.Urban Shrinkage in BTH 

BTH is one of the fastest-growing urban agglomerations in China. However, a number of studies 

have pointed out that the region has been troubled by urban shrinkage, which has emerged as a 

critical threat to the sustainable development of this region. For example, Wu [15] characterized the 

population loss by the longitudinal changes of the resident population (people who actually live 

there), registered population (people who have their Hukou registered there), and employed 

population. He further compared the different trends for the resident population and registered 

population, on which urban shrinkage was identified and evaluated for BTH. Wu [15] studied the 

changing patterns of shrinking cities in this region and classified the process of shrinkage into five 

categories: less-developed peripheral shrinkage, downtown shrinkage in large cities, shrinkage in 

industrial and mineral cities, artificial shrinkage due to administrative redistricting and shrinkage in 

small counties and towns. 

On the other hand, the extent of urbanization for cities in this region varies greatly given their local 

conditions [9]. They share a low level of integration of systems and mechanisms, mainly root in the 

different industrial structures, huge gaps in development levels, and a lack of intercity coordination [16]. 

They also follow a variety of development models respectively, including innovation-driven, capital-

driven, and service-driven [17]. Recent studies [18] have explored the considerations and issues in 

coordinating various growth-driving factors, including the capital, population, and transport flows 

between cities in this region. However, these considerations and issues have not been considered with 

respect to urban shrinkage. Currently, with the planning and development of the Xiong’an New Area and 

a series of implemented policies on alleviating city functions that are less relevant to the national capital 

status of Beijing, BTH is experiencing unprecedented urban changes that comprise both growth and 

shrinkage. It is imperative to consider the internal relations among land, economy, population, and other 

factors for the study of urban shrinkage. 

2.Geospatial Big Data for Urban Shrinkage Research 

Our understanding of urban shrinkage is highly dependent on the availability of data. Previous 

research mainly utilized traditional data, such as population census and land surveys, due to their 

availability and reliability. However, collecting these data is often time-consuming and costly. 

Consequently, they have been limited to either small-scale or temporally sparse data samples. The 

proliferation of geospatial big data in recent years provides unprecedented opportunities to study 

both human and environmental dimensions of urban dynamics in shrinking cities [19–21]. 

Many smart city-related studies [22,23] have demonstrated that geospatial big data enabled by 

sensors ubiquitously embedded in various mobile devices and by location-based services provided by 

various telecom operators and Internet companies at a low cost can effectively capture the dynamics of 

human activities covering large-scale urban areas. Compared to traditional data, such data record various 

human activities with a very fine spatiotemporal resolution, making feasible the dynamic monitoring, 

detection, and evaluation of the human dimensions of urban shrinkage. For example, a project called 

“London Dashboard” established at University College London provides the dynamic tracking and 

visualization of 12 kinds of data including jobs and economy, transport, environment, and so on, which 

can be accessed by every citizen [24]. Sulis et al. [25] use the Twitter data and smart card data as proxies 

of human activities and mobility flows to extract the most vibrant areas. 

On the other hand, remote sensing platforms, as a well-known geospatial big data source, can 

provide diversified information on urban morphology. Various data products with different spatial 

and temporal resolutions have proved very useful in research with different purposes and needs. For 

example, MODIS 500-m data has been used for global urban mapping studies [26], and a series of 
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Landsat data have been widely used in urban environment studies, such as urban growth monitoring 

[27], urban change detection [28], and land-use and land-cover classification [29]. In particular, such 

data have been employed to delineate built-up areas [30], which can be used as a key element to 

identify and assess urban shrinkage [31]. Compared to traditional land surveys, remote sensing data 

are automatically collected and much more cost-efficient due to its good geographic coverage and the 

high spatiotemporal resolutions, making it the best candidate for large-scale monitoring, detection, and 

evaluation of the physical/environmental dimensions of urban shrinkage. 

Fusing geospatial big data from multiple sources including location-based services and remote 

sensing platforms allows for an integrated data approach, supplemented with traditional survey 

data, to the study of both human and physical/environmental dimensions of urban shrinkage. 

Moreover, the superior spatiotemporal resolution and geographic coverage of the big data approach 

empower the large-scale and dynamic monitoring, detection, and evaluation of urban shrinkage 

patterns and processes. As there have been few studies focusing on such an integrated data approach 

to urban shrinkage study, this paper aims to fill this gap. 

