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Abstract: The detection and evaluation of flood damage in rural zones are of great importance for
farmers, local authorities, and insurance companies. To this end, the paper proposes an efficient
system based on five neural networks to assess the degree of flooding and the remaining vegetation.
After a previous analysis the following neural networks were selected as primary classifiers: you only
look once network (YOLO), generative adversarial network (GAN), AlexNet, LeNet, and residual
network (ResNet). Their outputs were connected in a decision fusion scheme, as a new convolutional
layer, considering two sets of components: (a) the weights, corresponding to the proven accuracy
of the primary neural networks in the validation phase, and (b) the probabilities generated by the
neural networks as primary classification results in the operational (testing) phase. Thus, a subjective
behavior (individual interpretation of single neural networks) was transformed into a more objective
behavior (interpretation based on fusion of information). The images, difficult to be segmented, were
obtained from an unmanned aerial vehicle photogrammetry flight after a moderate flood in a rural
region of Romania and make up our database. For segmentation and evaluation of the flooded zones
and vegetation, the images were first decomposed in patches and, after classification the resulting
marked patches were re-composed in segmented images. From the performance analysis point of
view, better results were obtained with the proposed system than the neural networks taken separately
and with respect to some works from the references.

Keywords: generative adversarial networks; deep learning neural networks; unmanned
aerial vehicles; decision fusion; image classification; image segmentation; flood evaluation;
vegetation evaluation

1. Introduction

Detection and segmentation of small regions of interest (RoIs) from images (e.g., natural vegetation
areas, crops, floods, forests, roads, buildings, waters, etc.) is a difficult task in many remote image
processing applications. Recently, considerable efforts have been made in this direction with applications
in different domains like agriculture [1,2], environment [3,4], and transport [5,6]. On the other hand,
the utility of the surveillance/monitoring systems on various areas has been proven by the management
of natural disasters [7] and rescue activities. Different solutions based on image analysis are proposed
for detection and analysis of RoIs in areas affected by different types of natural disasters (floods,
hurricanes, tornadoes, volcanic eruptions, earthquakes, tsunamis, etc.). Among these, floods are the
most expensive types of disasters in the world and represented 31% of the economic losses generated
by natural disasters during 2010–2018 [8]. Determining and evaluating flooded areas during or
immediately after flooding in agricultural zones are important for timely assessment of economic
damage and taking measures to remedy the situation.
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For large areas and low resolution, satellite images are often considered. Thus, in [9] the Sentinel-2
satellite constellation was used to provide multispectral images to segment multiple ground RoIs
by deep convolutional neural networks. In terms of technological advancement, aerial imagery is
an important form of documentation about RoIs from the ground. Unlike satellite imagery, these
types of images are characterized by a good spatial resolution which can increase the accuracy of the
classification and segmentation.

In a post-flood scenario on small areas, there are three ways to determine the ground RoIs:
satellites, aircrafts, and unmanned aerial vehicles (UAVs). From these, the UAV solution is the cheapest
and most accurate for real time RoI assessment. In addition, the UAV solution is independent of cloudy
weather and has better ground resolution.

The difficulty of many algorithms developed and implemented within the solutions of image
segmentation is that they have a certain purpose, which turns them into specific algorithms, depending
on the application. For example, until recently, most of these solutions were based on extracting
features chosen as representative and effective for the classes considered. This approach requires
the choice of representative features for the application and suffers from a lack of flexibility. The
introduction or elimination of certain features or classes requires modification of the whole architecture.

The alternative solution, most commonly used today, is based on the ability of neural networks to
learn to extract the relevant features alone based on a goal/cost, also called loss function, and a set
of desired outcomes. However, the compromise is the size of the training set and time. In contrast,
the execution/operating time is much shorter. This new approach has as a defining characteristic the
ability to learn and, therefore, the ability to adapt to new applications by transfer learning. The results
of image segmentation differ from one network to another, not only through statistical indicators
(true positive, true negative, false positive, false negative, and accuracy), but also in location of false
positive and false negative pixels. Therefore, by combining the segmentation information of more
neural networks it is possible to compensate the false positive or false negative cases.

We considered that a solution to improve the accuracy and the time performances is to combine
several classifiers (in this case neural networks) that act in a parallel way and to aggregate individual
decisions to largely eliminate classification errors. In this case, a multi-network system based on global
decision results is more efficient than the individual decisions of the component networks. The number
of neural networks and their nature may differ. Thus, a subjective behavior (individual interpretation
of single neural networks) can be transformed into a more objective behavior (interpretation based on
fusion of information).

The problem addressed in this paper is the detection and evaluation of flooding and vegetation
areas from aerial images acquired by UAVs. As mentioned above, the monitoring of flooded areas in
rural zones is important to assess the damage and make appropriate post-disaster decisions. Three
important classes were chosen to address this problem: the flood class (F), the vegetation class (V), and
the rest (R). As the main contribution, the authors proposed a system of detection and evaluation of
these RoIs based on the information fusion from a set of primary classifiers (neural networks). Thus,
the system contains a multi neural network structure and a final convolutional layer that combines the
decision probabilities of these primary classifiers to obtain a better accuracy.

The neural networks were chosen based on our experiments [3] in the field of aerial image
processing and on consulting more research works [4–6] highlighting the network performances in
various applications. We considered the network diversity and the classification results in such a
way that the false positive and false negative cases were corrected and the global accuracy was better
than the individual accuracies. We considered that the choice of these five neural networks would
ensure a compromise between accuracy and operating time. A larger number of networks would have
increased the operating time and a smaller number would have decreased the accuracy.

The system was learned and tested on our dataset (own) containing real images, but which were
difficult to segment, acquired in a UAV mission after moderate flooding in Romania.
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2. Related Works

Due to rapid development of satellites, aerial vehicles, and information technology, the
segmentation of remote images has been extensively studied in recent years. The analysis of the
related work was limited to the main aspects involved in our approach: image acquisition, image
processing, and, especially, using deep convolutional neural networks (CNNs) for the classification
and segmentation of remote images.

2.1. Image Acquisition

To reduce the impact of floods on communities and the environment, it is necessary to manage
these situations effectively by high-performance systems that involve detecting and evaluating
flood-affected areas in the shortest time possible [10]. These systems represent a global demand for the
management of humanitarian crises and natural disasters and are based on geo-referential/geospatial
information obtained in real time using a drone-mounted camera (UAV) [11], satellite information [12],
or information obtained from ground mounted surveillance systems. In [13], dynamic images were
acquired by a mini-UAV to monitor an urban area of Yuyao, China. In order to differentiate the objects
from the ground, the parameters of the co-occurrence matrix from the UAV images were determined.
Subsequently, based on the information obtained, the authors defined a classifier consisting of 200
decision trees to extract the flood affected areas. On the other hand, an approach regarding the use
of RGB images acquired using a UAV to study the habitat of a river was presented in [14], where
different regions were classified using real mapping of the dominant substrate of the riverbed. The
classification methodology consisted of two stages: the classification of the portions of the land and
then the segmentation of the images using the classified regions. To make a difference between different
types of regions (water, land, and those covered by vegetation) the information obtained at the pixel
level was used. Additionally, the authors in [15] presented another method that had the role to classify
and eliminate the shadows from the dynamic images obtained with the help of a UAV. Methods like
machine learning and support vector machine were used for classification. The shadows were detected
and extracted using a separate class generated based on the region of interest observed in the image
and by applying a segmentation threshold. The obtained results indicated that the presence of shadows
negatively influences the results of the classification method. In [16], using a surveillance system, the
authors proposed a region-based image segmentation method and a flood risk classifier to identify
the local variation of the river discharge surface and to determine the appropriate level of risk. This
method has a relatively high robustness in flood warning and detection applications. A solution for
flood monitoring was also proposed in [17]. This technique takes dynamic images and, by applying
different processing methods, generates maps of the areas in danger of being flooded. The resulting
maps can then be used to monitor and detect areas with high risk of flooding. In [18], two methods of
segmentation of images based on regions, Grow Cut and Growing Region, were applied to images
that capture certain areas during severe weather. The authors demonstrated that the segmentation
accuracy of the two methods varied quite widely in fog or rain conditions, the Growing Region method
giving better results. More recently, the authors in [19] used the fusion of multiresolution, multisensor,
and multitemporal satellite imagery to improve the detection and segmentation of flooded areas in
urban zones.

Multispectral analysis can also determine the water leakage in vegetation [20]. Thus, there is a
danger that both water and vegetation rich in chlorophyll will be confused. In general, multispectral
analysis is used to analyze the degree of humidity of plants. Likewise, thermal cameras are used more
to detect water loss and plant stress [21]. In the case of RGB analysis, the advantages are the followings:
water and vegetation can be easily distinguished by color and texture, the cost of equipment is lower,
and, sometimes, even the computational effort is reduced. Regardless of approaches, one of the very
difficult points is that water cannot be detected from UAVs if it is covered by high vegetation (trees)
or buildings.
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The rest of the paper is organized as follows. In Section 2, a comprehensive study of the related
works is done. The materials and methods are described in Section 3. The system implementation and
the associated parameters, obtained in the learning and validation phases, are presented in Section 4.
The experimental results and the performances obtained for flood and vegetation segmentation
are presented in Section 5. Finally, the discussions and conclusions are reported in Sections 6
and 7, respectively.

2.2. Image Processing and Segmentation

The image processing for the purpose of segmentation involves the most appropriate choice
of representation (choosing the color or spectral channel, improving the representation, extracting
relevant features, and classification). Another problem encountered in remote image processing is the
radiometric calibration, but we considered that UAV data is usually not calibrated in the same way as
images taken from space platforms. UAV data is far less influenced by atmospheric effects and so a full
atmospheric correction is unnecessary.

