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Abstract: In the present study, gully erosion susceptibility was evaluated for the area of the Robat
Turk Watershed in Iran. The assessment of gully erosion susceptibility was performed using
four state-of-the-art data mining techniques: random forest (RF), credal decision trees (CDTree),
kernel logistic regression (KLR), and best-first decision tree (BFTree). To the best of our knowledge,
the KLR and CDTree algorithms have been rarely applied to gully erosion modeling. In the first
step, from the 242 gully erosion locations that were identified, 70% (170 gullies) were selected as
the training dataset, and the other 30% (72 gullies) were considered for the result validation process.
In the next step, twelve gully erosion conditioning factors, including topographic, geomorphological,
environmental, and hydrologic factors, were selected to estimate gully erosion susceptibility. The area
under the ROC curve (AUC) was used to estimate the performance of the models. The results revealed
that the RF model had the best performance (AUC = 0.893), followed by the KLR (AUC = 0.825),
the CDTree (AUC = 0.808), and the BFTree (AUC = 0.789) models. Overall, the RF model performed
significantly better than the others, which may support the application of this method to a transferable
susceptibility model in other areas. Therefore, we suggest using the RF, KLR, and CDT models for
gully erosion susceptibility mapping in other prone areas to assess their reproducibility.
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1. Introduction

Given the harmful effects of gully erosion, strategies for managing and reducing the damage
caused by this phenomenon are essential to achieve sustainable development [1]. One of the strategies
to achieve this goal is the use of gully erosion susceptibility mapping (GESM) [2]. This is well-known as
an essential technique to address the mechanisms of gully erosion. To establish GESM, inventory maps
of gully erosion and the methods for measuring the conditioning factors of gully erosion are needed [3].
A gully erosion susceptibility map can be constructed in the GIS environment by considering a set
of variables that influence this phenomenon. A detailed analysis of the spatial correlation between
these factors and the presence of gully erosion phenomena could also lead to a better estimation of
gully erosion susceptibility [4]. Therefore, factors such as climate conditions, topography, geology,
soil characteristics, and vegetation have a significant impact on the occurrence of gully erosion [5].

During the last few years, there has been a significant development in the application of machine
learning algorithms in natural hazard studies, including floods [6–8], wildfire [9], sinkholes [10],
drought [11,12], earthquakes [13,14], land subsidence [15,16], groundwater [17–19], landslides [20–26],
and gullies [27–31]. Artificial intelligence is considered an advanced technique for predicting gully
erosion, as well as managing and reducing the damage caused by this phenomenon. Indeed,
Conoscenti et al. [32] assessed the gully erosion susceptibility in Sicily (Italy) using the logistic
regression technique. An excellent discriminating ability was confirmed for gully erosion susceptibility
with an area under the curve (AUC) greater than 0.8. In another study, Pourghasemi et al. [33] developed
an ensemble model of an artificial neural network (ANN) and support vector machine (SVM) for gully
erosion susceptibility mapping with promising results (i.e., AUCtrain = 0.897 and AUCtest = 0.879).
Finally, the spatial occurrence pattern of gully erosion was properly addressed based on the developed
models. Using different machine learning models, Rahmati et al. [34] also predicted and mapped
the susceptibility of gully erosion with high performance. The random forest (RF) and RBF-SVM
(radial basis function–SVM) models ultimately provided the highest accuracy and stability over other
models. A similar study was also implemented for the same purposes based on the Naïve-Bayes tree
(NBTree), Logistic Model Tree (LMT), and Alternating Decision Tree (ADTree) models. The findings
indicated that the LMT model provided better performance than that of the ADTree and NBTree models.
Conoscenti et al. [35] also applied the multivariate adaptive regression splines model to assess gully
erosion susceptibility in Italy. Hydrological connectivity was investigated in their study to forecast
gully erosion. Similar studies were likewise conducted and presented in [36–42].

Although gully erosion susceptibility has been studied and predicted by different machine
learning algorithms and their accuracy has also been confirmed, these algorithms have not been
applied in all areas. Meanwhile, the effects and levels of gully erosion in each region are different [43].
In the present study, gully erosion in the Markazi province (Iran), which has an arid and semi-arid
climate, was investigated and predicted. Gullies often occur in this area and cause very extensive
damage to the surrounding environment, as well as agriculture productivity [30,31]. Gullies are
thus considered a major environmental problem that needs to be controlled and accurately predicted.
The efforts of this study aim to establish a gully erosion map and evaluate the gully erosion susceptibility
in the Robat Turk watershed in the west of Iran. The study area has an arid and semi-arid climate
where various erosions have occurred in recent years, especially gully erosion; therefore, it is very
important to study and evaluate this type of erosion in this area.