2.Measurement of Urban Shrinkage 

The measurement of urban shrinkage in the literature mainly takes two approaches. First, the 

univariate approach refers to a way to measure urban shrinkage by the change of individual 

indicators, such as population or economy or land-use, to characterize one of many aspects of urban 

shrinkage. Among these indicators, some research only focused on the widely used population 

change [32,33], while other studies use several indicators, such as the change of economic 

development level [34] and the physical change of the built environment [35] to investigate shrinkage 

from different aspects separately. Rieniets et al. [36] found that as the entire city was growing, 

population decline occurred in some local areas of the city reflecting a pattern of spatially unequal 

development. Du and Li [34] applied the Neo-Marxist urban theory to systematically investigate how 

the capital flow can cause urban shrinkage measured by the population decline. 

Secondly, the multivariate approach takes a way to examine urban shrinkage by a combination 

of multiple indicators as a single index. The most widely used index is the population density which 

considers both the number of residents and the built-up area on which they dwell. Employing this 

index, Zheng et al. [37] identified “ghost cities” from an angle of the discrepancy between lit areas 

and built-up areas, which reflects the house vacancy ratio in those cities and represents an aspect of 

urban shrinkage. Chi et al. [38] identified more than 50 shrinking cities using estimated areas of 

vacant housing that were derived from combining the resident population estimated by location-

based data of user activities acquired from Baidu Maps and housing-related urban services extracted 

from POI data. Jin et al. [39] combined indicators such as intersection density, POI point density, LBS 

based human activity records and other variables to construct a rather comprehensive index to 

evaluate urban vitality in order to identify the “ghost cities” in China. 

Both the above approaches take either a single aspect or several ones to examine urban shrinkage as 

changes of indicators between snapshots in time. Being a rather static way of measurement, they both 

ignore the interactions between the dynamic changes in those aspects, e.g., the human activities and built 

environment, which may lead to the functional mismatch between them and thus become a cause for 

urban shrinkage. As early as the 20th century, American researchers began to pay attention to the 

relationship between land use and population loss at the neighborhood scale [40,41]. Some researchers 

[10,42] further investigated the relationship between different land-use types, urban morphology, and 

depopulation. Yang et al. [43] compared population changes and the land expansion of cities in 2000 and 

2010 and identified a paradox of population loss and land development existing in a large number of 

cities. At the intra-city level, Long and Wu [5] found that the coexistence of the rapid land development 

in general and the urban shrinkage in some local areas was quite common in China. 

Although studies discussed above touch upon the relationship between different aspects of urban 

shrinkage, a formal definition of the functional relationship between those aspects, such as population 

and land-use, with respect to the extent to which they are mutually adaptive or mismatched in relation to 

urban shrinkage, remains missing. Hence, the associated measure for this functional shrinkage is lacking. 
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Furthermore, most existing research took measurements at the city or provincial level, which missed out 

the spatially heterogeneous distribution of urban shrinkage at finer resolutions, such as intra-city or street 

block levels, and thus lacks the capacity to study the functional mismatch between different aspects of 

urban shrinkage at smaller geographies. To fill the two gaps, this study takes a multi-source data fusion 

approach to measure the functional urban shrinkage (formally defined in Section 3.2) by leveraging both 

conventional survey data and geospatial big data. The new measurement is applied to BTH as a case study 

to demonstrate its validity. 

Data and Methodology 

3.Study Area and Data 

BTH includes all administrative areas of Beijing City, Tianjin City, and Hebei Province (Figure 

A1). This region has a total area of 216,000 kmAs one of the largest urban agglomerations in China, 

BTH plays an important role in China’s urban system. National statistics (National Bureau of 

Statistics, 2018) show that in 2018, this region accounted for about 8.1% of China’s total population 

and 9.5% of its GDP. Moreover, the urbanization in cities and towns of this area is highly unbalanced, 

providing us a rich set of observations for the study of urban shrinkage. 

Our data come from the following four sources. 

1) Cellular signaling data. The cellular signaling data from China Unicom, one of the largest 

telecom service operators in China, are used to represent the intensity of human activities 

(physical activities that need the presence of human individuals), namely the ambient 

population, which is defined as the 24-h average estimate of a population in a given area [44]. 