It can also use patching the image and re-composing the mask patches in the original image
format [3]. For example, in [22] relevant information on the methods of segmentation of RoIs
were provided. Basically, different segmentation methods were presented and analyzed: outline
determination, region determination, Markov arbitrary field, or various clustering methods. All these
methods provide relatively good accuracy in detecting areas of interest.

One of the most important RoI in the agriculture applications is the vegetation region. Authors
in [1] used RGB images to obtain first the hue color component and then to obtain a binary image for
vegetation segmentation. After flooding, one of the most important RoI is the flood extent. To this end,
good results were obtained using textural features extracted from the co-occurrence matrix and fractal
dimension [3].

Correlated color information, such as the chromatic cooccurrence matrix, is used for road
segmentation [23] or flood segmentation [24] from UAV images. First the image is decomposed in
patches, and then the most relevant features like contrast, energy, and homogeneity are extracted
from the co-occurrence matrix between H (hue) and S (saturation) components. Although good
results can be obtained with these methods regarding the accuracy, an important disadvantage is
the segmentation time (a few seconds for an image). For flood and vegetation segmentation, other
discriminant features, like the histograms of oriented gradients on H color channel and mean intensity
on grey level, associated with the minimum distance-based classifier were used in [25]. Then, a logical
scheme between partial decisions increased the final segmentation.

A method for accurate extraction of regions of interest from aerial images was presented in [26]
and was based on the object-based image analysis, integrated with the fuzzy unordered rule induction
algorithm, and the random forest algorithm for efficient feature selection. The segmentation process
used the region growing-based method.

The authors in [27] presented a supervised classification solution for a remote hyperspectral image,
which integrates spectral and spatial information into a unified Bayesian framework. Compared
to other solutions presented, the classification method using a convolutional neural network has
been shown to perform well. Another solution with significant results was presented in [28]. In this
paper, the authors adopted a recent method for classifying hyperspectral images using the super
pixel algorithm to train the neural network. After obtaining the spatial characteristics, a recurrent
convolutional neural network was used to determine the portions that were classified incorrectly. The
experimental results indicated that the classification accuracy increased after this method was used.

CNN can be combined with classical extraction of complex, statistical features like textural, fractal
types, etc. In this case, the CNN input is not the image, but a feature vector extracted from it. To this
end, the authors in [29] combined texture features like local binary pattern (LBP) histograms with
single perceptron type CNN to classify a small region of interest from UAV images in flood monitoring.
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2.3. Using Deep CNN

To increase the efficiency of the image segmentation, recent research in the field showed that high
accuracy can be achieved in a short period of time using deep neural networks. This means that a
system is trained based on features to classify different types of images or regions of those images. The
new approach has as a defining characteristic the ability to learn and, therefore, the ability to adapt to
new applications by transfer learning.

In [30], the artificial neural networks used provided good results in image classification. For
this purpose, different learning tasks were developed, such as the optimal Bayes classifier or the
SuperLearner algorithm that uses cross-validation to estimate the performance of several learning
models. The authors of this study sought several methods of building neural networks to develop
a more efficient solution. The experimental results obtained underlined the correlation between the
architecture of the neural networks and the tasks for which they were developed.

Currently, the systems based on artificial intelligence (especially artificial neural networks) can
better perform some tasks of visual classification of RoIs in UAV applications than humans due to
the availability of large training data sets and the improvement of neural network algorithms. In the
deep learning approach, CNNs (convolutional neural networks) are the most used for implementation.
Some of the most popular networks are the following [31]: AlexNet, GoogLeNet, VGGNet, ResNet,
MobileNet, and DenseNet.

Authors in [32] introduced the first network consisting of two convolutional layers followed
by three fully connected layers. The network was called LeNet and was the basis of all classical
convolutional networks. By increasing the number of convolutional and fully connected layers of
LeNet, another performing neural network, AlexNet [33], was obtained. Starting from AlexNet and
adding connections from the lower layers to the most advanced ones (skip connections), a new neural
network, ResNet (residual neural network), was obtained [34,35]. ResNet consists of a chain of residual
units as a deep CNN, successfully used for satellite image classification [9]. Depending on layer
number, ResNet had different implementation (ResNet-50, ResNet-101, etc.). The authors in [4] used
a CNN-based method for image segmentation, namely FCN (fully convolutional network) [36] for
flooded area mapping. Thus, they used the transfer learning for FCN16s to reuse it for extracting
flooding from UAV images.

YOLO (you only look once) is a CNN-based architecture containing anchor boxes and, in recent
years, YOLO has proven to be a real-time object detection technique for widely used applications.
Initially, YOLO was a convolutional network designed to detect and frame objects in an image.
Subsequently, it was used to classify these objects and, then, segment the framing areas [37–39]. YOLO
v3 [40] is extremely fast and treats the detection of the regions of interest as a regression problem by
dividing the input image into a grid of size m × m, and for each cell in that grid it determines the
probability that it belongs to a class of interest. A comprehensive comparison between deep CNNs is
presented in [41].

The generative adversarial nets (GAN) were introduced by Goodfellow et al. [42] as an adversarial
procedure between two main entities: the generator and the discriminator that are both simultaneously
learned. Starting from an image, the GAN can synthesize a new image. The generator creates random
images, and the discriminator network analyzes these images and then transmits to the generator
how real the generated images are. Although the GAN network was not originally intended as a
classifier, in recent applications it was used to classify various objects with the aid of an associated
probability [43–45]. Thus, the authors in [46] proposed a new method for detection of regions of
interest, like flooding in rural areas, using conditional generative adversarial networks (cGAN) and
graphics processing units (GPU). The results demonstrate that the proposed method provides high
accuracy and robustness compared with other methods for flooding evaluation. Other types of deep
CNN like LeNet [32] (full LeNet, half LeNet) and YOLO v3 (pixel YOLO, decision YOLO) were used
separately in [39] for detection and evaluation of RoIs in flooded zones. These CNNs, partially adapted
from the existing literature, used a transfer learning procedure. Additionally, the deep CNNs such as
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ResNet and GoogLeNet with transfer learning provided good results to classify different ground RoIs
from satellite images [9].

3. Materials and Methods

As mentioned above, the proposed system for flood and vegetation assessment was based on
information fusion from a set of efficient neural networks, considered as individual classifiers, grouped
through a new convolutional layer into a global system. Fusing the individual decisions of neural
networks, considered as subjective factors (due to specific learning), an increase in the degree of
objectivity of the global classification was obtained.

The images were taken from an orthophotoplan created from the images acquired by a UAV in the
real case of a flood in a rural region from Romania. Then, each image, extracted from the orthophotoplan,
was decomposed into non-overlapped patches that were labeled as one of the mentioned classes: F
(flood), V (vegetation), and R (rest).

The proposed neural networks were training (the first phase—the learning phase) with a set of
patches (the training set). A weight (corresponding to the confidence level) was established in the
validation phase for each neural network. Based on the results of the previous works [46] and [39], a
fusion system with increasing performance was proposed and implemented for flood and vegetation
assessment. The following types of neural networks are considered as primary classifiers (PCs): YOLO,
cGAN, LeNet, AlexNet, and ResNet. The fusion algorithm considers two elements: the confidence
level (associated with a weight) given to each PC obtained after a validation phase, and the detection
probabilities provided by these networks at the time of the operation itself. Each PC receives an input
patch and provides an output patch of the same dimension, indexed with the class label (F—blue,
V—green, and R—unchanged) and the associated probability, calculated using the cost (loss) function.

The selection of CNN was based on our previous studies [24,29,39], and also on the consultation
of other relevant works. We considered individual networks as subjective classifiers based on their
structure and learning. Combining more subjective information with an associated confidence (weight),
we sought to create a more objective classifier (global classifier). The most important aspect was that
an error committed by a classifier can be corrected by the information (probability of belonging to a
class) provided by other classifiers.

3.1. UAV System for Image Acquisition

To increase the flood assessment area, we used a fixed-wing UAV with greater autonomy, higher
speed, and an extended operating area than a multicopter. The fixed-wing UAV MUROS was
implemented by the authors in [47]. The main characteristics, flight requirements, and performances
are given in Figure 1 and Table 1.
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Table 1. UAV—characteristics and technical specifications.

Characteristics Technical Specifications

UAV Electric propulsion, fixed wing, automatic
Payload Gyro-stabilized mechanism, retractable
Camera Sony Nex7, objective 50 mm, 24.3 megapixels, 10 fps

Flight high 200 m–300 m
Speed 70 km/h–100 km/h

Autonomy 120 min, 15 km
Area coverage 10 km2

Type of flight photogrammetric
Image acquisition memory card

A portion of the UAV, namely flight to image acquisition (GPS points marked), is presented in
Figure 2a. From the successive images, acquired as the result of area surveillance, an orthophotoplan
was created with special software (Figure 2b). To this end, the successive images overlapped in both
length and width up to 60%. Then, images of 6000 × 4000 pixels were cropped and regions like flood
and vegetation were segmented based on the following operations described in the above section:
image decomposition in non-overlapped patches of dimension 64 × 64 pixels; patch classification and
marking; and, finally, patch recombination. Some patches were difficult to be analyzed because of
mixed zones. We created a database of 2000 images from flooded rural areas.
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orthophotoplan (cropped).

3.2. YOLO Network

The CNN named decision YOLO, proposed in [39], operates at a global level, and the architecture
is presented in Figure 3. The network has only convolutional layers grouped in two parts: down
sampling and up sampling. The number of parameters in each dimension ascending layer is equal to
the number of parameters in the correspondent layer on the descending side, establishing a connection
between them.