In the present study, we used four state-of-the-art machine learning models for predicting the gully
erosion susceptibility in the Robat Turk Watershed of Iran: kernel logistic regression (KLR), best-first
decision tree (BFTree), credal decision tree (CDTree), and random forest (RF). The novelty of this study
is its use of the two algorithms, KLR and CDT, to evaluate gully erosion susceptibility in a semi-arid
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region. Although these two learning algorithms were previously suggested for and applied to
landslide susceptibility mapping [44–46], flood susceptibility mapping [47], and groundwater potential
mapping [48] across the world, they have been rarely applied to gully erosion modeling. Therefore,
the ultimate aim of this study is to obtain accurate and reliable gully erosion susceptibility maps using
some of the most advanced state-of-the-art machine learning algorithms.

2. Study Area and Dataset Preparation

2.1. Study Area

The geographic coordinates of the Robat Turk Watershed are 33◦35′ to 33◦47′N latitude, 50◦46′ to
50◦52′E longitude, with an area of 242 km2, located between Makazi and Isfahan provinces (Figure 1).
The Robat Turk has an arid and semi-arid climate, and the mean annual rainfall total is about 213 mm;
most precipitation in the area occurs from winter to early spring (December to April) (Water Resources
Company of Markazi 2017). The highest amount of runoff in the study area occurs from February to
June [39]. In the Robat Turk watershed, there are both plain and mountainous units, and the formation
of this area is largely composed of quaternary sediments. The oldest Precambrian metamorphic rocks
(i.e., phyllite and quartzite), the Kahar Formation (i.e., shale, sandstone, and dolomite), and the Qom
Formation can be observed in this area, along with alluvial units of the fourth period [49]. The catchment
area indicates the presence of mountains, hills, and fluvial reliefs.
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Figure 1. The geographical location of the Robat Tork watershed in (a) Markazi and Isfahan provinces
and (b) Iran, (c) gully erosion locations of the Robat Tork watershed.

In terms of land use, most of the study area is surrounded by bare land areas (76%); however,
the area has a poor range (18%) and agriculture (6%) units. As most of the area is covered by bare
land areas, and the geological materials of these areas are mainly composed of young alluvium and river
deposits, these areas are highly sensitive to soil erosion; despite having the least rainfall, the area’s water
flow is concentrated and can induce rill erosion. With the development of the erodibility processes,
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these rill erosions become gully erosions in the study area, especially around the waterways where
water infiltration is greater.

2.2. Gully Erosion Inventory Map

Extensive field surveys have conducted within the Robat Turk, and 242 gully erosion locations
have recorded using a Global Positioning System (GPS; 76 CSX Garmin model) (Figures 1 and 2).
In each land use, the morphometric characteristics of the gullies, including the top width, down width,
depth, and cross-sectional shape of the gullies, are different from each other. In agricultural land use,
the average top width, down width, length, and depth of the gullies are 1073, 273, 304, and 5497 cm,
respectively, and in rangeland use, the average high width, low width, length, and depth of the ditches
are 993, 272, 273, and 3883 cm, respectively. A survey of the ratio of width to depth showed
that in the agricultural land use areas, this ratio is equal to 2.40, and under rangeland land use,
it is 2.23. The cross-sectional area is V-shaped in the agricultural land use unit and U-shaped under
rangeland land use. In the agricultural land use unit, to a certain extent, several gullies are more active
than the rangeland land use gullies. A survey of the morphometric characteristics of the gullies in
the two land-use units show that in both land uses, the gullies are relatively active, and the shapes of
their heads are concave and vertical. The presence of soil fragments inside the gully channel due to
the collapse of the walls has caused the longitudinal profile to become convex in some cases; moreover,
the transverse profiles of each gully are very different from each other.
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Figure 2. The two types of morphological gully erosion [35] that occurred in the watershed case study.