The data record the number of mobile phone users by a grid of 1000-m-by-1000-m cells for a 

regular week from July 20th to 26th in While the data only covers a relatively limited time period, 

the daily average of the data for a typical week can be a representative to reflect the extent of 

significantly intensive human activities across spatial regions for a typical day (explained in 

detail in Section 3.3). As the data is aggregated as given, it is anonymous and involves no privacy 

issue. However, the spatial resolution of the grid scheme is fine enough to estimate the ambient 

population relevant to the purpose of this research.  

2) Remote sensing data. Landsat 8 remote sensing images and high-resolution satellite images from 

Google Earth are used jointly to extract physical built-up areas. The Landsat-8 satellite launched 

in 2013 continues and maintains the characteristics of the previous Landsat series. It optimizes the 

imaging mode with two sensors, the Operational Land Imager (OLI) and the Thermal Infrared 

Sensor (TIRS). The narrowed spectral band range expands to 11 bands and improves signal-to-

noise ratio making it more sensitive to some specific surface objects. The improvement of radiation 

resolution allows for details of the land surface to be captured and discriminated. It has advantages 

that can be useful in urban detection and monitoring. In this research, we use the OLI data with a 

spatial resolution of 30 m by 30 m, a total of 14 images including the Level-1 Terrain Precision 

(L1TP) data of Landsat 8 taken between September 2018 and January 2019 from the United States 

Geological Survey (USGS, free and available at https://earthexplorer.usgs.gov/). 

3) Land-use survey data. The land-use survey data conducted and updated in August 2018 was 

provided by the planning authorities of cities in the BTH. This polygon vector data contains 

land-use type information reflecting urban functions, such as public service, industrial, 

residential, mixed-use, and undeveloped lands. 

4) Points-Of-Interest data. It is acquired via open Application Programming Interfaces from Baidu 

Maps, one of the largest web mapping providers in China. The data was collected in May 2018 

and contains 28 categories and 105 subcategories of POI types, which reflect the detailed 

geographical distribution of most urban functions and services in cities. 

3.Analytical Framework 
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This study proposes a new concept, namely functional urban shrinkage, which is defined as the 

degree to which the two major aspects related to urban shrinkage, the human activity demand (the 

human dimension), and the supply of urban built-up areas and associated urban functions (the 

physical dimension) are mismatched geographically. We strategically focus on these two major 

aspects to develop a measure of functional shrinkage for a proof of concept and with no intention to 

include comprehensive dimensions for urban shrinkage in this study. That said, the proposed 

functional urban shrinkage concept can involve any other aspect, e.g., resources and economies, to 

develop new measures for urban shrinkage. 

By leveraging multiple sources of geospatial big data, the human activity areas and the urban 

built-up areas are identified and delineated respectively to capture the population demand and the 

land-use supply. Specifically, human activity areas refer to the areas with the intensity of human 

activities significantly higher than the surrounding areas, while urban built-up areas are where urban 

land uses are concentrated within cities. Through a spatial comparison, the discrepant areas between 

the human activity areas and the urban built-up areas are formally defined as the Functional 

Shrinkage Areas (FSA). Then, the FSAs are characterized as follows: (1) morphological indices such 

as Percentage of Functional Shrinkage Areas (PFSA) and Landscape Shape Index (LSI) are employed 

to delineate the spatial layout of the FSAs; (2) statistical summaries provide the proportion of 

different urban land-use functions in FSAs. From the above dimensions, we are able to categorize 

and examine the status and characteristics of urban shrinkage for cities in the study area, and thus it 

enables a better understanding of the functional mechanism for urban shrinkage. The above 

processes are summarized as a general analytical framework for measuring functional urban 

shrinkage in Figure This framework is applied to the case study of BTH megaregion to demonstrate 

its validity. As it was developed as a standard framework based on the functional urban shrinkage 

concept, it could be applied to any spatial scale, e.g., city, region, and country, to measure the 

functional shrinkage patterns. 



Remote Sens. 2020, 12, 2513 7 of 22 

 

 

Figure An analytical framework for measuring functional shrinkage. 

3.Extracting Functional Shrinkage Areas 

3.3.Identifying City Extent Based on Built-Up Areas Extracted from Landsat-8 Data 

The identification of urban areas involves five steps that were completed with tools from ENVI 

and ArcGIS software packages. The technical processes are depicted in Figure 2. 
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Figure Technical processes to extract urban areas from Landsat-8 data. 

