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Abstract: The visualization of hyperspectral images still constitutes an open question and may have
an important impact on the consequent analysis tasks. The existing techniques fall mainly in the
following categories: band selection, PCA-based approaches, linear approaches, approaches based on
digital image processing techniques and machine/deep learning methods. In this article, we propose
the usage of a linear model for color formation, to emulate the image acquisition process by a
digital color camera. We show how the choice of spectral sensitivity curves has an impact on the
visualization of hyperspectral images as RGB color images. In addition, we propose a non-linear
model based on an artificial neural network. We objectively assess the impact and the intrinsic quality
of the hyperspectral image visualization from the point of view of the amount of information and
complexity: (i) in order to objectively quantify the amount of information present in the image,
we use the color entropy as a metric; (ii) for the evaluation of the complexity of the scene we
employ the color fractal dimension, as an indication of detail and texture characteristics of the image.
For comparison, we use several state-of-the-art visualization techniques. We present experimental
results on visualization using both the linear and non-linear color formation models, in comparison
with four other methods and report on the superiority of the proposed non-linear model.

Keywords: hyperspectral imaging; visualization; color formation models

1. Introduction

Hyperspectral imaging captures high-resolution spectral information covering the visible and
the infrared wavelength spectra, and thus can provide a high-level understanding of the land cover
objects [1]. It is used in a wide variety of applications, such as agriculture [2,3], forest management [4,5],
geology [6,7] and military/defense applications [8,9]. Human interaction with hyperspectral images is
very important for image interpretation and analysis as the visualization is very often the first step
in an image analysis chain [10]. However, displaying a hyperspectral image poses the problem of
reducing the large number of bands to just three color RGB channels in order for it to be rendered on a
monitor, with the information being meaningful from a human point of view. In order to address this
problem, a series of hyperspectral image visualization techniques have been developed, which can be
included in the following broad categories: band selection, PCA-based approaches, linear approaches,
approaches based on digital image processing techniques and machine/deep learning methods.

Band selection methods consist of a mechanism of picking three spectral channels from the
hyperspectral image and mapping them as the red, green and blue channels in the color composite.
Commercial geospatial image analysis software products such as ENVI [11] offer the possibility
to visualize a hyperspectral image by manually selecting the three channels to be displayed.
More complex unsupervised band selection approaches have been developed, based on the one-bit
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transform (1BT) [12], normalized information (NI) [13], linear prediction (LP) or the minimum
endmember abundance covariance (MEAC) [14].

Another family of hyperspectral visualization techniques consists of methods that use principal
component analysis (PCA) for dimension reduction of the data. A straightforward visualization
technique is to map a set of three principal components (usually the first three) to the R, G and
B channels of the color image [15]. Other methods use PCA as part of a more complex approach.
For instance, the method presented in [16] is an interactive visualization technique based on PCA,
followed by convex optimization. The authors of [17] obtain the color composite by fusing the spectral
bands with saliency maps obtained before and after applying PCA. In [1], the image is first decomposed
into two different layers (base and detail) through edge-preserving filtering; dimension reduction is
achieved through PCA applied on the base layer and a weighted averaging-based fusion on the detail
layer, with the final result being a combination of the two layers.

In the case of the linear method described in [18,19], the values of each output color channel
are computed as projections of the hyperspectral pixel values on a vector basis. Examples of such
bases include one consisting of a stretched version of the CIE 1964 color matching functions (CMFs),
a constant-luma disc basis or an unwrapped cosine basis.

A set of hyperspectral image visualization approaches are based on digital image processing
techniques. In [20], dimension reduction is achieved using multidimensional scaling, followed by
detail enhancement using a Laplacian pyramid. The approach presented in [21] uses the averaging
method in order to the number of bands to 9; a decolorization algorithm is then applied on groups of
three adjacent channels, which produces the final color image. The technique described in [22] is based
on t-distributed stochastic neighbor embedding (t-SNE) and bilateral filtering. The method in [23]
is also based on bilateral filtering, together with high dynamic range (HDR) processing techniques,
while in [24] a pairwise-distances-analysis-driven visualization technique is described.