2.3. Gully Erosion Conditioning Factors

There are many conditioning factors related to gully erosion, such as the rainfall erosion
rate and the soil erosion rate. Therefore, a series of geographical, geological, and environmental
characteristics should be understood when studying the process of gully erosion [50]. In the first step,
a spatial database of gully erosion was established. The recorded gully erosion locations were randomly
divided into a training dataset (70%) and a validation dataset (30%) [4,51,52]. Previous studies [31,53],
using reliable data, identified the factors that affect the occurrence of gully erosion. Twelve factors were
selected, including altitude, aspect, slope, plan curvature, profile curvature, normalized difference
vegetation index (NDVI), distance from the river, drainage density, distance from the road, lithology,
land use, and annual mean rainfall. We explain these conditioning factors and their effect on gully
erosion as follows.

Altitude affects the types of vegetation and climate in a region. Therefore, many researchers
believe that altitude plays a crucial role in the study of gully erosion [54]. The spatial resolution of
the ALOS (advanced land observing satellite) PALSAR-DEM (the Phased-Array L-Band Synthetic
Aperture Radar—Digital Elevation Model) is 12.5 m × 12.5 m (downloaded from https://vertex.daac.

https://vertex.daac.asf.alaska.edu
https://vertex.daac.asf.alaska.edu
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asf.alaska.edu). Previous studies have also shown that gully erosion is more likely to occur in low
altitude areas [55,56] (Figure 3a).
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curvature, (f) NDVI, (g) distance from river, (h) drainage density, (i) distance from road, (j) lithology,
(k) land use, and (l) rainfall.

In the investigation of environmental hazards and the development of susceptibility maps, aspect
has a great influence [57]. Aspect, viewed through weathering mechanisms and the geomorphologic
process, has an impact on gully erosion [58,59]. The aspect map for this study was extracted from
the ALOS PALSAR-DEM and classified into nine classes, including flat, north, northeast, east, southeast,
south, southwest, west, and northwest (Figure 3b).

The slope factor is strongly correlated with the amount of runoff and the soil erosion rate in an
area [60]. Areas with low slopes are exposed to gully erosion via the accumulation of water flow [1,61].
This map was prepared in ArcGIS 10.2 using ALOS PALSAR-DEM and classified into five classes,
including 0–5, 5–12, 12–20, 20–30, and >30 degrees (Figure 3c).

Water movement on the hillslopes is affected by the shape of the slope and causes changes in
the amount of erosion [62,63]. The ALOS PALSAR-DEM was also used to provide the plan and profile
curvatures, which were divided into three categories in ArcGIS 10.2 (Figure 3d,e).

The NDVI is very good for displaying vegetation biomass, leaf area index, crop yield,
and vegetation separation and is also used for vegetation related issues [64]. This layer can also be
effective in gully erosion modeling [33,65]. The NDVI map was provided using Landsat 8 data from
23/06/2017 (Figure 3f). The value of this factor can be obtained through the following formula:

NDVI =
NIR(Band4) −Red(Band3)
NIR(Band4) + Red(Band3)

(1)

where Red represents the spectral reflectance value of red, and NIR represents the spectral reflectance
value of the near-infrared band. The NDVI ranges from 1 to −1 [66].

The gully erosion locations are associated with a drainage network that facilitates the discharge
of erosion from the upper reaches of the area [67]. Distance from the river layer was used to
understand the effect of the drainage network on gully erosion [60]. The distance from the river
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was obtained using the Euclidean distance tool in ArcGIS 10.2 (Figure 3g). Drainage density has a
direct relation to the amount of runoff in a catchment area [68]. This factor has a certain influence on
the drainage pattern of an area, which depends on different factors, including geological formation,
infiltration, soil characteristics, land use conditions, and slope [69,70]. The ArcGIS 10.2 software
and line density tools were used to prepare the drainage density layer (Figure 3h).

Some phenomena, such as man-made roads and canals, have a profound effect on the occurrence
of gully erosion [67,71,72]. Improper roads in bare lands could cause severe gully erosion [29]. A map
of the distance from the road using a road network was constructed by the National Cartographic
Center of Iran (INCC) at a scale of 1:25,000 in the ArcGIS 10.2 software (Figure 3i).

Another factor affecting the gully erosion analysis is lithology [73]. Lithological features are related
to geomorphologic features and land surface characteristics [74]. Lithology unit maps were generated
using a 1:100,000 scale geological map (GSI, 1997) from the Geological Survey and Mineral Exploration
of Iran. The lithological map of the Robat Turk area was divided into eight classes (Figure 3j).