The proposed network was created starting from YOLO by applying five combinations of
convolutional layers followed by max pooling (the down sampling stream) and then five combinations
of convolutional layers followed by the up sampling. The architecture contains concatenations between
the obtained ascending layer and the descending layer of the same dimensions (a U-net structure). For
every two layers, the number of parameters doubles. Finally, the classification probability is provided,
and this is used in the convolutional layer of the global classifier. In the integrated scheme of the
proposed system, YOLO CNN is referred to as the primary classifier PC1. In the case of the YOLO
network, it was observed that the size of the patch sometimes influences the decision of the network.
In the case of the presented application, the chosen size was 64 × 64 pixels, taking into account the size
of the UAV images. An essential quality of these networks is the short learning time.



Remote Sens. 2020, 12, 2490 8 of 29

Remote Sens. 2020, 12, x FOR PEER REVIEW 2 of 30 

 

influences the decision of the network. In the case of the presented application, the chosen size was 
64 × 64 pixels, taking into account the size of the UAV images. An essential quality of these networks 
is the short learning time. 

 
Figure 3. Decision YOLO proposed architecture. 

3.3. GAN Network 

In this work, a modified variant of the original GAN was used, namely conditional GAN (cGAN) 
[48], by considering, as starting images, a pair of an original image and an original mask of the 
segmented image [46]. The generator component (G) of cGAN is of the encoder–decoder, U-net type 
(Figure 4). This typical architecture successively down samples the data to a point and then applies 
the inverse procedure. Multiple connections between the encoder and decoder at corresponding 
levels can be observed at the G structure. The discriminator (D) role is to provide the information 
with an associated probability that a generated mask from G is a real one. Both G and D are based on 
typical layers, as presented in Table 2. 

ReLU (R) is a function of activation of a neuron that implements the mathematical function (1): ( ) =  0, < 0, ≥ 0 (1) 

In certain situations (Figure 4), it is preferable to consider the negative values and then use the 
LeakyReLU (LR) variant that lets the negative fraction of the input pass (2). ( ) =  , < 0, ≥ 0 (2) 

Table 2. CNN layers description. 

Layer  Acronym Description 
convolutional C Performs a set of mathematical operations (convolutions)

to obtain a new value (unique) in the output feature map.
rectified linear 
unit 

ReLU Applies an activation function per element. 

Figure 3. Decision YOLO proposed architecture.

3.3. GAN Network

In this work, a modified variant of the original GAN was used, namely conditional GAN
(cGAN) [48], by considering, as starting images, a pair of an original image and an original mask of the
segmented image [46]. The generator component (G) of cGAN is of the encoder–decoder, U-net type
(Figure 4). This typical architecture successively down samples the data to a point and then applies the
inverse procedure. Multiple connections between the encoder and decoder at corresponding levels
can be observed at the G structure. The discriminator (D) role is to provide the information with an
associated probability that a generated mask from G is a real one. Both G and D are based on typical
layers, as presented in Table 2.

Table 2. CNN layers description.

Layer Acronym Description

convolutional C Performs a set of mathematical operations (convolutions) to
obtain a new value (unique) in the output feature map.

rectified linear unit ReLU Applies an activation function per element.
pooling P Sub-sample the image data from C and reduces the dimension. of

the feature map. The maximum or the average value of a small
region is used.

fully connected FC Each node is connected to a node of the previous layer. It
performs a classification task.

batch normalization BN Technique to normalize the output of a previous layer by
adjusting and scaling the activations. The NN speed is increasing.

dropout DO Technique to reduce overfitting and improving the generalization
of deep NNs.

ReLU (R) is a function of activation of a neuron that implements the mathematical function (1):

f (x) =
{

0, x < 0
x, x ≥ 0

(1)
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In certain situations (Figure 4), it is preferable to consider the negative values and then use the
LeakyReLU (LR) variant that lets the negative fraction of the input pass (2).

f (x) =
{

ax, x < 0
x, x ≥ 0

(2)

Like in the case of YOLO net, it should be noted that the use of the direct links in U-net [49] of the
generator does not stop the normal flow of data. As seen in Figure 4, there are three dropouts (DOs).

The dropout level is the simplest way to combat the overfitting and involves the temporary
elimination of some network units. DO is active only in the learning phase. The T unit that appears at
the last level of G is the tanh function (3).

anh(x) =
e2x
− 1

e2x + 1
(3)

Similarly, the S unit that appears at the last level of D (Figure 5) is the sigmoid function (4).

sigmoid(x) =
ex

1 + ex (4)
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These two main components are connected in a complex architecture (Figure 6), inspired from [46],
especially in the learning phase, where both G and D internal weights are established. As stated above,
the architecture is a conditional generative adversarial network with the objective function V(D,G) (5).

min
G

max
D

V(D, G) = Ex∼pdata(x)

[
logD

(
x
y

)]
+ Ez−pz(z)[log(1−D(G(z/y))) (5)
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Figure 6. Block diagram of the cGAN based system for flood and vegetation detection. The following
notation were used: IL—image for learning; RM—real mask; G—generator; FM—fake mask; RP—real
pair; FP—fake pair; D—discriminator; UM—unit matrix; UC—unit comparator; DW—weights for the
discriminator; Σ—adder; NC—null comparator; NM—null matrix; GW—weights optimizer for the
generator; DC—comparator for D with UM; GC—comparator for G between RM and FM.
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In the learning phase, a set of patches are used to create the corresponding real masks (RM) of
flood or vegetation. The same set is introduced in G to obtain fake masks (FM). Two image pairs, RP
and FP (real and fake), are considered as D inputs [46]. There are four comparators (two for D and two
for G) that are based on the binary cross entropy criterion for comparisons.

One goal is to minimize the error and gradient between the real segmented image and a unit
matrix of 1 (UM). Another goal is to minimize the error and gradient between the fake segmented
image and a null matrix of 0 (NM). The results are then used, via a weight optimizer (GW for G and
DW for D), to update the weights. The procedure is repeated until the desired number of epochs
(iterations) is reached.

G is effectively used only in the learning phase to establish the weights of D. Further, the role of
D is to decide whether there is a real image or a fake image and, especially, to provide the decision
probability. Due to sigmoid function (4), D provides a value between [0,1] that is the probability that a
mask is a real one and this is the probability that the tested patch belongs to a class. cGAN is referred
as primary classifier PC2 in the global classifier structure. The learning images (IL) come from our
dataset with three classes: flood, vegetation, and rest.

The following technologies were used to test the GAN: Torch, a machine learning framework,
to implement the neural network and Python (namely the NumPy, and PIL—Python Image
Library—libraries), to evaluate the accuracy of cGAN results.

3.4. LENET

The LeNet-inspired network, containing five pairs of one convolutional layer followed by one
max pooling layer, was created as in Figure 7 [39]. For simplicity, the number of parameters from
one convolution to another was always doubled. In addition, the network contained one flattening
layer and seven fully connected layers (dense). Although LeNet is considered effective in recognizing
handwritten characters, and the modified alternative has been used successfully in segmenting regions
of interest in aerial imagery [39]. In the experiments of the proposed application it was proved that it
could intervene in a complementary way as a consensus agent of the global system.

The cost function used is categorical cross-entropy (6), where N is the number of patches, C is the
number of classes, (ŷi, j) is the prediction, and (yi, j) is the correct element that is considered as the
probability that the patch i belongs to the class j. In the case of a decision, a patch is considered as
belonging to the class with the highest probability. LeNet is considered as primary classifier PC3 in the
proposed global system.

Loss = −
1
N

N∑
i=1

[
C∑

j=1

[yi, jlog(N is ŷi, j) + (1− yi, j)log(1− ŷi, j)]] (6)

3.5. ALEXNET

AlexNet is considered as primary classifier PC4 in the proposed global system. It was chosen
because it sometimes reacted complementarily to the other networks in the field of false positive or
false negative areas, thereby contributing to the improvement of the overall classifier performance.
The proposed AlexNet classifier, inspired from [33] is presented in Figure 8. This deep CNN has the
ability of fast network training and the capability of reducing overfitting due to dropout layers.
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The activation function, used at the output, was Softmax, which ensured the probability of the
image (patch) being part of one of the three classes: F, V, and R. In order to increase the image number
for the training phase we used the data augmentation by rotation (90◦, 180◦, 270◦).
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3.6. RESNET

ResNet is an ultra-deep feedforward network with residual connections, designed for large scale
image processing. It can have different numbers of layers: 34, 50 (the most popular), 101 (our choice),
etc. ResNet resolved the gradient vanishing problem and had a good position in image classification
top-5 error.

The ResNet (residual net) architecture, used as primary NN classifier PC5, is presented in Figure 9.
This deeper network has one of the best performances on object recognition accuracy. ResNet is
composed from building blocks (modules), marked by A and B in Figure 9, with the same scheme of
short (skip) connections. The shortcuts are used to keep the previous module outputs from possible
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inappropriate transformations. The blocks are named residual units [34] and are based on the residual
function F (7), (8):

yn = xn + F(xn, wgn) (7)

xn+1 = f (yn) (8)

where xn is the block input, xn+1 is the block output, wgn is the set of weights associated with the n
block, and f is ReLU.
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A pipeline of repetitive modules A and B is described in detail in Figures 10a and 10b respectively.
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4. System Implementation

4.1. System Architecture

As previously mentioned, the proposed system contains five primary classifiers of the deep neural
network type (PCi, i = 1,2, . . . ,5), that have two contributions each: the weights (wi, i = 1, 2, . . . ,
5), established in the validation phase, and the probabilities (pi, i = 1, 2, . . . , 5), provided at each
classification/segmentation operation (operating phase).