First, data pre-processing. The L1TP data product of Landsat-8 provides radiometric and 

geodetic accuracy by incorporating ground control points while employing a Digital Elevation Model 

for topographic displacement. As the L1TP data are not corrected for atmospheric conditions, the 

FLAASH Atmospheric Correction tool in ENVI was applied to atmospherically correct the data. 

Further, Radiometric Calibration was applied to ensure the data quality and rescale the L1TP image 

in the unit of digital numbers to surface reflectance for further processing.  

Second, urban land-cover classification. Given the complexity of urban areas that may contain 

different types of land cover, we used 7 bands from Landsat-8 (bands 1–7) to first classify the study 

area into six land covers: built-up, water, green space, agriculture land, unused land, and others. 

Regions of interests were manually selected as the training data for the six land-cover types, 

respectively, capturing the spectral features of different types in the supervised classification. The 

training set includes 261,363 sample cells (80,699 for urban and 180,664 for non-urban cells). The 

Neural Net algorithm in ENVI was employed, as it has shown a superior performance over other 

algorithms provided by ENVI in supervised classification tasks with Landsat-8 data [45]. The Neural 

Net algorithm implements a feedforward neural network with standard backpropagation [46]. 

Specifically, we set model parameters as follows, 1 hidden layer with a fixed number of neurons, 

training Root Mean Square error as 0.1 for model exit criteria, and training rate as 0.2, while keeping 

all other parameters as the default setting.  

Third, post classification. To evaluate classification results, we first evaluate the training 

accuracy of the neural network model. As we focus on the built-up areas, the confusion matrix is 

simplified to include only built-up and non-built-up (water, green space, agriculture land, unused 

land, and others) categories (Table 1). The Overall Accuracy and the Kappa Coefficient are 90.8% and 

0.79, respectively. In particular, the producer and user accuracies for built-up areas are 91.93% and 

80.9%. Therefore, the training performance of the model is acceptable. The six land covers classified 

from step 2 were further processed and converted into two categories, namely urban (built-up) and 

non-urban (water, green space, agriculture land, unused land, and others) areas. Specifically, two 

types of processing were performed. First, the “Clump Class” method based on mathematical 
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morphology operators (corrosion and dilation) was used to merge many fragmented small patches 

together. Second, as there were some patches of non-built-up land covers located within urban areas, 

such as parks and lakes, these patches were merged into the urban category to ensure urban areas 

were spatially contiguous. 

Fourth, city extent extraction: GIS-based methods were used to vectorize the cells classified as 

urban areas to produce the city extent map (Figure A1). 

Fifth, validation with Google Earth high-resolution images. We further tested the validity of the 

extract urban area by generating a validation dataset containing 2500 random samples in the study 

area for accuracy assessment. The true values of the validation samples are obtained from the Google 

Earth high-resolution images by visual interpretation. Table 2 shows the validation accuracies for the 

urban and non-urban categories, which indicates a good performance of the model and validates the 

classification results. 

Table Accuracy assessment for the training dataset. 

Class 
Ground Truth 

Commission Error % User Accuracy % 
Urban Non-Urban Total 

Built-up 74,184 17,520 91,704 19.10 80.90 

Non-built-up 6515 163,144 169,659 3.84 96.16 

Total 80,699 180,664 261,363   

Omission Error % 8.07 9.70    

Producer Accuracy % 91.93 90.30    

Table Accuracy assessment for validation data. 

Class Urban Non-Urban Total User Accuracy % 

Urban 254 8 262 93.73 

Non-urban 17 2221 2238 99.64 

Total 271 2229 2500  

Producer Accuracy % 96.95 99.24   

3.3.Identifying Human Activity Areas 

Human activity areas are defined as urban areas having a significantly high and stable ambient 

population density, i.e., the hotspot areas where human activities are located. In other words, these 

areas accommodate significantly intensive human activities showing consistent behavioral 

properties, such as shopping, schooling, working and commuting, and their extents do not vary much 

over time. It is assumed that the ambient population density revealed by the cellular signaling data 

for a week (20–26 July) in 2018 can be a representative to reflect the extent of significantly intensive 

human activities across spatial regions for a typical day. To support this assumption, evidence 

provided here tests the correlation across locations in Beijing between the ambient population density 

for the period of the 20th to 26th July 2018 and that for the period of the 20th to 26th November 2017 

(data for both periods are from the same source, China Unicom), with a Pearson correlation 

coefficient of 0.94 (Figure A2). This indicates high similarity between the ambient population 

densities in Beijing for the two different time periods. Therefore, it is reasonably valid to have the 

above assumption, given the definition of human activity areas and the limited time period, the 

cellular signaling data is available for this study. 