In recent decades, geological environments have been increasingly affected by human engineering
activities, including oil and gas development [75] and transportation facility construction [76–79].
The interaction between land-use change and soil erosion has had an important impact on soil erosion
and sediment production and has become a major environmental issue [56]. The landsat8 OLI image
was downloaded from a web page (https://earthexplorer.usgs.gov/site) to produce the land use map.
Then, pre-processing of the images, including geometric and radiometric corrections on the images,
was performed in the ENVI 5.3 software to accurately observe the land use in the study area. Then,
a false-color image was created for each image to better identify the land use in the area. To survey
the land-use changes with a supervised method, land use maps obtained from the Department of
Natural Resources of the Markazi Province along with field surveys and Google Earth were used to
record numerous training samples for each land use. The maximum likelihood classifier was used
to classify the training samples. The identified land uses in the region include bare land, rangeland,
and agriculture areas (Figure 3k).

Rainfall acts as a triggering factor and penetrates the cracks in the soil, causing an expansion
of the gully in different directions [51]. In this study, the rainfall layer was obtained using three
rainfall stations inside and outside the study watershed (from the Markazi County Meteorological
Bureau). Different interpolation methods were used to detect the target layer; then, the inverse
distance weighting (IDW) interpolation method was used to draw the total annual rainfall map, thereby
improving the accuracy [80–82].

3. Methods

The methodological workflow to derive the final gully erosion susceptibility map is shown
in Figure 4.

3.1. Multicollinearity Analysis

In natural event studies, multicollinearity points to the lack of independence of the independent
variables and their strong associations, which can occur in a dataset due to their high correlation
and thus confuse an analysis of their incidence [83]. Variance inflation factors (VIFs) and tolerance
(TOL) [84] can determine the relationship between factors. In the present study, the TOL and VIF
are used to study the multicollinearity of independent variables in gully erosion modeling [33,85].
If the VIF is higher than 10 and the TOL value is less than 0.1, then the multi-collinearity among
the variables is error-prone [84].

https://earthexplorer.usgs.gov/site
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3.2. Background of the Data Mining Models

3.2.1. Kernel Logistic Regression (KLR)

KLR is a powerful classification technique compared to other traditional classification methods [66].
This model has been successfully used in many of the classified problems [86]. Although KLR can
transfer indivisible linear problems, it uses the core to transfer input features to the next space of higher
dimensions, but this is not possible for the LR model [87]. The advantages of the KLR learning algorithm
include its ability to predict an event according to its probability and its capacity to be extended to
multi-class classification problems [88,89]. KLR is known to be a powerful classifier [90]. However,
KLR is not sparse and requires all training instances in its model [91]. KLR can intrinsically provide
probabilities and straightforwardly develop multi-class classification problems that only require solving
an unconstrained quadratic program [45]. Specifically, when the optimization algorithm is suitable,
as the algorithm does not need to solve the quadratic equation, it can perform analysis more quickly
than other algorithms such as SVM [45,92]. To apply this model, the statistical software R (version 3.5.2)
was used.

3.2.2. Credal Decision Trees (CDTree)

The main feature of decision trees is their internal inconsistency; even with a set of different
training datasets related to a particular issue, various decision trees will be created. This feature is an
essential feature that makes decision trees an appropriate classifier in ensemble models, such as bagging,
boosting, and random forest. In this method, like in the classic decision tree technique, every node
represents a variable property, and every branch illustrates one of the conditions of this factor [93].

A leaf node is formed when it arrives at a factor and does not provide more information about
the factor class; the information is thus based on uncertainty through measurement (the measurement
of maximum entropy), and more factors are not entered. The leaf node, which is the predicted value
based on the information in the dataset class variable, defines the model’s training. When the decision
tree is created, a new instance of the X test set is used in the decision tree. For example, after the cases
of the X-property variables in the decision tree, the root node is set to a leaf node. Finally, the value of
the leaf node is obtained by classifying the X class through a credal decision tree [93]. The advantage of
the CDT algorithm is that it offers good experimental results [94,95] and it is especially suitable when
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noisy data are classified [96]. The disadvantage of CDT is that it only defines discrete variables, does
not work with missing values, and does not engage in a posterior pruning process [97].