Machine/deep learning-based methods used for hyperspectral image visualization generally
rely on a geographically-matched RGB image, either obtained through band selection or captured
by a color image sensor. Approaches include constrained manifold learning [25], a method based on
self-organizing maps [26], a moving least squares framework [10], a technique based on a multichannel
pulse-coupled neural network [27] or methods based on convolutional neural networks (CNNs) [28,29].

In this paper, our goal is to produce natural-looking visualization results (i.e., depicting colors
close to the real ones in the scene) with the highest possible amount of information and complexity.
We propose the usage of a linear color formation model based on a widely-used linear model in
colorimetry, based on spectral sensitivity curves. We study the impact on visualization of the choice
of spectral sensitivity curves and the amount of overlapping between them, which induces the
correlation between the three color channels used for visualization. Besides Gaussian functions, we use
spectral sensitivity functions of digital camera sensors, the main idea behind the approach being to
emulate the result of capturing the scene with a consumer-grade digital camera sensor instead of a
hyperspectral one. Alternatively, we also developed a non-linear visualization method based on an
artificial neural network, trained using the spectral signatures of a 24-sample color checker, also often
used in colorimetry. By using the proposed approaches, we address the following question: what is
the impact of the choice of visualization technique on the amount of information and complexity
of a scene? The amount of information in a hyperspectral image should be preserved as much as
possible after the visualization. The entropy is often used to measure the amount of information
contained by a signal [30] and is one of the metrics that are used for the objective assessment of
the visualization result [10,21,31]. The complexity of a scene is related to the texture and object
characteristics preservation in the process of visualization. The color fractal dimension is a multi-scale
measure capable of globally assessing the complexity of a color image, which can be useful to evaluate
both the amount of detail and the object-level content in the image. We perform both a qualitative and
a quantitative evaluation (using color entropy and color fractal dimension) of the described techniques
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in comparison with four other state-of-the-art methods, employing five widely used hyperspectral
test images.

The rest of the paper is organized as follows: Section 2 presents the five hyperspectral images
used in our experiments, the proposed approaches (both linear and non-linear) and the two embraced
measures for the objective evaluation of the performance of the proposed approaches, Section 3 depicts
the experimental results, Section 4 the discussion on the various aspects related to the proposed
approaches, as well as possible further investigation paths, and Section 5 presents our conclusions.

2. Data and Methods

In this section we briefly describe the five hyperspectral images used in our experiments, the linear
and non-linear models proposed and used to visualize the respective hyperspectral images, as well as
the two quality metrics deployed to objectively evaluate the experimental results—the color entropy
and the color fractal dimension.

2.1. Hyperspectral Images

The hyperspectral images used in our experiments are Pavia University, Pavia Centre,
Indian Pines, SalinasA and Cuprite [32]. The first two were acquired by the ROSIS-3 sensor [33],
while the other three were acquired by the AVIRIS sensor [34]. Figure 1 depicts RGB representations of
the five test images.

Pavia University (Figure 1a) is a 610 × 340 image, with a resolution of 1.3 m. The image has
103 bands in the 430–860 nm range. The scene in the image contains a number of 9 materials according
to the provided ground truth, both natural and man-made. Pavia Centre (Figure 1b) is a 1096 × 715,
102-band image with the same characteristics as Pavia University. In both cases, the 10th, 31st and 46th
bands were used for generating the RGB representations [25].

The third test image, Indian Pines (Figure 1c), is a 145× 145 image, having 224 spectral reflectance
bands in the 400–2500 nm range with a 20 m resolution. The water absorption bands were removed,
resulting in a total of 200 bands. The image contains 16 classes, mostly vegetation/crops.

SalinasA (Figure 1d), is an 86 × 83 sub-scene of the Salinas image. After removing the water
absorption bands, the image has 204 spectral reflectance bands in the 400–2500 nm range with a spatial
resolution of 3.7 m. This image exhibits 6 types of agricultural crops.