The identification of human activity areas is technically performed as follows. First, the ambient 

population intensity of each spatial unit in the study area for a typical day is calculated based on the 

cellular signaling data. Second, hotspot areas with significantly high intensity are identified by a 

spatial clustering method. Ambient population density refers to the average intensity of periodic 

human activities in the region. The daily-averaged intensity of human activity per unit area is 

considered as the ambient population density of the region [47]. Ambient population density reflects 

the purpose-based utilization of urban space; therefore, many studies use this index to study urban 
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economic and social conditions [44,47]. The calculation of the ambient population density ��� for 

unit j is as follows: 

���  =  
∑ ���

�
� � �

� × ��

 (1) 

where ���  is the number of individuals active in unit j at the kth day; �� is the area of the unit; k is 

the total number of days. 

Second, after obtaining the ambient population density of each unit, a spatial clustering 

algorithm, namely AMOEBA [48], is used to identify the human activity area. Unlike other spatial 

clustering algorithms such as spatial scan statistics [49], AMOEBA is a bottom-up and contiguity-

based clustering algorithm that can detect spatially contiguous, compact, and irregular-shaped 

clusters. Furthermore, as AMOEBA is a method to detect local patterns of spatial clustering or 

concentration of high/low values, it can be adaptive to the heterogenous urbanization situations in a 

large region. For example, an industrial park having the human activity intensity higher than that of 

the surrounding areas can be effectively identified as a local hotspot even though its intensity is not 

high globally. Specifically, to identify the hotspots for human activity, the algorithm starts from 

arbitrary seed units and attempts to iteratively expand the cluster towards neighboring units with 

the aim of maximizing the local ��
∗ statistic [50,51], defined as follows: 

�(��
∗) =

∑ ������
�
��� − ∑ ���

�
��� ������

���(� − 1) ∑ ���
��

��� − �∑ ���
�
��� �

�
� (� − 1)�

  

�ℎ��� � = �
1

�
� ���

�
�

���
− ��������

�/�

, ������ =
1

�
� ���

�

���
 

(2) 

The spatial weight ��� equal to 1 if unit j is a neighbor of unit i, and 0 otherwise. n is the total 

number of units, and ������  is the mean value of all ��� . With the identified clusters from all 

predetermined seeds, Monte-Carlo simulations were carried out to select the clusters that pass the 

statistical significance level of 99% as the identified human activity areas. 

3.3.Identifying the Functional Shrinkage Area 

According to the definition of FSA in Section 3.2, the difference between the built-up areas and 

the human activity areas was extracted through spatial overlay as the functional shrinkage areas, as 

demonstrated in Figure 3. 

 

Figure The extraction of functional shrinkage areas. 
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3.Characterizing Functional Shrinkage Areas 

3.4.Spatial Characteristics 

We focus on two characteristics of the spatial distribution of functional shrinkage areas. The first 

is the Percentage of Functional Shrinkage Areas (PFSA) in the total urban built-up areas. The second 

is the fragmentation degree of functional shrinkage areas distributed in cities measured by the 

Landscape Shape Index (LSI)[52]. The calculation of PFSA is as follows: 

���� =  
∑ ��

�
���

�
 100 

(3) 

where �� refers to the ith patch in the functional shrinkage area, and A is the total area of the urban 

built-up areas. The value of PFSA is between 0 and 100, and a larger value indicates serious functional 

shrinkage of the city, or considerable spatial difference between the human activity area and urban 

built-up area. The calculation of LSI is as follows: 

��� =
0.25���

√�
 (4) 

where ��� represents the shared edge length between the functional shrinkage area and the human 

activity area. LSI is essentially the boundary density of the functional shrinkage zone standardized 

by the area of the urban built-up area. Since the value of LSI has been standardized, it can be used to 

compare functional shrinkage patterns between cities with different sizes. After the calculation of 

PFSA and LSI of functional shrinkage areas in each city, we further cluster the cities. In order to 

improve the performance of clustering, the Fuzzy C-Means clustering algorithm was used. The 

detailed description of this algorithm can be found in the relevant literature [53]. 