3.2.3. Random Forest (RF)

RF is one of the most widely used algorithms due to its simplicity and capabilities [98–100].
This algorithm generates a forest randomly; this ”forest” is a group of decision trees. The construction
of a forest using trees is often done via the ”bagging” method [101]. The main concept of the bagging
method is that combining multiple models will produce better results than a single model. Simply put,
a random forest is composed of a set of decision trees; this combination is not only used to make
the prediction more accurate but also to make it more sustainable. The advantage of the random
forest method is that it can reduce both oscillations and the evaluation of variance [102]. After fully
building the trees, the test data are introduced into the tree, and the tree number is obtained for
the input vector of an output. Using the average of these outputs, the final output of the model
and the empirical distribution of the outputs are calculated by the percentage value and the range of
uncertainty. The random regression tree method is a proven method, especially when the number of
observations relative to the predictor is small [103].

The node size variable (which represents the number of leaves per branch) was determined in
this study by trial and error. The random forest adds random branches to the model as the trees
grow. Instead of looking for the most important feature when dividing a node, this model searches for
the most important feature among a set of random features. This leads to too many variations and,
ultimately, a better model [62,101,104].

3.2.4. Best-First Decision Tree (BFTree)

Ensemble-learning models, or data mining techniques, can specifically consider multiple
classifications in the best-first decision tree and determine the importance of each classifier [105].
Prenatal options are available before and after finding the best number of extensions for application
through cross-validation in the training data. Although these trees can be fully developed in the same
manner regardless of the first algorithm or the first depth, the BFTree uses different pruning modes
generated by the first depth method [106]. Another BFTree-based classification algorithm involves
the creation of a functional tree with diagonal splits and linear functions in the leaf [107].

3.3. Evaluation of the Model Performance

3.3.1. Statistical Measures

Although various studies used different methods to evaluate data mining models, we employed
the most important measures that have been used by the majority of environmental researchers.
In this study, the performance of these models will be evaluated through the following statistical
measures: sensitivity, specificity, and accuracy. The following relationships are used to obtain statistical
measures [108,109]:

Sensitivity =
TP

TP + FN
(2)

Speci f icity =
TN

FP + TN
(3)

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

where TP (true positive) and TN (true negative) are correctly classified pixels, and FP (false positive)
and FN (false negative) are the incorrectly classified pixels.
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3.3.2. ROC Curve and AUC

The results were validated with the help of the receiver operating characteristic (ROC) curves [18,73,110].
The ROC curve is plotted based on a 1- specificity (x-axis) against sensitivity (y-axis) [111,112]. The area under
the ROC curve (AUC) represents the ability to model whether the predetermined event will occur [113,114].
The closer the AUC value is to 1, the higher the accuracy of the results will be [115]. The AUC can be
calculated by this formula [108]:

AUC =
(
∑

TP +
∑

TN)

(P + N)
(5)

where P and N represent the total number of pixels with and without gully erosion, respectively.

4. Results and Analysis

4.1. Assessing the Affecting Factors Using Multicollinearity Analysis

In this study, the frequency ratio method was used to study the relationship between each
factor category and gully erosion point, and each factor category was given a specific weight [4,53].
The multicollinearity test was used to study the interrelationship among the impact factors, while
mainly considering the VIF and TOL (Figure 5). The experimental results of the multicollinearity
test assign the highest VIF values (5.329) to altitude, followed by land use (3.525) and distance from
the river (2.875). However, the smallest TOLs were assigned to altitude and land use with values
of 0.188 and 0.284, respectively. Overall, since the VIF values did not exceed the critical value of 10,
and the TOL was lower than 0.1, there no multicollinearity problem was found among the gully erosion
conditioning factors.
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Figure 5. Multicollinearity analysis for the affecting factors: V1: altitude, V2: aspect, V3: slope, V4:
plan curvature, V5: profile curvature, V6: NDVI, V7: distance from the river, V8: drainage density, V9:
distance from the road, V10: lithology, V11: land use, V12: rainfall.

4.2. Configuration and Training of the Data Mining Models

Since there is no multicollinearity problem among the gully erosion conditioning factors,
all 12 factors were used to train the four machine learning models. Reconfiguration of the model’s
architecture achieved the goal of optimizing model performance. For the RF model, 100 iterations
and 10-fold cross-validation offered the greatest prediction performance. For the CDTree model,
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the minimum total weight of the instances in a leaf was set as 2, and 10-fold cross-validation was used
for pruning. For the KLR model, RBFKernel, a lambda value of 0.01, and a gamma value of 0.01 were
used. For the BFTree model, the minimum number of instances at the terminal nodes was set to 2,
the number of folds for internal cross-validation was set to 5, and post-pruning was adopted. After
the configuration of the model was completed, training and verification were carried out, and the model
was ultimately obtained.