The fifth image, Cuprite (Figure 1e), is of size 512 × 614, with 188 spectral reflectance bands in
the 400–2500 nm range remaining after removing noisy and water absorption channels. This image
contains 14 types of minerals.

For the last three images, the RGB representations were generated by selecting the 6th, 17th,
and 36th bands [25].
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(a) Pavia University (b) Pavia Centre

(c) Indian Pines (d) SalinasA (e) Cuprite

Figure 1. RGB representations of the five hyperspectral images used in our experiments. Top row:
images acquired by the ROSIS-3 sensor; bottom row: images acquired by the AVIRIS sensor.

2.2. Linear Color Formation Model

Considering the formation process of an RGB image, we embraced a linear model given by
Equation (1) [35]. In colorimetry, the linear model is used as a standard model for the color formation,
but usually the XYZ coordinates of colors are used as an intermediate step before computing the RGB
final color coordinates [36]. In the embraced approach, for a pixel at any position (x, y) in the resulting
RGB color image, the scalar value on each channel of the RGB triplet is computed as the integral of the
product between the spectral reflectance R(λ) of the (x, y) point in the real scene, the power spectral
distribution L(λ) of the illuminant and the spectral sensitivity C(λ) of the imaging sensor:

Ik(x, y) =
λmax∫

λmin

Ck(λ)L(λ)R(x,y)(λ)dλ, k = R, G, B (1)

For the spectral sensitivity curves of the imaging sensor one can use theoretical or ideal curves,
in order to simulate the image formation process. An alternative would be to use the actual sensitivity
curves of a specific sensor, which can be measured according to the approach proposed in [35].

The illuminant can be also characterized, either by considering a standard illuminant or measuring
the real one by means of spectrophotometry. In colorimetry, a D65 illuminant is very often preferred,
as it corresponds to a bright summer day light. For remotely-sensed images, one may know the
illuminant as the direct sun light incident to the Earth’s surface, as the position of the sun with
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respect to the position of the satellite is known. The use of the illuminant in the model from
Equation (1) represents merely an unbalanced weighting of the three sensitivities, favoring the blue
channel (lower wavelengths) over green and red. The classical D65 illuminant is depicted in Figure 2,
in support of this statement. However, in this article we assume that the illuminant is constant across
all wavelengths, as we are mostly interested in the effect of the image sensor sensitivity curves on the
vizualization process. Thus, the influence of the illuminant L(λ) in Equation (1) is basically null and it
can be removed from the integral. Consequently, the equation is basically reduced to the following:

Ik(x, y) =
λmax∫

λmin

Ck(λ)R(x,y)(λ)dλ, k = R, G, B (2)

Figure 2. The D65 illuminant.

This is the linear model we consider for the experimental results presented in Section 3. In order
to apply Equation (2) on a hyperspectral image, we extract from it only the bands corresponding to the
range [λmin, λmax], covered by the sensitivity curves, which corresponds to the visible spectrum. This is
the main difference between the proposed model and the linear model presented in [18], which uses
all of the bands of the hyperspectral image and the weighting functions are stretched in order to cover
the entire range of wavelenghts of the hyperspectral image. Since both the sensitivity functions and
the reflectances are discrete, an interpolation of the pixel values of the hyperspectral image is done in
order to match the wavelengths and number of values of the sensitivity functions.

Given the embraced linear model and sensitivity functions, our study is limited to the visible
spectrum. The extension beyond the visible range could be done either by (i) stretching the sensitivity
functions [18] or (ii) adding a fourth color channel, given that one of the latest trends in color display
technologies is to add a fourth channel (such as a yellow channel) besides the RGB primaries [37].
However, both approaches would lead to unnatural-looking visualization results, which is not the
goal of this study.

2.3. Spectral Sensitivity Functions

As the main objective of visualization is very often the interpretation of the image by humans,
we start by considering the spectral sensitivity of the human visual system, which is actually the
paradigm for RGB-based color image acquisition and display systems. Figure 3 presents the spectral
sensitivities of the human cone cells in the retina, based on the data from [38]. The spectral sensitivity
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is a function of the wavelength of signal relative to detection of color. These spectral sensitivities are
labeled in three categories, depending on the peak value: short (S), medium (M) and long (L). The cone
cells are called β for the S group with the range that corresponds to the perception of the blue color.
Similarly, the range of the M group (γ cells) corresponds to green and the L group (ρ) corresponds
to red.