3.4.Urban Land-Use Functions 

To investigate the characteristics and dynamic mechanisms of functional shrinkage, we further 

analyzed the areas of five urban land-use functions according to the existing land-use classification 

standards [29,54] within the functional shrinkage areas extracted in Section 3.The five land uses are: (1) 

public service, all types of land with public service function; (2) industrial land, including production-

related land such as science and technology parks, industrial parks and logistics parks; (3) residential land, 

mainly including residential areas in the city, “village in the city” and other residential land; (4) mixed-

use land. If a study unit (1 km × 1 km cell) contains more than 3 types of land use and the land use is 

balanced, it will be defined as the mixed land type. (5) Undeveloped land, including the construction land 

and sporadic bare land to be developed. As the land-use survey data have the full coverage of the 

functional shrinkage areas, they were combined with the POI data to fill in the missing areas with urban 

land-use functions and to create a layer of polygon vector data that is categorized by the above five urban 

land uses. Then, the areas of different land uses were produced by the spatial overlay of extracted 

functional shrinkage areas and the urban land-use polygon data. 

Results 

The human activity areas and the built-up areas for 13 cities in BTH are extracted (Figures A1 

and A3). The results (Table 3) show that functional shrinkage has become a relatively common 

phenomenon across cities in BTH, which contrasts the fact that this region is one of the fastest-

growing urban agglomerations (in terms of population and GDP) in China.  

Table The general pattern of functional shrinkage summarized by land use. 

Built-Up 

Areas (km2) 

Total Area of 

FSA (km2) 

Proportion 

of FSA 

Average PFSA Summarized by Types of Land 

Use 

Public 

Service 

Indus

trial 

Reside

ntial 

Undeve

loped 

Mixed

-Use 

3172.92 1200.76 37.8% 8.3% 15.2% 9.7% 2.4% 2.2% 
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The spatial distribution of the FSAs exhibits some common patterns for most cities (Figure A3). 

They are generally found outside the city centers and mostly in suburbs or industrial parks. Some of 

the new districts and the industrial parks at the urban fringe have less attractiveness to activities and 

have shown a low usage of lands. In contrast, the old city areas of all cities in our study area did not 

show a sign of functional shrinkage. This suggests that suburbanization is not evident in this region 

and the old city areas have a strong attraction to human activities. Figure 4 plots 13 cities in the study 

area according to their characteristics from the two dimensions of PFSA and LSI indices. Based on 

the clustering pattern, which is further confirmed by the result of the Fuzzy C-Means clustering 

algorithm, four types of cities can be intuitively identified, and their geographical distribution is 

shown in Figure A4. 

 

Figure The clustery characteristic of cities according to their PFSA and LSI index. 

The four groups of cities with respect to their characteristics of functional shrinkage reflect the global 

heterogeneity across this region but also the local homogeneity within groups of cities (Figures 5–7). 
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Figure Statistics of FSAs summarized by land-use types in the study area; values represent the 

proportion of each land-use type to the total area of FSA. 

 

(a) (b) 
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(c) (d) 

Figure Detailed maps of the spatial layout of Functional Shrinkage Areas in (a) Beijing (type I city), 

(b) Tianjin (type II city), (c) Shijiazhuang (type III city), and (d) Baoding (type IV city). 

 

(a) (b) 

 
(c) (d) 

Figure The distribution of FSAs in five land-use types in type I, II, III, and IV cities, taking (a) Beijing, 

(b) Tianjin, (c) Shijiazhuang, and (d) Xingtai as examples. 

Discussion 

5.The General Pattern of Functional Shrinkage 

The FSAs in BTH account for 37.8% of the built-up areas, indicating that overdevelopment is a 

prominent problem in general (Table 3). This is because of the choices of the growth mode of most 

cities are supply-driven. Given the insufficient growth demand, most cities in this region still adopted 
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growth-oriented planning for a long time. In the past decade, most cities have planned excessive new 

towns or industrial parks, where a majority of the functional shrinkage areas are located. 

In terms of land uses, functional shrinkage takes place mostly in industrial lands, which accounts 

for about 44% of the total FSAs. This is because, many cities in this region shared a similar industry 

structure concentrating on capital-intensive equipment manufacturing, foundry, and petrochemical 

industries, which requires a large amount of land but a relatively low level of employed workers. 

Hence, it resulted in vast areas of industrial parks with relatively low intensity of human activities. 