4.3. Variable Importance

The importance of each gully erosion conditioning factor is another mandatory output used
to compute gully erosion susceptibility. The importance values for the 12 conditioning factors
were thus considered for gully erosion susceptibility mapping. These values were automatically
produced during the model training procedure of the different algorithms (Figure 6). For the KLR
model, rainfall was the most important (0.242), followed by drainage density (0.148), distance from
the river (0.112), lithology (0.095), and land use (0.095). For CDTree, the most important factor was
also rainfall (0.242), followed by drainage density (0.147), distance from the river (0.127), land use
(0.086), and lithology (0.086). The results provided by the BFTree algorithm showed that rainfall
was again the most important factor (0.242), followed by drainage density (0.148), distance from
the river (0.13), land use (0.087), and lithology (0.081). The RF model also indicated that rainfall was
the most important gully erosion factor (0.234), followed by drainage density (0.14), distance from river
(0.115), land use (0.084), and lithology (0.074). The results showed that the rainfall layer was the most
important among the applied layers. Drainage density and distance from the river layers were also
subsequently determined.
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4.4. Model Performace Evaluation

The performance of the models was evaluated using the statistical measures for both the training
and validating datasets. In terms of sensitivity, after using the training datasets, the best model was
shown to be the RF (0.853) model, followed by the CDTree (0.847), BFTree (0.841), and KLR (0.794)
models (Table 1). The specificity result showed that the best model was again RF (0.800), but this time
the BFTree (0.706) ranked second, followed by the KLR (0.694) and CDTree (0.688) models. In terms of
classification accuracy, the best model highlighted by the training dataset was the RF (0.826) model,
followed by the BFTree (0.774), CDTree (0.768), and KLR (0.744) models. However, the sensitivity
calculated using the validation dataset indicated that RF and CDTree (0.847) were more reliable models
than the KLR (0.778) and BFTree (0.667) models. However, the BFTree model had the highest specificity
(0.750), followed by the RF, CDTree, and KLR models (0.722). In terms of accuracy, the RF and CDTree
models had higher values (0.785) compared to the KLR (0.750) and BFTree (0.708) models.

Table 1. Statistical measures used to evaluate model performance.

Statistical Measures
Training Validation

KLR CDTree BFTree RF KLR CDTree BFTree RF

TP 135 144 143 145 56 61 48 61
TN 118 117 120 136 52 52 54 52
FP 52 53 50 34 20 20 18 20
FN 35 26 27 25 16 11 24 11

Sensitivity 0.794 0.847 0.841 0.853 0.778 0.847 0.667 0.847
Specificity 0.694 0.688 0.706 0.800 0.722 0.722 0.750 0.722
Accuracy 0.744 0.768 0.774 0.826 0.750 0.785 0.708 0.785

Overall, for all the statistical measures, the values were higher than 0.7. Therefore, all the models
possess a strong ability to provide gully erosion susceptibility maps. However, the RF model has a
more balanced performance with the training and validation datasets.

The ROC curve [116,117] was used to evaluate the accuracy of the GESM results, and the AUC was
used to accurately quantify these models [66,118,119]. Figure 7 shows that the RF (AUC = 0.893) model
has the best success rate curve based on the training dataset. Similarly, the RF model ranks first in its
prediction rate (AUC = 0.872). According to the literature, the optimization levels of algorithms can be
assessed based on the accuracy of their validation rates [120,121]. After comprehensively considering
the AUC values of the four models shown in Figures 7 and 8, the RF model was determined to be
the most robust and effective.

As shown in Figure 8, the criterion of the standard error (SE) was also used to determine
the accuracy rates of the validation dataset; these rates were the best for all four models and were
0.035, 0.041, 0.040, and 0.030 for the KLR, BFTree, CDTree, and RF models, respectively. The results
of the confidence interval (CI) also confirmed that the RF model had the narrowest 95% confidence
interval (0.806 to 0.922). Further, in conjunction with the results of the AUC, the results of the two
other indicators, SE and CI, confirmed that the RF model was more accurate in predicting gully erosion
susceptibility than the KLR, CDTree, and BFTree models.
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4.5. Creating Susceptibility Maps Using the KLR, BFTree, CDTree, and RF models

To generate susceptibility maps of gully erosion, in the first stage, each raster representing the gully
erosion predictors was multiplied with the related importance value achieved following the training
process of the four data mining models. Then, using the map algebra function, the products resulting
from the multiplication were summed to derive the final GESM across the study area.