The RGB color digital cameras are characterized by their sensor spectral sensitivity functions,
which define the performance of the respective system. The sensor sensitivity functions for
consumer-grade cameras have a similar shape to the spectral sensitivities of human cone cells, since the
aim of these products is to capture a representation of the scene that is as accurate as possible from the
point of view of human perception. The five digital camera sensor spectral sensitivity functions used
in our experiments, taken from [35], are presented in Figure 4.

Starting from the spectral sensitivities of the Canon 5D camera sensor, for our experiments we
modeled a set of spectral sensitivities consisting of three Gaussian functions with the mean equal to
the wavelength corresponding to the three peaks in Figure 4a and with increasing standard deviation.
The functions are depicted in Figure 5. Figure 5a depicts Gaussian functions with a standard deviation
of 0, which represent basically unit impulses. In this case, the linear model is reduced to a band
selection approach (BS). The standard deviation is gradually increased in the next graphs, resulting in
an increasing degree of overlapping between the three functions: no overlap (NOL), small overlap
(SOL), medium overlap (MOL) and high overlap (HOL). In this way, we emulate the various levels
of correlation between the three RGB color channels of the considered sensor model—from zero
correlation, corresponding to a complete separation between the color channels for an ideal imaging
sensor, to high overlap, corresponding to a low-performance imaging sensor.

Figure 3. Spectral sensitivities of human cone cells.
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(a) Canon 5D (b) Canon 1D (c) Hasselblad H2

(d) Nikon D3X (e) Nikon D50

Figure 4. Spectral sensitivity functions for 5 digital cameras.

(a) BS (b) NOL (c) SOL

(d) MOL (e) HOL

Figure 5. Gaussian spectral sensitivity functions based on the functions of the Canon 5D camera from
Figure 4a.

2.4. Non-Linear Color Formation Model

The non-linear color formation model that we propose is based on an Artificial Neural Network
(ANN) [39], with the input feature vector consisting of a spectral reflectance curve and the output
being the corresponding RGB value. The architecture of the fully connected 5-layer network is depicted
in Figure 6. The network uses the Exponential Linear Unit (ELU) [40] as an activation function instead
of the more standard Rectified Linear Unit (ReLU), in order to overcome the problem of having a
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multitude of deactivated neurons (also referred to as “dying neurons” [41]). The implementation was
done using the PyTorch library [42].

For the supervised training of the ANN, we chose to use a standard set of 24 colors widely-used
in colorimetry–the McBeth color chart [43], depicted in Figure 7. In Figure 8 we show the spectral
reflectance curves of the color patches for each row in the McBeth color chart, with their original
designations in the legend of the plots. For each color, the RGB triplet is known and we used the
measurements provided by [44]. The wavelength range covered by the reflectance curves is 380–780 nm.
The reason for choosing this McBeth standard color set is twofold: (i) the spectral reflectance curves
of the colors are specified regardless of the illuminant, therefore they can be used as references both
in ideal or real conditions; and (ii) this particular color set was determined independently from the
domain of remote sensing, thus it can be seen as a neutral set of colors compared to the existing data
set of material spectral signatures, such as the ASTER spectral library [45]. In addition, the chosen
color set does not require the mapping between the spectral curves and corresponding RGB colors.
The training of the ANN is done via the classical backpropagation algorithm, with the mean squared
error (MSE) being used as a cost function and Adam used as the optimizer.

As in the case of the linear model, only the bands covered by the spectral reflectance curves of the
McBeth color set are used from the hyperspectral image. Concretely, the common range between the
Pavia University image and the McBeth curves is 430–780 nm. This range is covered by 83 bands of
the image and 71 values of the spectral reflectance curves. The 83 bands of the image are reduced to
71 through interpolation, such as to match the McBeth spectral reflectance curves, giving the size of
the input feature vector in Figure 6.