A PC weight is expressed as its accuracy ACC (9) computed from parameters of confusion
matrix (TP, TN, FP, and FN are true positive, true negative, false positive, and false negative cases,
respectively):

ACC = w =
TP + TN

TP + TN + FP + FN
(9)

A score Sj (j = F, V, R) is calculated for each class (F, V, and R) as can be seen in Equations (10),
(11), and (12), respectively. These Equations are convolutional laws. The decision is made by the aid of
a decision score (DS), and the class corresponds to the index obtained by maximum DS selection (13).

SF =
5∑

i=1

wi,F × pi,F (10)

SV =
5∑

i=1

wi,V × pi,V (11)

SR =
5∑

i=1

wi,R × pi,R (12)

DS = ArgMax{SF, SV, SR} (13)

The main operating steps of the system are as follows and the flow chart is presented in Figure 11:Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 30 
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1. The image is decomposed into patches of fixed size (64 × 64 pixels).
2. A patch is passed in parallel through neural networks to obtain individual

classification probabilities.
3. The probabilities are merged by the convolutional law that characterizes the system, and the

final decision of belonging to one of the classes F, V, R is taken.
4. The patch is marked according to the respective class.
5. The patch is reassembled into an image of the same size as the original image.
6. Return to step 2 until the patches in the original image are finished.
7. The segmented image results.
8. Additionally, the counting of patches from each class is done in order to evaluate the extent of

the specific flood and vegetation areas.
The architecture of the proposed system, based on a decision fusion, expressed by the previous

Equations (10)–(13) is presented in Figure 12. The system contains five classifiers, experimentally
chosen, based on the individual accuracy evaluated for each classification task and detailed in the
next section.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 30 
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decomposition module, Pij—patch (i,j) as input, PCi—primary classifier i, pi—probability provided
by PCi, wi the weight associated with PCi, FBC—fusion based classifier, Sij—patch (i,j) as output
(segmented), SIC—segmented image recomposition module, and SI—segmented image.
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The meanings of the notations in Figure 12 are the following: I—image to be segmented
(input), ID—image decomposition in patches, Pi,j—patch of I on (i,j) position, PCk—primary classifier
(PC1—YOLO, PC2—GAN, PC3—LeNet, PC4—AlexNet, and PC5—ResNet), pk—probability of Pi,j

classification by PCk, wk—weight according to primary classifier PCk, FBC—fusion based classifier,
which indicates the patch class and provides the marked patch, Si,j—patch classified, SIC—segmented
image re-composition from classified patches, and SI—segmented image (output).

As can be seen from the previous Equations and Figure 12, a new convolutional layer is made by
the FBC module with the weights wi, i = 1, 2, . . . , 5 (fixed after validation phase). The inputs are the
probabilities pi, i = 1, 2, . . . , 5, provided by the primary classifiers, and the output is the decision
based on Equations (10)–(13).

The execution time differs from a network to network and of the system implementation. A
reduced time was obtained on GPU (graphics processing unit) implementation. The execution time
for learning was about 15 h, and the time for segmentation was about 0.2 s for an image. The system
architecture used for experimental results consisted of the following: Intel Core I7 CPU, 4th generation,
16 GB RAM, NVIDIA GeForce 770 M (Kepler architecture), 2 GB VRAM, Windows 10 operating system,
Microsoft Visual Studio 2013.

4.2. System Tuning: Learning, Validation, and Weight Detection

For the application envisaged in the paper, the system used three phases: learning, validation,
and testing (actual operation). First, the learning phase was separately performed for each primary
classifier, directly or by transfer learning, to obtain the best performances in terms of time and accuracy.
Next, in a similar manner, in the validation phase the attached weight was obtained for each classifier.
Finally, the images were processed by the global system presented in Figure 12.

From the images cropped from orthophotoplan, 4500 patches were selected for learning (1500
flood patches, 1500 vegetation, and 1500 from the rest). Similarly, 1500 patches were selected for
validation (500 from each class). As mentioned above, the weight associated with the primary classifiers
were established in the validation stage. Examples of such patches are presented in Figure 13.
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For simplicity, we considered that the patches selected for training and validation contained pixels
from a single type of region (F, V, or R). Since the convolution operation is not independent of changes
of rotation and mirroring, they could be applied to simulate new cases for the network. Thus, on the
patches obtained previously, a 90◦ rotation was applied, and then a mirror was used to increase the
image number four times (18,000 for learning and 6000 for validation). Both learning and validation
were performed separately for the three types of regions (F, V, or R). Examples of flood and vegetation
segmentation based on YOLO (PC1), GAN (PC2), LeNet (PC3), AlexNet (PC4), and ResNet (PC5) are
given in Figure 14 (our dataset). For comparison, the original image and manual segmentation versus
predicted segmentation images are presented. As can be seen, errors of segmentation were presented
at the edges because of the mixed regions.

For each of the five neural networks and of the three classes, the confusion matrices were calculated
(examples in Figure 15 are given for YOLO, F, and V classes). Based on the confusion matrices, the
performance parameters TP, TN, FP, FN, and ACC from (9) were evaluated. ACC for flood (92.8%) was
better than the ACC for vegetation (87.5%), because, generally, a flood patch is more uniform than a
vegetation patch. As a result, the weights (Table 3) were evaluated (by two digit approximation) for
the primary classifiers PC1, PC2, PC3, PC4, and PC5, and, also, for each RoI (F, V, and R). To this end
the table presents the intermediate parameters (TP, TN, FP, and FN) to calculate ACC and, finally, the
weights. All the parameters were indexed by the class label (F, V, and R). It can be seen the accuracy
was dependent on PCs and classes. Thus, the flood accuracy ACC-F was greater than other accuracies
(ACC-V, vegetation, and ACC-R, rest) for all classifiers due to the reason mentioned above.

Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 30 

 

the image number four times (18,000 for learning and 6000 for validation). Both learning and 
validation were performed separately for the three types of regions (F, V, or R). Examples of flood 
and vegetation segmentation based on YOLO (PC1), GAN (PC2), LeNet (PC3), AlexNet (PC4), and 
ResNet (PC5) are given in Figure 14 (our dataset). For comparison, the original image and manual 
segmentation versus predicted segmentation images are presented. As can be seen, errors of 
segmentation were presented at the edges because of the mixed regions.  

            
F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 F_9 F_10 F_11 F_12 

            
F_13 F_14 F_15 F_16 F_17 F_18 F_19 F_20 F_21 F_22 F_23 F_24 

Vegetation 

            
V_1 V_2 V_3 V_4 V_5 V_6 V_7 V_8 V_9 V_10 V_11 V_12 

            
V_13 V_14 V_15 V_16 V_17 V_18 V_19 V_20 V_21 V_22 V_23 V_24 

Rest 

            
R_1 R_2 R_3 R_4 R_5 R_6 R_7 R_8 R_9 R_10 R_11 R_12 

            
R_13 R_14 R_15 R_16 R _17 R_18 R_19 R_20 R_21 R_22 R_23 R_24 

Figure 13. Examples of patches for flood (F), vegetation (V), and rest (R) for learning phase (our 
dataset). 

For each of the five neural networks and of the three classes, the confusion matrices were 
calculated (examples in Figure 15 are given for YOLO, F, and V classes). Based on the confusion 
matrices, the performance parameters TP, TN, FP, FN, and ACC from (9) were evaluated. ACC for 
flood (92.8%) was better than the ACC for vegetation (87.5%), because, generally, a flood patch is 
more uniform than a vegetation patch. As a result, the weights (Table 3) were evaluated (by two digit 
approximation) for the primary classifiers PC1, PC2, PC3, PC4, and PC5, and, also, for each RoI (F, V, 
and R). To this end the table presents the intermediate parameters (TP, TN, FP, and FN) to calculate 
ACC and, finally, the weights. All the parameters were indexed by the class label (F, V, and R). It can 
be seen the accuracy was dependent on PCs and classes. Thus, the flood accuracy ACC-F was greater 
than other accuracies (ACC-V, vegetation, and ACC-R, rest) for all classifiers due to the reason 
mentioned above. 

Original Manual Segmentation Predicted PC1 

   
   

   
 DSC04562  Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 30 

 

Original Manual Segmentation Predicted PC2 

   
   

   
 DSC04959  

Original Manual Segmentation Predicted PC3 

   
   

   
 DSC05855  

Original Manual Segmentation Predicted PC4 

   
   

   
 DSC05351  

Original Manual Segmentation Predicted PC5 

   
   

   
 DSC04411  

Figure 14. Flood and vegetation segmentation (manual and predicted) for individual classifiers 
(validation phase)—our dataset. 

Figure 14. Cont.



Remote Sens. 2020, 12, 2490 19 of 29

Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 30 

 

Original Manual Segmentation Predicted PC2 

   
   

   
 DSC04959  

Original Manual Segmentation Predicted PC3 

   
   

   
 DSC05855  

Original Manual Segmentation Predicted PC4 

   
   

   
 DSC05351  

Original Manual Segmentation Predicted PC5 

   
   

   
 DSC04411  

Figure 14. Flood and vegetation segmentation (manual and predicted) for individual classifiers 
(validation phase)—our dataset. 

Figure 14. Flood and vegetation segmentation (manual and predicted) for individual classifiers
(validation phase)—our dataset.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 30 

 

  
(a) (b) 

Figure 15. Confusion matrices for flood (a) and vegetation (b) detection in the case of primary 
classifier PC1. 