Some classification methods are included in GIS, including natural breaks, quantile, geometric
interval, equal interval, and standard deviation. We tested all these models, and the best one was found
to be a natural break. The natural break method was thus used to divide the final mapping generated
by these models into four categories [23,122]. This method was then used to classify the values of
the gully erosion maps because, in this method, classes and classification are determined based on
the inherent natural groupings in each group. A break in the class or the threshold of each class
indicates that the effects of this group are most similar. On the other hand, these classes will have
the greatest differences from each other. Indeed, the classes and tools that are most different from
each other are separated and classified in a given situation [123,124]. The application of the KLR
model revealed that high and very high susceptibility values were present throughout approximately
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37.61% of the Robat Turk watershed (Figures 9a and 10). In total, 61.98% of the research territory was
included by the CDTree model in areas with a low gully susceptibility value. In this case, moderate
values comprised around 6.20% of the study area, while high and very high susceptibility were spread
throughout approximately 31.82% of the study area (Figures 9b and 10). The BFTree model showed
that areas with low gully erosion susceptibility were located in 53.31% of the Robat Turk watershed,
while those with moderate values spanned over 21.9% (Figures 9c and 10). The results of the RF model
revealed that more than 47% of the study area belonged to an area with low susceptibility to gully
erosion, while areas with moderate values occupied 19.01% (Figures 9d and 10). Together, areas with
high and very high gully erosion susceptibility covered more than 33% of the Robat Turk watershed.
By analyzing the results provided by the susceptibility maps of gully erosion derived from the four
algorithms, the low susceptibility class was found to occupy the largest area of Robat Turk.
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Figure 10. Percentages of the four gully erosion susceptibility classes.

5. Discussion

In the present study, the important variables affecting gully erosion in the Robat Turk watershed
derived using data mining models showed that rainfall, altitude, distance from the river, and land use
are more important than the other variables. This fact is largely in agreement with the results
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achieved by Rahmati et al. [4] and Tien Bui et al. [31], according to which the distance from rivers
and land use are more important than other geographical variables. These results confirm that many
more locations relevant to gully erosion exist in regions with more rainfall and low altitude values.
Further, in areas with bare land, the concentration of gully erosion locations is greater. In other
words, while most gullies occur on bare lands, lowland areas contain more gully erosion locations.
This shows that bare lands cover the majority of the study area, which is characterized by a low
altitude. This also indicates a significantly positive relationship between altitude and land use.
Recently, evaluating the factors controlling gully erosion has been widely considered and discussed
in the literature [1,34,85,125,126]. In general, altitude and land use are the most commonly reported
influential factors [127,128]. In terms of factor importance, distance from the rivers ranked third in
this study. Conoscenti et al. [32] noted that most of these gullies are connected to river networks in
the area, which increases erosion from the upland area. The influence of land use on gully activity was
also reported in Vandekerckhove et al. [127]; however, there are many doubts about the features that
induce subsurface gully development. It was reported in Hosseinalizadeh et al. [125] that changes in
land use and mismanagement practices play the main roles in establishing gully head cut landforms.
The impact of land use on gully development was also reported by Vandekerckhove et al. [127],
although there remains uncertainty about the variables inducing gully activity and their interactions
with other subsurface processes. It has also been proven that gully rates are highly dependent on
the size of the runoff-contributing region above the gully erosion [129].

Additionally, gully erosion is widespread and mitigates other types of soil erosion, such as
wind erosion, in different ecosystems. Thus, it is necessary to predict and map gully susceptibility.
Data mining methods are reliable tools for mitigating and controlling the influence of soil erosion
in different regions all over the world. In the present study, this issue was addressed by comparing
and analyzing four data mining models—KLR, BFTree, CDTree, and RF—by applying the twelve
affecting factors. All four models showed their most susceptible regions to be located in the northern
part of the study area, whereas approximately 51% of the area was specified in the low susceptibility
class. The RF model had the greatest AUC of 0.872 for the validation dataset, as well as the smallest
standard error and confidence interval. This is because the RF model manages both categorical
and continuous data and does not prioritize any model dependencies [130]. Additionally, the RF model
handles input data without data elimination, leading to high prediction accuracy [131]. This model
has been used in various studies and is mostly reported to be an accurate model [132,133].