After training with the 24 reflectance curves, the network is applied on a pixel-by-pixel basis;
thus, for each pixel in the input image (a vector of 71 values in the case of Pavia University), the 3 output
values (R, G and B) are obtained and placed in the corresponding position in the visualization result.

Figure 6. Architecture of the ANN.

Figure 7. The McBeth color chart.
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(a) 1st row
(b) 2nd row

(c) 3rd row (d) 4th row

Figure 8. Spectral reflectance curves of the color patches in each row of the McBeth color chart.

2.5. Quality Metrics

A commonly used objective quality metric for hyperspectral image visualization is the entropy,
which is a measure of the degree of information preservation in the resulting image [1]. The most
common definition of entropy is the Shannon entropy (see Equation (3)) which measures the average
level of information present in a signal with N quantization levels [30].

H = −
N

∑
i=1

pi log2 pi (3)

where pi represents the probability to find a certain level in the signal (or color i in a given subset,
in context of color images). From the Shannon definition, various other definitions were developed:
Rényi entropy (as a generalization), Hartley entropy, collision entropy and min-entropy, or the
Kolmogorov entropy, which is another generic definition of entropy [46]. The original Shannon entropy
was embraced by Haralick as one of his thirteen features proposed for texture characterization [47].
In our experiments, we use the extension of the entropy to color images from [48].

Additionally, we use the fractal dimension from fractal geometry [49] to assess the complexity of
the color images resulting in the process of hyperspectral image visualization. The fractal dimension,
also called similarity dimension, is a measure of the variations, irregularities or wiggliness of a fractal
object [50]. This multi-scale measure is often used in practice for the discrimination between various
signals or patterns exhibiting fractal properties, such as textures [51]. In [52] the fractal dimension was
linked to the visual complexity of a color image, more specifically to the perceived beauty of the visual
art. Consequently, we use it in this article to both objectively assess the color image content at multiple
scales and the appealing of the visualization from a human perception point of view.
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The theoretical fractal dimension is the Hausdorff dimension [53], which is comprised in the
interval [E, E + 1], where E is the topological dimension of that object (thus, for gray-scale images the
fractal dimension is comprised between 2 and 3.). Because it was defined for continuous objects,
equivalent fractal dimension estimates were defined and used: the probability measure [54,55],
the Minkowski or box-counting dimension [53], the δ-parallel body method [56], the gliding
box-counting algorithm [57] etc. The fractal dimension estimation was extended to the color image
domain, like the marginal color analysis [58] or the fully vectorial probabilistic box-counting [59].
More recent attempts in defining the fractal dimension for color images exist [60,61]. For an RGB color
image, the estimated color fractal dimension should be comprised in the interval [2, 5] [59].

In our experiments, we used the probabilistic box-counting approach defined color images in [59]
for the estimation of the fractal dimension of the visualization results. The classical box-counting
method consists of covering the image with grids at different scales and counting the number of boxes
that cover the image pixels in each grid. The fractal dimension FD is then computed as [62]:

FD = lim
r→0

log Nr

log r
(4)

where Nr is the number of boxes and r is the scale.
FD is defined and computed for binary and grayscale images (considering the z = f (x, y) image

model, where z is the luminance and x and y are the spatial coordinates). The extension of FD to color
images, the color fractal dimension (CFD), is defined by considering the color image as a surface in
a 5-dimensional hyperspace (RGBxy) [59] and 5D hyper-boxes instead of 3D regular ones. For the
experimental results presented in Section 3, the stable CFD estimator proposed in [63] was used,
which minimizes the variance of the nine regression line estimators used in the process of fractal
dimension estimation. See [64] for reference color fractal images and the Matlab implementation of the
baseline CFD estimation approach.