The meaning of the notations in Table 3 is as follows: NN - the neural network used, 
TP, TN, FP and FN are the true positive cases, true negative, false positive and false 
negative, respectively, ACC - accuracy, w - associated weight. They are associated with 
classes: F - flood, V - vegetation and R - rest. Thus, TP-F means the true positive in terms of 
flood detection, ACC - accuracy in flood detection, wF - weight for flood detection, etc. 

Table 3. Associated weights for the primary classifiers (PC). 

NN 
TP-F 
TP-V 
TP-R 

TN-F 
TN-V 
TN-R 

FP-F 
FP-V 
FP-R 

FN-F 
FN-V 
FN-R 

ACC-F 
ACC-V 
ACC-R 

wF 
wV 
wR 

PC1 
443 
424 
438 

449 
435 
413 

51 
65 
87 

57 
76 
62 

89.2% 
85.9% 
85.1% 

0.89 (w1F) 
0.86 (w1V) 
0.85 (w1R) 

PC2 
472 
451 
444 

459 
440 
452 

41 
60 
48 

28 
49 
56 

93.1% 
89.1% 
89.6% 

0.93 (w2F) 
0.89 (w2V) 
0.90 (w2R) 

PC3 
462 
438 
445 

449 
441 
442 

51 
59 
58 

38 
62 
55 

91.1% 
87.9% 
88.7% 

0.91 (w3F) 
0.88 (w3V) 
0.89 (w3R) 

PC4 
461 
439 
448 

457 
432 
444 

43 
68 
56 

39 
61 
52 

91.8% 
87.1% 
89.2% 

0.92 (w4F) 
0.87 (w4V) 
0.89 (w4R) 

PC5 
473 
468 
477 

471 
435 
432 

29 
65 
68 

27 
32 
23 

94.4% 
90.3% 
90.9% 

0.94 (w5F) 
0.90 (w5V) 
0.91 (w5R) 

5. Experimental Results 

After learning and validation of the individual classifiers, the proposed system was tested in a 
real environment. Like in the previous phases, the images were obtained from a photogrammetry 
flight over the same rural area in Romania after a moderate flood in order to accurately evaluate the 
damages in agriculture. Thus, our own dataset was obtained. 

In the operational phase, the RoI segmentation was performed by the global system proposed 
in Figure 12. First, the image extracted from the orthophotoplan was decomposed in patches 
according to the methodology described in Section 3. The patch classification and segmentation were 
performed based on Equations (10–13), with the weights obtained in the validation phase (Table 3). 
For each patch, a primary classifier (Figure 12) gives the probability to belong to a predicted class (see 
pij from Table 4). Some examples of patch classification and segmentation are given in Table 4. The 
decision score S is calculated as in Equation (13). The resulted patches are colored with blue (F), green 
(V), or are maintained as the initial (R). The real patches and the segmented patches are labeled by 

Figure 15. Confusion matrices for flood (a) and vegetation (b) detection in the case of primary classifier
PC1.



Remote Sens. 2020, 12, 2490 20 of 29

Table 3. Associated weights for the primary classifiers (PC).

NN
TP-F
TP-V
TP-R

TN-F
TN-V
TN-R

FP-F
FP-V
FP-R

FN-F
FN-V
FN-R

ACC-F
ACC-V
ACC-R

wF
wV
wR

PC1
443
424
438

449
435
413

51
65
87

57
76
62

89.2%
85.9%
85.1%

0.89 (w1F)
0.86 (w1V)
0.85 (w1R)

PC2
472
451
444

459
440
452

41
60
48

28
49
56

93.1%
89.1%
89.6%

0.93 (w2F)
0.89 (w2V)
0.90 (w2R)

PC3
462
438
445

449
441
442

51
59
58

38
62
55

91.1%
87.9%
88.7%

0.91 (w3F)
0.88 (w3V)
0.89 (w3R)

PC4
461
439
448

457
432
444

43
68
56

39
61
52

91.8%
87.1%
89.2%

0.92 (w4F)
0.87 (w4V)
0.89 (w4R)

PC5
473
468
477

471
435
432

29
65
68

27
32
23

94.4%
90.3%
90.9%

0.94 (w5F)
0.90 (w5V)
0.91 (w5R)

The meaning of the notations in Table 3 is as follows: NN-the neural network used, TP, TN,
FP and FN are the true positive cases, true negative, false positive and false negative, respectively,
ACC-accuracy, w-associated weight. They are associated with classes: F-flood, V-vegetation and R-rest.
Thus, TP-F means the true positive in terms of flood detection, ACC-accuracy in flood detection,
wF-weight for flood detection, etc.

5. Experimental Results

After learning and validation of the individual classifiers, the proposed system was tested in a
real environment. Like in the previous phases, the images were obtained from a photogrammetry
flight over the same rural area in Romania after a moderate flood in order to accurately evaluate the
damages in agriculture. Thus, our own dataset was obtained.

In the operational phase, the RoI segmentation was performed by the global system proposed in
Figure 12. First, the image extracted from the orthophotoplan was decomposed in patches according
to the methodology described in Section 3. The patch classification and segmentation were performed
based on Equations (10–13), with the weights obtained in the validation phase (Table 3). For each
patch, a primary classifier (Figure 12) gives the probability to belong to a predicted class (see pij from
Table 4). Some examples of patch classification and segmentation are given in Table 4. The decision
score S is calculated as in Equation (13). The resulted patches are colored with blue (F), green (V),
or are maintained as the initial (R). The real patches and the segmented patches are labeled by the
class name. For correct segmentation, in Table 4 on the same raw, the original and segmented images
pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a false
segmentation decision (R-F).
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Table 4. Examples of patch classification results.

Real
Patch

Prob.
PC1

Prob.
PC2

Prob.
PC3

Prob.
PC4

Prob.
PC5

Decision
Score (S)

Segmented
Patch
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p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 
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R 
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p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

F

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17
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p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

F

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00
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the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
false segmentation decision (R-F).  

Table 4. Examples of patch classification results. 

Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

F

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35
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the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
false segmentation decision (R-F).  

Table 4. Examples of patch classification results. 

Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

F

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07
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the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
false segmentation decision (R-F).  

Table 4. Examples of patch classification results. 

Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

F

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36

Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 30 

 

the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
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Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

F

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38
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the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
false segmentation decision (R-F).  

Table 4. Examples of patch classification results. 

Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

F

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05
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the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
false segmentation decision (R-F).  

Table 4. Examples of patch classification results. 

Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

V

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14
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the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
false segmentation decision (R-F).  

Table 4. Examples of patch classification results. 

Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

V

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79
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Patch 
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Prob. 
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Prob. 
PC4 

Prob. 
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Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 
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p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

V

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20
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the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
false segmentation decision (R-F).  

Table 4. Examples of patch classification results. 

Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

V

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57
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the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
false segmentation decision (R-F).  

Table 4. Examples of patch classification results. 

Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

V

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99
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the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
false segmentation decision (R-F).  

Table 4. Examples of patch classification results. 

Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

V

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99
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the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
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Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

V

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17
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the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
false segmentation decision (R-F).  

Table 4. Examples of patch classification results. 

Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

V

p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55
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the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
false segmentation decision (R-F).  

Table 4. Examples of patch classification results. 

Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

R

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19
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the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
false segmentation decision (R-F).  

Table 4. Examples of patch classification results. 

Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

R

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91
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Patch 

Prob. 
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Prob. 
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Prob. 
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Prob. 
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Prob. 
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Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 
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p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

R

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48
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the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
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Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

R

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21
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Real 
Patch 

Prob. 
PC1 

Prob. 
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Prob. 
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Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

R

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92
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Patch 

Prob. 
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Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
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Score (S) 

Segmented 
Patch 
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p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 
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p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
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p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

R

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72
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p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

R

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93

Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 30 

 

the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
false segmentation decision (R-F).  

Table 4. Examples of patch classification results. 

Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

R

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64
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the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
false segmentation decision (R-F).  

Table 4. Examples of patch classification results. 

Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 
R

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80

Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 30 

 

the class name. For correct segmentation, in Table 4 on the same raw, the original and segmented 
images pair has the same label (F-F; V-V, or R-R). As can be seen, in the last row of Table 4, there is a 
false segmentation decision (R-F).  

Table 4. Examples of patch classification results. 

Real 
Patch 

Prob. 
PC1 

Prob. 
PC2 

Prob. 
PC3 

Prob. 
PC4 

Prob. 
PC5 

Decision 
Score (S) 

Segmented 
Patch 

 
F 

p1F:0.82 p2F:0.93 p3F:0.92 p4F:0.91 p5F:0.96 SF:4.17 

 
F 

p1V:0.02 p2V:0.01 p3V:0.01 p4V:0.02 p5V:0.00 SV:0.05 
p1R:0.16 p2R:0.06 p3R:0.07 p4R:0.07 p5R:0.04 SR: 0.35 

 
F 

p1F:0.76 p2F:0.92 p3F:0.87 p4F:0.88 p5F:0.92 SF:4.00 

 
F 

p1V:0.05 p2V:0.07 p3V:0.04 p4V:0.03 p5V:0.06 SV:0.22 
p1R:0.19 p2R:0.01 p3R:0.09 p4R:0.09 p5R:0.02 SR:0.35 

 
F 

p1F:0.80 p2F:0.93 p3F:0.91 p4F:0.89 p5F:0.90 SF:4.07 

 
F 

p1V:0.05 p2V:0.03 p3V:0.02 p4V:0.05 p5V:0.01 SV:0.14 
p1R:0.15 p2R:0.04 p3R:0.07 p4R:0.06 p5R:0.09 SR:0.36 