On the other hand, the regional environmental policy targeted at ensuring the air quality in Beijing 

as the national capital had an obviously adverse effect on those industrial parks in controlling their 

productions. Residential and public service lands account for 24.7% and 24.1% of the area in FSAs 

and rank the second and third largest land uses, indicating the excessively constructed new towns. 

5.Heterogeneity and Homogeneity of Functional Shrinkage at the City Level 

5.2.Type I: Beijing 

The functional shrinkage areas in Beijing are highly fragmented and most spatially scattered in 

the area between the fourth and sixth ring expressways instead of at the edge of the city (Figure 6a). 

The PFSA of Beijing is intermediate (26.7%) in this region having a relatively mixed land composition, 

with residential (9.9%), industrial (9.2%), and public service (8.1%) as the three largest land uses 

(Figures 4–5). The main cause that leads to the functional shrinkage in Beijing is the incomplete 

implementation of the polycentric development strategy. In the previous master plan, Beijing has put 

forward the goal of implementing the polycentric development strategy and relieving the population 

and industry in the core area. However, during the actual implementation, due to factors such as the 

excessive concentration of superior resources and insufficient development level of public 

transportation, most of the incremental construction land around the central urban area has a lower 

development level than expected. Despite the increasing construction volume, the urban vitality is 

still low. At the same time, in recent years, Beijing has vigorously implemented the policy of 

alleviating non-capital function and population regulation, which has slowed down the introduction 

of urban population and industry. 

5.2.Type II: Tianjin 

Tianjin is the only Type II city having the most severe functional shrinkage in BTH in terms of 

both PFSA and fragmentation. Those shrinking areas are concentrated in certain specific locations at 

the outskirts of the city. These locations include Beichen District on the northern side of the Central 

city, Dasi Town on the southern side, Dagang District on the southern side, and Binhai New District 

on the southeastern side, which are all industrial parks and new districts (Figure 6b). The FSA in 

Tianjin is mainly composed of industrial (23.27%) and public service (11.6%) lands (Figure 5). Tianjin 

is the second-largest city in BTH and is an important growth pole. It is also one of the largest ports 

and industrial bases in northern China. Since the beginning of the 21st century, Tianjin has 

implemented active growth planning and gradually formed an incremental urban space system with 

the Tianjin Port and Binhai New Area as the main body and a total area up to thousands of square 

kilometers. However, during the actual construction, the decline in the international manufacturing 

trend and the 2008 financial crisis have seriously affected the development of industrial parks and 

ports in Tianjin. At the same time, the layout of ports in the northern coastal areas of China is not 

coordinated enough, and the Tianjin Port is faced with great competitive pressure, which also leads 

to the mismatch between the growth of the urban population and the expansion of the physical built-

up area. 

5.2.Type III: Qinhuangdao, Tangshan, Xingtai, Cangzhou, Zhangjiakou, Shijiazhuang,  

and Handan 

Most cities in this type are located in the outer ring of this region; in other words, they are not 

directly adjacent to Beijing, the core of this region. These cities share a high proportion of functional 
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shrinking areas having a relatively low fragmentation. These areas are commonly new districts and 

industrial parks located outside the city center, meaning that they were not efficiently utilized (Figure 

6c). The two cities with the largest PFSA are Tangshan and Qinhuangdao. Given they are both heavy 

industrial cities, industrial lands contribute the highest fraction towards the FSAs in Tanghan (23.1%) 

and Qinhuangdao (14.0%). As for other cities, the PFSA values are mostly around 40%, indicating a 

relatively significant functional shrinkage (Figure 4). Apart from Xingtai, the other six cities are 

dominated by equipment manufacturing, petrochemical, foundry, and other heavy industries [55]. 

Influenced by the global recession and the regional environmental control policies, the development 

of most industrial parks is lagging behind. The new districts in Xingtai were mainly developed for 

residential and tourist purposes, showing lands in mixed-use as the largest portion in FSAs. 

5.2.Type IV: Chengde, Baoding, Langfang, and Hengshui 

Most cities in this type are directly adjacent to Beijing. They have both the lowest PFSA and 

fragmentation compared to those of other types. The shrinking areas are mostly scattered around the 

periphery of cities (Figure 6d). Residential lands dominate the land use in functional shrinkage for 

these cities (Figure 5). Cities of this type have a high concentration on labor-intensive industries, such 

as service, food processing, and textile industries, instead of capital-intensive industries [55], causing 

a relatively low demand for lands for their economy. In addition, due to the labor-intensive 

industries, a high vitality can be maintained in the developed areas.  