3. Experimental Results

Figures 9–13 depict the visualization results for the five hyperspectral test images presented in
Section 2. Each figure is organized as follows: on the top row, the results obtained with the proposed
linear approach using the Gaussian functions (Figure 5); on the middle row, the results obtained with
the linear approach using camera spectral sensitivity functions (Figure 4); on the bottom row, the results
obtained using the proposed ANN approach (Section 2.4), the approach based on the PCA to RGB
mapping [15], the linear approach based on the stretched color matching functions (CMF) [18] and two
recent approaches, constrained manifold learning (CML) [25] and decolorization-based hyperspectral
visualization (DHV) [21].

For the Gaussian approaches, it can be noticed that, as the degree of overlapping between the
three functions increases, the vizualization results tend to come closer to grayscale images, as expected.
In the case of the camera functions, the difference between the results is not significant, proving that
the choice of a particular camera model over the other does not have a large impact on the visualization
results. Moreover, there is no significant difference in the visualization results between the two cases
of the proposed linear approach. The proposed ANN approach obtains satisfying results in terms of
both color and contrast, while the other depicted methods, particularly PCA and DHV, do not tend to
give natural-looking results.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 9. Experimental results on the Pavia University image. (a) BS. (b) NOL. (c) SOL. (d) MOL.
(e) HOL. (f) Canon 5D. (g) Canon 1D. (h) Hasselblad H2. (i) Nikon D3X. (j) Nikon D50. (k) ANN.
(l) PCA [15]. (m) CMF [18]. (n) CML [25]. (o) DHV [21].
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(a) BS (b) NOL (c) SOL (d) MOL (e) HOL

(f) Canon 5D (g) Canon 1D (h) Hasselblad H2 (i) Nikon D3X (j) Nikon D50

(k) ANN (l) PCA [15] (m) CMF [18] (n) CML [25] (o) DHV [21]

Figure 10. Experimental results on the Pavia Centre image. (a) BS. (b) NOL. (c) SOL. (d) MOL. (e) HOL.
(f) Canon 5D. (g) Canon 1D. (h) Hasselblad H2. (i) Nikon D3X. (j) Nikon D50. (k) ANN. (l) PCA [15].
(m) CMF [18]. (n) CML [25]. (o) DHV [21].
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(a) BS (b) NOL (c) SOL (d) MOL (e) HOL

(f) Canon 5D (g) Canon 1D (h) Hasselblad H2 (i) Nikon D3X (j) Nikon D50

(k) ANN (l) PCA [15] (m) CMF [18] (n) CML [25] (o) DHV [21]

Figure 11. Experimental results on the Indian Pines image. (a) BS. (b) NOL. (c) SOL. (d) MOL. (e) HOL.
(f) Canon 5D. (g) Canon 1D. (h) Hasselblad H2. (i) Nikon D3X. (j) Nikon D50. (k) ANN. (l) PCA [15].
(m) CMF [18]. (n) CML [25]. (o) DHV [21].

The corresponding values for the color entropy H and color fractal dimension CFD are depicted
in Tables 1 and 2. One may note that, for the set of Linear Gaussian approaches, both the color
entropy and color fractal dimension are maximum for the band selection, with one exception for the
SalinasA image, and they both decrease with the increase of the correlation between the three Gaussian
functions, as the color content tends to gray-scale and thus complexity diminishes. For the set of
Linear Camera proposed approaches, the two quality measures have similar values, basically there
is no noticeable difference in the visualization results. For both the Linear Gaussian and Linear
Camera approaches, the two quality measures exhibit relatively modest values, which indicate that the
visualization result does neither contain the highest information, nor is the most complex. The highest
amount of information, measured through the color entropy, is obtained using the proposed non-linear
ANN approach for the Pavia University and Pavia Centre images, the PCA approach for the Indian
Pines and Cuprite images, and DHV for the SalinasA image. For the three latter images, the proposed
ANN-based non-linear approach obtains the third (Indian Pines, Cuprite) and second (SalinasA)
best visualization from the point of view of entropy. The highest complexity, measured through
the color fractal dimension, is revealed when the hyperspectral images are visualized using the
non-linear approach based on ANN, with the exception of the Cuprite image, in which case the
PCA approach proves to be superior. The main advantage of the ANN method is that basically
any out-of-the-box artificial neural network model can be used, by changing the input layer only in
order to match the hyperspectral image under analysis. Table 3 lists, for each visualization method,
the independent data used in addition to the hyperspectral images. In the case of the CML approach,
the geographically-matched RGB image was obtained through band selection from the original image;
the images used are depicted in Figure 1, while the specific bands chosen are listed in Section 2.1.
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(a) BS (b) NOL (c) SOL (d) MOL (e) HOL