 
F 

p1F:0.71 p2F:0.73 p3F:0.62 p4F:0.81 p5F:0.81 SF:3.38 

 
F 

p1V:0.02 p2V:0.02 p3V:0.04 p4V:0.02 p5V:0.03 SV:0.11 
p1R:0.27 p2R:0.25 p3R:0.34 p4R:0.17 p5R:0.16 SR:1.05 

 
V 

p1F:0.05 p2F:0.02 p3F:0.05 p4F:0.01 p5F:0.02 SF:0.14 

 
V 

p1V:0.75 p2V:0.77 p3V:0.80 p4V:0.82 p5V:0.82 SV:3.49 
p1R:0.20 p2R:0.21 p3R:0.15 p4R:0.17 p5R:0.16 SR:0.79 

 
V 

p1F:0.05 p2F:0.06 p3F:0.02 p4F:0.05 p5F:0.04 SF:0.20 

 
V 

p1V:0.79 p2V:0.86 p3V:0.80 p4V:0.81 p5V:0.88 SV:3.65 
p1R:0.16 p2R:0.08 p3R:0.18 p4R:0.14 p5R:0.08 SR:0.57 

 
V 

p1F:0.32 p2F:0.13 p3F:0.23 p4F:0.21 p5F:0.19 SF:0.99 

 
V 

p1V:0.42 p2V:0.57 p3V:0.56 p4V:0.63 p5V:0.62 SV:2.47 
p1R:0.26 p2R:0.30 p3R:0.21 p4R:0.16 p5R:0.19 SR:0.99 

 
V 

p1F:0.04 p2F:0.05 p3F:0.03 p4F:0.04 p5F:0.03 SF:0.17 
 

V 
p1V:0.78 p2V:0.87 p3V:0.82 p4V:0.82 p5V:0.90 SV:3.69 
p1R:0.18 p2R:0.08 p3R:0.15 p4R:0.14 p5R:0.07 SR:0.55 

 
R 

p1F:0.08 p2F:0.04 p3F:0.06 p4F:0.02 p5F:0.01 SF:0.19 

 
R 

p1V:0.10 p2V:0.05 p3V:0.13 p4V:0.06 p5V:0.05 SV:0.34 
p1R:0.82 p2R:0.91 p3R:0.81 p4R:0.92 p5R:0.94 SR:3.91 

 
R 

p1F:0.12 p2F:0.07 p3F:0.10 p4F:0.11 p5F:0.12 SF:0.48 

 
R 

p1V:0.22 p2V:0.17 p3V:0.23 p4V:0.12 p5V:0.13 SV:0.76 
p1R:0.66 p2R:0.76 p3R:0.67 p4R:0.77 p5R:0.75 SR:3.21 

 
R 

p1F:0.23 p2F:0.22 p3F:0.23 p4F:0.21 p5F:0.11 SF:0.92 

 
R 

p1V:0.21 p2V:0.12 p3V:0.30 p4V:0.10 p5V:0.21 SV:0.83 
p1R:0.56 p2R:0.66 p3R:0.47 p4R:0.69 p5R:0.68 SR:2.72 

 
R 

p1F:0.19 p2F:0.13 p3F:0.22 p4F:0.24 p5F:0.23 SF:0.93 

 
R 

p1V:0.26 p2V:0.24 p3V:0.20 p4V:0.19 p5V:0.13 SV:0.90 
p1R:0.55 p2R:0.63 p3R:0.58 p4R:0.57 p5R:0.64 SR:2.64 

 
R 

p1F:0.42 p2F:0.31 p3F:0.51 p4F:0.31 p5F:0.41 SF:1.80 

 
F 

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42 
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27 

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55 

F

p1V:0.32 p2V:0.36 p3V:0.26 p4V:0.32 p5V:0.35 SV:1.42
p1R:0.26 p2R:0.33 p3R:0.23 p4R:0.37 p5R:0.24 SR:1.27
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R 

p1V:0.31 p2V:0.35 p3V:0.24 p4V:0.31 p5V:0.21 SV:1.25 

 
R 

p1R:0.29 p2R:0.39 p3R:0.43 p4R:0.33 p5R:0.45 SR:1.68 

 
The decision score is also approximated by three digits. In this operational phase, the primary 

classifiers provide only the probabilities as the evaluated patch belongs to a predicted class and the 
fusion based classifier evaluates the decision score for the final classification. After image re-
composition, the segmented images are shown as in Figure 16. The examples in Table 4 show that 
most patches were correctly classified by all PCs except the last two. The penultimate patch was 
misclassified by four PCs and the overall result was a misclassification. The last patch was 
misclassified by two classifiers (PC1 and PC4), but the global classifier result was correct. 

 
Original 
image 

Manual 
segmentation 

Fusion based 
segmentation 

   
 DSC04652  

 
 DSC05351  

   
 DSC05434  

   
 DSC05437  

   
 DSC05705  

   
 DSC05188  

R

p1F:0.40 p2F:0.26 p3F:0.33 p4F:0.36 p5F:0.34 SF:1.55
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The decision score is also approximated by three digits. In this operational phase, the primary
classifiers provide only the probabilities as the evaluated patch belongs to a predicted class and
the fusion based classifier evaluates the decision score for the final classification. After image
re-composition, the segmented images are shown as in Figure 16. The examples in Table 4 show that
most patches were correctly classified by all PCs except the last two. The penultimate patch was
misclassified by four PCs and the overall result was a misclassification. The last patch was misclassified
by two classifiers (PC1 and PC4), but the global classifier result was correct.
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Figure 16. Examples of flood and vegetation segmentation by fusion-based classifier (testing
phase)—our dataset.

In order to evaluate the flood extension and the remaining vegetation, from each analyzed
image, the percentage of flood area (FA) and vegetation area (VA) were calculated in manual (MS)
and automatic (AS) segmentation cases (Table 5). Finally, the percentage occupancy of flood and
vegetation, from the total investigated area, was evaluated as the average of image occupancy (the last
row—Total—in Table 5). It can see that, generally, the flood segmentation was more accurate than the
vegetation segmentation. Compared with the manual segmentation, the flood evaluation differed by
0.53%, and the vegetation evaluation differed by 0.84%.
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Table 5. Percentage of the whole image area occupied by each RoI (FA—flooded area, VA—vegetation
area, MS—manual segmentation, AS—automatic segmentation).

Image FA-MS FA-AS VA-MS VA-AS

4652 2.51% 2.21% 41.75% 38.46%
4870 12.13% 11.69% 27.56% 25.66%
5043 16.29% 16.08% 13.06% 11.23%
5120 26.76% 26.94% 21.32% 17.72%
5188 48.67% 47.71% 10.27% 11.90%
5194 25.73% 24.64% 8.08% 7.20%
5351 41.23% 40.65% 11.34% 10.05%
5434 27.96% 26.71% 23.25% 21.37%
5437 40.61% 40.39% 13.47% 13.57%
5533 8.86% 10.25% 20.78% 20.79%
5705 12.31% 11.68% 27.11% 27.35%
Total 23.01% 23.54% 19.82% 18.66%

6. Discussion

The proposed system based on decision fusion combines two sets of information: the PC weights
obtained in a distinct validation phase, and the probabilities obtained in the testing (operational) phase.
The primary neural networks were first experimentally tested. Accuracy differs from one network
to another and from one type of class to another. Thus, in Table 6 are presented the accuracies of
individual networks (YOLO, GAN, LeNet, AlexNet, and ResNet) and of the global system for each
class (F, V, and R) and the mean. It can be observed that for individual networks, the best results were
obtained for ResNet and flood.

Table 6. Accuracy comparison with primary classifiers.

RoI Type YOLO GAN LeNet AlexNet ResNet Global System

F 89.2% 93.1% 91.1% 91.8% 94.4% 96.4%
V 85.9% 89.1% 87.9% 87.1% 90.3% 91.2%
R 85.1% 89.6% 88.7% 89.2% 90.9% 92.1%

Mean 86.7% 90.6% 89.2% 89.4% 91.9% 93.2%

In case of the experiments described in this paper, the accuracy was lower for the YOLO network,
for the patch size of 64 × 64 pixels (86.7%). The authors analyzed the performance of the YOLO network
on different patch sizes for the same images and found the following: for the 128 × 128 pixel size of the
patch, the accuracy was 89% [39], and for 256 × 256 pixel size the accuracy was 91.2%. This is explained
by the mechanism of network operation within the convolution to preserve the size of the patch. The
proposed system is adaptable for different patch sizes. In cases of more extensive floods, where no
small portions of water mixed with vegetation appear, the system operates with larger patch sizes, and
the YOLO network will have a better accuracy (respectively, a higher weight in the global decision).

On the other hand, the purpose of combining several networks was to reduce the individual
number of false positive and false negative decisions. It was found that in some cases the decision of
the YOLO network leads to a global correct decision. This aspect is also a motivation for choosing
several neural networks for the global classification system.

Although the fusion based on a majority vote would have been simpler, we chose a fusion decision
that takes into account a more complex criterion based on two elements: a) the "subjectivism" of each
network, expressed by the probability of classification, and b) the rigid weights of these networks,
previously established (in the validation phase). This is the new convolutional layer of the proposed
system that leads to a more objective classification criterion than a simple vote criterion.
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Why five networks and not more or less remains an open question. It is a matter of compromise,
assumed by our experimental choice. A large number would lead to greater complexity, so a greater
computational effort and time, while a small number would lead to lower accuracy.

The classification results were good (Table 6); however, due to images that were difficult to
interpret, erroneous results were also obtained. The main difficulties consist of factors such as (a) the
parts of the ground that were wet or recently dried were possibly confused with flood (error R-F), (b)
the vegetation that was uneven was possibly confused with class R (V-R error), and c) possible green
areas (trees) covered the flooded area (V-F error), etc. One such example is presented in Table 4, the
last row; this is because it contains a surface of land, recently dried, similar with the flood (error R-F).