Conclusions and Future Work 

This study proposed a new concept, namely functional urban shrinkage, to support the 

delineation of local shrinking areas within cities by measuring the spatial mismatch between the 

geographies of the human activity demand and the supply of built-up lands. Leveraging multi-source 

geospatial big data and traditional survey data, an integrated data approach was taken to account for 

both human and physical dimensions of urban shrinkage and a general analytical framework for 

measuring functional shrinkage was developed to enable the implementation of the proposed 

functional shrinkage measure. The identified functional shrinkage areas for cities were characterized 

based on their spatial distributions, morphological features, and land use compositions to allow for 

the comparison of functional shrinkage at the city level from dimensions of the above characteristics. 

Applied to the case study of BTH megaregion, the validity of the data approach and usefulness of the 

analytical framework have been demonstrated. Because the framework for measuring functional 

shrinkage was developed as a general one, it can be applied to urban settlements at any spatial scale, 

e.g., city, region, and country, to measure the functional shrinkage patterns. In addition, due to its 

superior spatiotemporal resolution and geographic coverage, the multi-source geospatial big data 

approach empowers the large-scale and dynamic monitoring, detection, and evaluation of functional 

urban shrinkage. More importantly, this approach is very time-efficient and low-cost and can be very 

valuable for timely and better-informed planning decision support. 

The analysis of functional shrinkage measures reveals several underpinning obstacles to the 

sustainable development of BTH. First, it is the contradiction between the rapid growth of this region 

and the relatively low efficiency of land use. The latter is reflected by a high overall proportion of 

functional shrinkage areas representing a great extent of spatial mismatch between the geographies 

of human activities and the built-up areas. Specifically, the oversupply of developed lands lies in the 

growth-oriented planning, the particularity of industrial concentration in petrochemistry and heavy 

manufacturing, and the strict regional environmental regulations.  

Secondly, four groups of cities with respect to their functional shrinkage characteristics were 

identified, reflecting the global heterogeneity across this region, as well as the local homogeneity 

within groups. The spatial heterogeneity of functional shrinkage across cities can be attributed to the 

intrinsic properties of cities such as industrial structure, the driving force for growth, and 

comparative advantage. Beijing and Tianjin, as the Type I and II cities respectively, are the growth 

poles of this region and their functional shrinkage is closely related to their aggressive growth-driven 

policies. Type III cities have more comparative advantages, such as natural resources, ports, and 
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transport hubs, compared to Type IV cities, and have concentrated on heavy industries that 

commonly demand more lands rather than labors. Thus, they have a high potential to show a 

mismatch between human activities and built-up areas, given the growth-oriented planning 

implemented in the whole region. Due to their adjacency to growth poles, Type IV cities may receive 

more spillover effects from Beijing and Tianjin, compared to Type III cities, leading to their relatively 

low functional shrinkage. 

Last but not least, from the perspective of central place theory [56], BTH has an evident hierarchy 

of urban agglomerations with Beijing as the “powerhouse” of growth (Figure A4). Consequently, the 

spatial planning and environmental policies targeting Beijing will have a definite impact on the entire 

region. In the process of alleviating the over-agglomeration issue for Beijing, functional shrinkage 

occurred and may exert externality on the functional shrinkage conditions of surrounding cities at 

lower hierarchies. Whether functional shrinkage is a phenomenon related to linkages between cities 

and how functional shrinkage pass along an urban hierarchy as it is in BTH are intriguing questions 

warranting future studies. 
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Figure A1. The remote sensing images and the extraction result of urban built-up areas. (a) Map of 

overall layout of built-up areas and urban administrative boundaries, (b) Central city of Beijing, (c) 

Central city of Tianjin, and (d) Central city of Shijiazhuang. 

 

Figure A2. The Pearson’s correlation test (0.94) across locations in Beijing between the ambient 

population density for the period of the 20th to 26th July 2018 and that for the period of the 20th to 

26th November 2017. 
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Figure A3. The spatial layout of functional shrinkage areas in all 13 cities of BTH, detailed map of 

Chengde, Hengshui, Qinhuangdao, and Zhangjiakou are listed on the right side as examples. 
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Figure A4. The spatial distribution of cities with different functional shrinkage types. 
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