(f) Canon 5D (g) Canon 1D (h) Hasselblad H2 (i) Nikon D3X (j) Nikon D50

(k) ANN (l) PCA [15] (m) CMF [18] (n) CML [25] (o) DHV [21]

Figure 12. Experimental results on the SalinasA image. (a) BS. (b) NOL. (c) SOL. (d) MOL. (e) HOL.
(f) Canon 5D. (g) Canon 1D. (h) Hasselblad H2. (i) Nikon D3X. (j) Nikon D50. (k) ANN. (l) PCA [15].
(m) CMF [18]. (n) CML [25]. (o) DHV [21].

(a) BS (b) NOL (c) SOL (d) MOL (e) HOL

(f) Canon 5D (g) Canon 1D (h) Hasselblad H2 (i) Nikon D3X (j) Nikon D50

(k) ANN (l) PCA [15] (m) CMF [18] (n) CML [25] (o) DHV [21]

Figure 13. Experimental results on the Cuprite image. (a) BS. (b) NOL. (c) SOL. (d) MOL. (e) HOL.
(f) Canon 5D. (g) Canon 1D. (h) Hasselblad H2. (i) Nikon D3X. (j) Nikon D50. (k) ANN. (l) PCA [15].
(m) CMF [18]. (n) CML [25]. (o) DHV [21].
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Table 1. Entropy and fractal dimension for the visualization results in Figures 9 and 10. The values in
bold represent the highest values for the respective image.

Pavia University Pavia Centre

Method H CFD H CFD

Linear
Gaussian
(proposed)

BS 13.22 2.41 13.48 2.44
NOL 12.81 2.39 13.08 2.39
SOL 12.68 2.38 12.96 2.38
MOL 12.45 2.37 12.70 2.37
HOL 10.79 2.35 10.82 2.36

Linear
Camera
(proposed)

Canon 5D 12.03 2.37 12.10 2.36
Canon 1D 12.23 2.37 12.31 2.37
Hasselblad H2 12.25 2.38 12.25 2.37
Nikon D3X 12.30 2.38 12.34 2.37
Nikon D50 12.45 2.38 12.49 2.38

ANN (proposed) 15.38 3.02 15.28 2.87

PCA [15] 15.20 2.84 14.58 2.75

CMF [18] 14.98 2.51 15.11 2.63

CML [25] 12.79 2.80 12.94 2.63

DHV [21] 15.31 2.84 15.21 2.77

Table 2. Entropy and fractal dimension for the visualization results in Figures 11–13. The values in
bold represent the highest values for the respective image.

Indian Pines Salinas A Cuprite

Method H CFD H CFD H CFD

Linear
Gaussian
(proposed)

BS 13.22 2.41 12.01 2.38 13.71 2.84
NOL 11.76 2.51 11.29 2.29 13.31 2.80
SOL 11.53 2.56 11.16 2.28 13.19 2.79
MOL 11.31 2.46 10.97 2.27 12.84 2.79
HOL 10.29 2.42 9.84 2.36 10.99 2.73

Linear
Camera
(proposed)

Canon 5D 12.03 2.37 11.06 2.43 12.13 2.76
Canon 1D 11.28 2.46 10.51 2.26 12.32 2.77
Hasselblad H2 11.40 2.46 10.47 2.25 12.36 2.76
Nikon D3X 11.34 2.45 10.52 2.25 12.35 2.77
Nikon D50 11.50 2.46 10.69 2.27 12.56 2.78

ANN (proposed) 13.89 3.24 11.50 2.75 15.76 3.00

PCA [15] 14.24 3.19 11.04 2.38 17.40 3.37

CMF [18] 12.51 3.17 10.36 1.86 8.00 2.77

CML [25] 12.81 2.68 11.10 2.14 13.66 2.67

DHV [21] 14.13 3.03 12.29 2.44 16.22 3.06

Table 3. Independent data used by the methods under comparison.