The obtained results were better than the individual neural networks (Table 6) and better or
similar than other works (Table 7).

Table 7. Accuracy comparison with other works.

Paper Method Zone Flood
Accuracy (%)

Vegetation
Accuracy (%) Image Source

[1] Hue histogram rural - 87.29 UAV
[4] FCN urban 95 - UAV
[29] CNN+LBP rural 95 - UAV
[39] Full LeNet rural 89 89 UAV
[39] Half LeNet rural 88 88 UAV
[39] Pixel YOLO rural 82 82 UAV
[39] Decision YOLO rural 89 89 UAV
[13] Random forest urban 87.3 - UAV

This work Decision fusion rural 96.4 91.2 UAV

The papers in Table 7 were mentioned in the Introduction or Related Work sections and refer to
similar works as ours. Only paper [39] addressed both flood and vegetation classification. The results
obtained with different deep CNNs have less accuracy than our global system. The authors in [1] used
UAV images for vegetation segmentation, particularly different crops, based on hue color channel
and corresponding histogram with different thresholds. The methods in Table 7 were tested on our
database for papers [29] and [39]. In [1] the images are very similar to ours. The images in [4] and [13]
are very different from our application (urban).

The authors in [4] used a VGG-based fully convolutional network (FCN-16s) for flooded area
extraction from UAV images on a new dataset. However, our data set is more complex and difficult
to segmentation. Compared with traditional classifiers such as SVMs, the obtained results are more
accurate. As in our study, the problem of floods hidden under trees remains unresolved.

Our previous work [25] combines an LBP histogram with a CNN for flood segmentation, but the
results are less accurate and the operating time is longer because for each patch the LBP histogram
must be calculated.

The images that characterize the two main classes, flood and vegetation, may differ inside
an orthophotoplan due to the characteristics of the soil (color and composition) that influence the
flood color or the texture and color of the vegetation. There are also different features for different
orthophotoplans depending on the season and location. Obviously, for larger areas there is the
possibility of decreasing accuracy. We recommend a learning action at each application from as many
different representative patches as possible.

The network learning was done from patches considered approximately uniform (containing
only flood or vegetation). Due to this reason, a smaller segmented area was usually obtained (mixed
areas being uncertain). Other characteristic areas, such as buildings and roads, are less common in
agricultural regions. They were introduced to the "rest" class. Another study [46] found that the roads
(especially asphalted) cannot be confused with floods.
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Compared to our previous works, [29] and [39], this paper introduces several neural networks,
selected after performance analysis, in an integrative system (the global system) based on fusion of
decisions (probabilities). This system can be considered as a network of convolutional networks, the
unification layer being also based on a convolution law (10–12).

One of the weak points of our approach is the empirical choice of the neural networks that make
up the global system (only based on experimental results). We have relied on our experience in recent
years and on the literature. On the other hand, we have modified the well-known networks in order
to obtain the best possible performances for our own database. The images used were very difficult
to interpret because they contain areas at the boundary between flood and non-flood (for example,
wetland and flood), and areas of vegetation are not uniform. On clearly differentiable regions of interest,
the results are much better, but we wanted to demonstrate the effectiveness on real, difficult cases.

Neural image processing networks are constantly evolving, modernizing the old ones and
appearing new ones. In this case, the question arises: how many and why are the networks involved
in such a fusion based system? It is desired to develop a mathematical criterion, an objective, based
on optimizing parameters such as time, processing cost, accuracy, etc., to take into account the
specific application.

7. Conclusions

In this paper, we proposed an efficient solution for segmentation and evaluation of the flood
and vegetation RoIs from aerial images. The system proposed combines in a new convolutional layer
the outputs of five classifiers based on neural networks. The convolution is based on weights and
probabilities and improves the accuracy of classification. This fusion of neural networks into a global
classifier has the advantage of increasing the efficiency of segmentation demonstrated by the examples
presented. Images tested and compared were from own database acquired with a UAV in a rural
zone. Compared to other methods presented in the references, the accuracy of the method proposed
increased for both flood and vegetation zones.

As feature work, we proposed the segmentation of more RoIs from UAV images using multispectral
cameras. For more flexibility and adaptability to illumination and weather conditions we will also
consider the radiometric calibration of images. We also want to create a bank of pre-trained neural
networks that can be accessed and interconnected, depending on the application, to obtain the most
efficient fusion classification system.

We want to expand the application for monitoring the evolution of vegetation, which means both
the creation of vegetation patterns and the permanent adaptation to color and texture changes that
take place during the year.

Author Contributions: L.I. contributed to the conception and design of the CNN, performed the experiments,
and edited the paper. D.P. conceived of the paper, contributed to processing the data, analyzed the results, and
selected the references. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funding by University POLITEHNICA of Bucharest.

Acknowledgments: The work was supported by University POLITEHNICA of Bucharest, and project NETIO,
subsidiary MUWI, 1224/ 2018.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hassanein, M.; Lari, Z.; El-Sheimy, N. A New Vegetation Segmentation Approach for Cropped Fields Based
on Threshold Detection from Hue Histograms. Sensors 2018, 18, 1253. [CrossRef] [PubMed]

2. Mavridou, E.; Vrochidou, E.; Papakostas, G.; Pachidis, T.; Kaburlasos, V. Machine Vision Systems in Precision
Agriculture for Crop Farming. J. Imaging 2019, 5, 89. [CrossRef]

3. Popescu, D.; Ichim, L.; Caramihale, T. Flood areas detection based on UAV surveillance system. In Proceedings
of the 2015 19th International Conference on System Theory, Control and Computing (ICSTCC), Cheile

http://dx.doi.org/10.3390/s18041253
http://www.ncbi.nlm.nih.gov/pubmed/29670055
http://dx.doi.org/10.3390/jimaging5120089


Remote Sens. 2020, 12, 2490 27 of 29

Gradistei, Romania, 14–16 October 2015; Institute of Electrical and Electronics Engineers (IEEE): Piscataway,
NJ, USA, 2015; pp. 753–758.

4. Gebrehiwot, A.; Hashemi-Beni, L.; Thompson, G.; Kordjamshidi, P.; Langan, T.E. Deep Convolutional Neural
Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data. Sensors 2019, 19, 1486. [CrossRef]
[PubMed]

5. Panboonyuen, T.; Jitkajornwanich, K.; Lawawirojwong, S.; Srestasathiern, P.; Vateekul, P. Road Segmentation
of Remotely-Sensed Images Using Deep Convolutional Neural Networks with Landscape Metrics and
Conditional Random Fields. Remote. Sens. 2017, 9, 680. [CrossRef]

6. Li, Y.; Peng, B.; He, L.; Fan, K.; Tong, L. Road Segmentation of Unmanned Aerial Vehicle Remote Sensing
Images Using Adversarial Network With Multiscale Context Aggregation. IEEE J. Sel. Top. Appl. Earth Obs.
Remote. Sens. 2019, 12, 2279–2287. [CrossRef]

7. Shen, S.; Cheng, C.; Yang, J.; Yang, S. Visualized analysis of developing trends and hot topics in natural
disaster research. PLoS ONE 2018, 13, e0191250. [CrossRef]

8. Scott-Smith, T. Paradoxes of Resilience: A Review of the World Disasters Report 2016. Dev. Chang. 2018, 49,
662–677. [CrossRef]

9. Helber, P.; Bischke, B.; Dengel, A.; Borth, D. Introducing Eurosat: A Novel Dataset and Deep Learning
Benchmark for Land Use and Land Cover Classification. In Proceedings of the IGARSS 2018—2018 IEEE
International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 204–207.
[CrossRef]

10. Libelium World, Early Flood Detection and Warning System in Argentina Developed with Sensors
Technology, Case Studies, Meshlium, Plug & Sense!, Smart Cities, Smart Water, Waspmote, 2018. Available
online: http://www.libelium.com/early-flood-detection-and-warning-system-in-argentina-developed-with-
libelium-sensors-technology/ (accessed on 23 March 2020).

11. Gomez, C.; Purdie, H. UAV-based Photogrammetry and Geocomputing for Hazards and Disaster Risk
Monitoring—A Review. Geoenviron. Disasters 2016, 3, 496. [CrossRef]

12. Li, Y.; Tao, C.; Tan, Y.; Shang, K.; Tian, J. Unsupervised Multilayer Feature Learning for Satellite Image Scene
Classification. IEEE Geosci. Remote Sens. Lett. 2016, 13, 157–161. [CrossRef]

13. Feng, Q.; Liu, J.; Gong, J. Urban Flood Mapping Based on Unmanned Aerial Vehicle Remote Sensing and
Random Forest Classifier—A Case of Yuyao, China. Water 2015, 7, 1437–1455. [CrossRef]

14. Arif, M.S.M.; Gülch, E.; Tuhtan, J.A.; Thumser, P.; Haas, C. An investigation of image processing techniques
for substrate classification based on dominant grain size using RGB images from UAV. Int. J. Remote. Sens.
2016, 38, 2639–2661. [CrossRef]

15. Milas, A.S.; Arend, K.; Mayer, C.; Simonson, M.A.; Mackey, S. Different colours of shadows: Classification of
UAV images. Int. J. Remote Sens. 2017, 38, 3084–3100. [CrossRef]

16. Lo, S.-W.; Wu, J.-H.; Lin, F.-P.; Hsu, C.-H. Cyber Surveillance for Flood Disasters. Sensors 2015, 15, 2369–2387.
[CrossRef] [PubMed]

17. Nazir, F.; Riaz, M.M.; Ghafoor, A.; Arif, F. Flood Detection/Monitoring Using Adjustable Histogram
Equalization Technique. Sci. World J. 2014, 2014, 1–7. [CrossRef] [PubMed]

18. Lo, S.W.; Wu, J.H.; Chen, L.C.; Tseng, C.H.; Lin, F.P. Flood Tracking in Severe Weather. In Proceedings of the
2014 International Symposium on Computer, Consumer and Control, Taichung City, Taiwan, 10–12 June
2014; pp. 27–30. [CrossRef]

19. Rudner, T.G.J.; Rußwurm, M.; Fil, J.; Pelich, R.; Bischke, B.; Kopackova, V.; Bilinski, P. Multi3Net: Segmenting
Flooded Buildings via Fusion of Multiresolution, Multisensor, and Multitemporal Satellite Imagery. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2019, Honolulu, HI, USA, 27 January–1
February 2019; Volume 33, pp. 702–709.