Conversely, the BFTree model had the smallest validation rate (AUC: 73.9%) among the three
models tested in this area and thus cannot be suggested for use as an advanced technique for
the statistical analysis of gully erosion. Based on these results, we conclude that the RF model has
the greatest accuracy, while the lowest accuracy was obtained by the BFTree. A comparison between
the applied methods and other ensemble models for the spatial distribution of gully erosion could be a
primary aim in future studies.

Pham and Prakash [45] compared the efficiency of the KLR and classification and regression tree
(CART) algorithms. The authors concluded that the KLR model outperformed and outclassed the CART
model in shallow landslide susceptibility mapping at the tri-junction of the Rudrapryag, Tehri Garhwal,
and Pauri Garhwal districts (Uttarakhand, Himalayas, India). Nguyen et al. [48] used the CDTree
algorithm as a base classifier to construct five hybrid models: Bagging-CDTree, Dagging-CDTree,
Decorate-CDTree, MultiBoost-CDTree, and Random Subspace-CDTree. These models were developed
for and applied to the groundwater potential mapping of DakLak province in Vietnam. The authors
revealed that the ensemble models can significantly improve the performance of the CDTree algorithm.
In another study, Chen et al. [18] compared the KLR, RF, and ADT algorithms for groundwater potential
mapping of the Ningtiaota region in the northern territory of Shaanxi Province, China. They noted
that the RF model provided the highest AUC value (0.811) followed by the KLR (0.797) and ADTree
(0.773) models. In a comparison between BFTree, RF, and naïve Bayes tree (NBTree), Chen et al. [134]
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evaluated their performance and revealed that the RF algorithm outperforms the BFTree and NBTree
algorithms in landslide susceptibility mapping.

Recently, Bernatek-Jakiel and Wrońska-Wałach [135] determined that gullies initiate and develop
in the regions that are most susceptible to piping erosion. Other scientists have observed that
gullies indicate geomorphologic changes throughout the world [136,137]. These observations indicate
that gullies are deepened and developed via subsurface processes, mostly at low altitudes [135].
Also, as reported recently by Hosseinalizadeh et al. [125], the positive interactions between collapsed
pipes and gully head cuts are due to soil degradation processes. Based on the archived results, gullies
are recognized as the main cause of the soil erosion and degradation processes in the study area,
as well as the main initiator of the sediment movement delivered to the rivers. Additionally, because
of the bare land covering the majority of the study area, the land without vegetation has a negative
effect on the infrastructure of the area to be damaged. Thus, soil-erodibility factors can significantly
increase due to a high rate of soil loss.

6. Conclusions

The development of gullies leads to wasteful amounts of soil. Therefore, gully erosion is an
important cause of land and environmental degradation. This paper mainly studied the impact of
different data mining models on compiling a susceptibility map of a gully. To do this, 12 important
and influential factors on gully erosion and 242 gully erosion locations were used. For modeling,
the CDTree, KLR, RF, and BFTree machine learning algorithms were used. The results for
the effectiveness of the AUC-based models in mapping gully erosion susceptibility showed that
the RF model offers the highest efficiency, while the BFTree model has lower performance than the other
two models. Reducing the destructive impact of this type of erosion and preventing its deterioration is a
problem that needs to be resolved urgently, as it is necessary to identify this type of erosion. Since most
gullies are located in the central part of the study area near the village of Robat Turk, the protective
practices in these areas must be increased, and the extension of agriculture and residential areas to areas
of deterioration should be prevented. Using data mining methods in other study areas by identifying
the geological conditions and geo-environmental factors affecting gully erosion could be used to save
time and costs when mapping the susceptibility of erosion.

Studies also showed that susceptibility maps can effectively help select various mitigation
options [138]. Land use planning or urban construction could be carried out in low gully-prone areas,
which could effectively reduce the losses caused by environmental hazards [139]. Susceptibility maps
are of great significance; most notably, the rational use of these maps in the planning stage can yield
large benefits. As a result, the proposed methods and corresponding susceptibility maps could aid
local governments and related organizations in pursuing new and existing spatial planning projects,
thereby taking effective measures to achieve disaster reduction and loss reduction [140].

Therefore, we suggest using the RF, KLR, and the CDT models for gully erosion susceptibility
mapping in other prone areas to check their reproducibility. The results of this study provide beneficial
insights for sustainable development strategies and minimizing destructive hazards to the surrounding
environment via gully erosion susceptibility mapping.
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