Method Independent Data

Linear Gaussian Gaussian sensitivity functions (Figure 5)

Linear Camera Camera sensitivity functions (Figure 4)

ANN McBeth spectral reflectance curves (Figure 8)

PCA [15] none

CMF [18] Stretched CIE 1964 color matching functions

CML [25] Geographically-matched RGB image (Figure 1)

DHV [21] none
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4. Discussion

First of all, other measures can be considered for the assessment of the complexity of color images,
like the Naive Complexity Measure [65]. For the evaluation of the information present in a color
image, one could use the Pearson correlation coefficient between the color channels of the resulting
RGB color image [63] as an indication of the overlapping between the information on the three RGB
color channels. In the presence of a reference or ground truth, similarity indexes like Structural
Similarity Index Measure [66] can be used. Nevertheless, the ultimate criteria for the evaluation of
the performance of the hyperspectral image visualization approaches are dictated by the specific
application and its objectives.

The best experimental results were obtained using the proposed non-linear ANN-based model,
despite the extremely reduced training set—only 24 spectral reflectance curves and the corresponding
RGB triplets. One should investigate the effects of increasing the size of the training set, in order
to assess and reduce the overfitting effect [67] which may occur in our experiments. Extending the
training set implies the realization of more color references, characterized both by their hyperspectral
signatures (e.g., by using a spectrophotometer) and RGB triplets (e.g., by using a calibrated digital
color image acquisition system). The non-linear model itself could be developed further by considering
the wavelengths outside the visible range and taking into account the possibility to display the image
with more than 3 color channels, including various choices for the mapping between the hyperspectral
signatures and RGB triplets.

The linear models used to obtain the experimental results can be useful in understanding both the
capabilities and limitations of current or new imaging sensors. The full characterization of the imaging
sensors is mandatory in order to predict the imaging process outcome.

5. Conclusions

In this article, we proposed the usage of a linear model for the color formation based on spectral
sensitivity curves in order to visualize hyperspectral images by rendering them as RGB color images.
We deployed both Gaussian and real digital camera sensitivity curves and showed that, as the
correlation between the RGB color channels increases, similar to the overlapping of the curves for
both the human visual system and commercially-available digital cameras, the resulting color images
tend to go to gray-scale and to exhibit both a smaller amount of information and complexity. We also
proposed a non-linear color formation model based on an artificial neural network which was trained
with the colors of the McBeth color chart widely used in colorimetry. The training was supervised
as the 24 colors of the McBeth chart are specified both by their spectral reflectance curves and RGB
triplets. Given their construction, both proposed linear and non-linear approaches generate color
images with natural colors.

For the objective assessment of the quality of the hyperspectral image visualization results,
we deployed the widely-used measure of entropy, as it is an indicator of the amount of information
contained by a signal. We also proposed the usage of the fractal dimension, which is a multi-scale
measure usually employed to assess the complexity of color images, but also their beauty and appeal
according to some studies. The fractal dimension is an indicator of the amount of details present in the
image along multiple analysis scales.

In our experiments, we compared the proposed approaches with four other visualization
techniques, using five remotely-sensed hyperspectral images. In the case of the Gaussian functions,
our results show that, as the degree of overlapping between functions increases, the visualization
results come closer to a grayscale image. With regards to the camera sensitivity functions, we show
that the specific choice of a camera model does not have a significant impact on the visualization
result. Our experiments also show that the proposed non-linear model achieves the best visualization
results from the point of view of the complexity of the resulting color images. We envisage further
development by investigating the possible overfitting effect occurring in the case of the ANN approach,
extending the approach beyond the visible range and by using a fourth color channel. We underline
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that for the choice of the most appropriate visualization technique, one may need to consider three
important aspects: the naturalness of the resulting colors, the amount of information present in the
resulting color image and the complexity along multiple scales.
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