20. Zhang, F.; Zhou, G. Estimation of vegetation water content using hyperspectral vegetation indices: A
comparison of crop water indicators in response to water stress treatments for summer maize. BMC Ecol.
2019, 19, 18. [CrossRef]

21. Smigaj, M.; Gaulton, R.; Suarez, J.D.; Barr, S. Use of Miniature Thermal Cameras for Detection of Physiological
Stress in Conifers. Remote Sens. 2017, 9, 957. [CrossRef]

22. Vidhya, K.; Revathi, S.; Sahaya Selva Ashwini, S.; Vanitha, S. Review on digital image segmentation
techniques. Int. Res. J. Eng. Technol. 2016, 3, 618–619.

http://dx.doi.org/10.3390/s19071486
http://www.ncbi.nlm.nih.gov/pubmed/30934695
http://dx.doi.org/10.3390/rs9070680
http://dx.doi.org/10.1109/JSTARS.2019.2909478
http://dx.doi.org/10.1371/journal.pone.0191250
http://dx.doi.org/10.1111/dech.12384
http://dx.doi.org/10.1109/igarss.2018.8519248
http://www.libelium.com/early-flood-detection-and-warning-system-in-argentina-developed-with-libelium-sensors-technology/
http://www.libelium.com/early-flood-detection-and-warning-system-in-argentina-developed-with-libelium-sensors-technology/
http://dx.doi.org/10.1186/s40677-016-0060-y
http://dx.doi.org/10.1109/LGRS.2015.2503142
http://dx.doi.org/10.3390/w7041437
http://dx.doi.org/10.1080/01431161.2016.1249309
http://dx.doi.org/10.1080/01431161.2016.1274449
http://dx.doi.org/10.3390/s150202369
http://www.ncbi.nlm.nih.gov/pubmed/25621609
http://dx.doi.org/10.1155/2014/809636
http://www.ncbi.nlm.nih.gov/pubmed/24558332
http://dx.doi.org/10.1109/is3c.2014.20
http://dx.doi.org/10.1186/s12898-019-0233-0
http://dx.doi.org/10.3390/rs9090957


Remote Sens. 2020, 12, 2490 28 of 29

23. Popescu, D.; Ichim, L.; Gornea, D.; Stoican, F. Complex Image Processing Using Correlated Color Information.
Intell. Tutoring Syst. 2016, 10016, 723–734. [CrossRef]

24. Popescu, D.; Ichim, L.; Stoican, F. Unmanned Aerial Vehicle Systems for Remote Estimation of Flooded Areas
Based on Complex Image Processing. Sensors 2017, 17, 446. [CrossRef]

25. Sumalan, A.L.; Popescu, D.; Ichim, L. Flooded and vegetation areas detection from UAV images using
multiple descriptors. In Proceedings of the 2017 21st International Conference on System Theory, Control and
Computing (ICSTCC); Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2017;
pp. 447–452.

26. Kalantar, B.; Mansor, S.; Sameen, M.; Pradhan, B.; Shafri, H.Z.M. Drone-based land-cover mapping using a
fuzzy unordered rule induction algorithm integrated into object-based image analysis. Int. J. Remote Sens.
2017, 38, 2535–2556. [CrossRef]

27. Cao, X.; Zhou, F.; Xu, L.; Meng, D.; Xu, Z.; Paisley, J. Hyperspectral Image Classification With Markov
Random Fields and a Convolutional Neural Network. IEEE Trans. Image Process. 2018, 27, 2354–2367.
[CrossRef] [PubMed]

28. Shi, C.; Pun, C.-M. Superpixel-based 3D deep neural networks for hyperspectral image classification. Pattern
Recognit. 2018, 74, 600–616. [CrossRef]

29. Cirneanu, A.L.; Popescu, D.; Ichim, L. CNN based on LBP for Evaluating Natural Disasters. In Proceedings
of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore,
18–21 November 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018;
pp. 568–573.

30. Ju, C.; Bibaut, A.; Van Der Laan, M. The relative performance of ensemble methods with deep convolutional
neural networks for image classification. J. Appl. Stat. 2018, 45, 2800–2818. [CrossRef] [PubMed]

31. Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using
Deep Learning: A Survey. arXiv preprint 2020, arXiv:2001.05566.

32. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc.
IEEE 1998, 86, 2278–2324. [CrossRef]

33. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Pdf ImageNet classification with deep convolutional neural
networks. Commun. ACM 2017, 60, 84–90. [CrossRef]

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. Comput. Sci. ndash ICCS
2020 2016, 9908, 630–645. [CrossRef]

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Institute of Electrical and Electronics
Engineers (IEEE): Piscataway, NJ, USA, 2016; pp. 770–778.

36. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Institute of Electrical and
Electronics Engineers (IEEE): Piscataway, NJ, USA, 2015; pp. 3431–3440.

37. Pang, S.; Ding, T.; Qiao, S.; Meng, F.; Wang, S.; Li, P.; Wang, X. A novel YOLOv3-arch model for identifying
cholelithiasis and classifying gallstones on CT images. PLoS ONE 2019, 14, e0217647. [CrossRef]

38. Artamonov, N.S.; Yakimov, P.Y. Towards Real-Time Traffic Sign Recognition via YOLO on a Mobile GPU. J.
Phy. Conf. Ser. 2018, 1096, 012086. [CrossRef]

39. Popescu, D.; Ichim, L.; Cioroiu, G. Deep CNN Based System for Detection and Evaluation of RoIs in Flooded
Areas. Lect. Notes Comput. Sci. 2019, 11953, 236–248. [CrossRef]

40. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 27–30 June 2016; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA,
2016; pp. 779–788.

41. Alom, Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sagan, V.; Nasrin, M.S.; Hasan, M.; Van Essen, B.C.;
Awwal, A.A.S.; Asari, V.K. A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics
2019, 8, 292. [CrossRef]

42. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Proceedings of the International Conference on Neural Information Processing
Systems (NIPS), Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

http://dx.doi.org/10.1007/978-3-319-48680-2_63
http://dx.doi.org/10.3390/s17030446
http://dx.doi.org/10.1080/01431161.2016.1277043
http://dx.doi.org/10.1109/TIP.2018.2799324
http://www.ncbi.nlm.nih.gov/pubmed/29470171
http://dx.doi.org/10.1016/j.patcog.2017.09.007
http://dx.doi.org/10.1080/02664763.2018.1441383
http://www.ncbi.nlm.nih.gov/pubmed/31631918
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1007/978-3-319-46493-0_38
http://dx.doi.org/10.1371/journal.pone.0217647
http://dx.doi.org/10.1088/1742-6596/1096/1/012086
http://dx.doi.org/10.1007/978-3-030-36708-4_20
http://dx.doi.org/10.3390/electronics8030292


Remote Sens. 2020, 12, 2490 29 of 29

43. Ali-Gombe, A.; Elyan, E.; Savoye, Y.; Jane, C. Few-shot Classifier GAN. In Proceedings of the 2018 International
Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; Institute of Electrical
and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018; pp. 1–8.

44. Gong, M.; Xu, Y.; Li, C.; Zhang, K.; Batmanghelich, K. Twin Auxiliary Classifiers GAN. Adv. Neural Inf.
Process Syst. 2019, 32, 1328–1337. [PubMed]

45. Hwang, U.; Jung, D.; Yoon, S. HexaGAN: Generative Adversarial Nets for Real World Classification. In
Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June
2019; Volume 97, pp. 2921–2930.

46. Popescu, D.; Ichim, L.; Docea, A. Complex Conditional Generative Adversarial Nets for Multiple Objectives
Detection in Aerial Images. Lect. Notes Comput. Sci. 2018, 11304, 671–683. [CrossRef]

47. EUROPA, Multisensory Robotic System for Aerial Monitoring of Critical Infrastructure Systems. Available
online: https://trimis.ec.europa.eu/ (accessed on 9 April 2020).

48. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv preprint 2014, arXiv:1411.1784.
49. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation.

Lect. Note Comp. Sci. 2015, 9351, 234–241. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ncbi.nlm.nih.gov/pubmed/32103879
http://dx.doi.org/10.1007/978-3-030-04212-7_59
https://trimis.ec.europa.eu/
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Image Acquisition 
	Image Processing and Segmentation 
	Using Deep CNN 

	Materials and Methods 
	UAV System for Image Acquisition 
	YOLO Network 
	GAN Network 
	LENET 
	ALEXNET 
	RESNET 

	System Implementation 
	System Architecture 
	System Tuning: Learning, Validation, and Weight Detection 

	Experimental Results 
	Discussion 
	Conclusions 
	References

