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Abstract: Differences in topographic structure, vegetation structure, and surface wetness exist between 
peatland classes, making active remote sensing techniques such as SAR and LiDAR promising for 
peatland mapping. As the timing of green-up, senescence, and hydrologic conditions vary differently in 
peatland classes, and in comparison with upland classes, full growing-season time series SAR imagery 
was expected to produce higher accuracy classification results than using only a few select SAR images. 
Both interferometric coherence, amplitude and difference in amplitude time series datasets were assessed, 
as it was hypothesized that these may be able to capture subtle changes in phenology and hydrology, 
which in turn differentiate classes throughout a growing season. Groups of variables were compared for 
their effectiveness in Random Forest classification for both Sentinel-1 and Radarsat-2. The Shapley value 
was used to determine the contribution of each group of variables in thirty scenarios, and Mean Decrease 
in Accuracy was compared to evaluate its ability to rank variables by relative importance. Despite being 
dual-pol, the results of classifications using Sentinel-1 coherence (12-day repeat) were significantly better 
than using fully polarimetric RADARSAT-2 coherence (24-day repeat), likely owing to the difference in 
baseline and specific acquisition dates of the data in this study. Overall, full growing season Sentinel-1 
coherence time series produced higher accuracy results than fully polarimetric quad pol RADARSAT-2 
coherence amplitude, difference in amplitude and polarimetric decomposition time series. Using a full 
growing season of time-series imagery in classification resulted in higher accuracy than using a few dates 
over a growing season. Using mean decrease in accuracy to rank and reduce variables resulted in a weaker 
classification than if the entire time series is used. 
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1. Introduction 

Like all wetlands, peatlands have great economic, societal, and environmental value, including 
forming a habitat for various unique species and species at risk [1], playing a role in the hydrologic cycle 
[2] and in sequestering carbon [3]. Despite these benefits, globally, they are subject to degradation through 
burning, conversion to farmland, and organic soil extraction for economic purposes [4]. While in general 
peatlands are the most widespread type of wetland internationally, there are several sub-classes of 
peatlands, which are formed based on specific characteristics of local hydrology, geology, and water 
chemistry (e.g., bog, poor fen, rich fen [5]). There are often many similar physical characteristics between 
different peatland classes (e.g., open bog and poor fen are both dominated by Sphagnum mosses), and 
conversely, there are often many highly variable features within a single class of peatland (e.g., rich fens 
vary widely in their vegetation composition, owing to local water chemistry). However, differences 
between and within the classes of peatland relate to differences in ecosystem services [5], thus mapping the 
extent of different peatland classes is widely studied [6,7]. 

Owing to their waterlogged surfaces and often dense vegetation, field data collection in peatlands can 
be physically demanding, time-consuming, and expensive. For these reasons, remote sensing is an 
attractive option for mapping peatlands. Similarities in multi-spectral imagery between peatland classes 
and upland classes (e.g., treed bog versus upland forest), and between peatland classes themselves (e.g., 
open bog and open poor fen), has resulted in poor accuracy when using a variety of different classifiers. 
Therefore, there are two main challenges in peatland mapping: (1) to differentiate treed bog from upland 
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forest, as their canopies can appear similar in multi-spectral imagery [8]; and (2) to differentiate poor fen 
from bog, as these are both sphagnum-dominated ecosystems and can also appear similar spectrally [9]. 
However, differences in topographic structure, vegetation structure, or surface wetness exist between these 
classes, making active remote sensing techniques such as Synthetic Aperture Radar (SAR) and Light 
Detection and Ranging (LiDAR) promising for peatland mapping [10–12]. While LiDAR is able to capture 
these important characteristics at high spatial resolutions, it is expensive to acquire, and thus not widely 
collected and not often collected repeatedly over time. 

1.1. SAR for Time Series Mapping 

As SAR should be sensitive to variations in vegetation structure and wetness, several studies have 
assessed a variety of different SAR parameters, including polarimetric decompositions [10,13–16]. In some 
studies, SAR has been shown to be useful for differentiating fen from bog based on differences in wetness 
and prevalence of grasses [13]. As well, differences in wetness and vegetation canopy between treed bog 
and upland forest should also be distinguishable with SAR. However, it has been found that SAR data 
alone do not produce high accuracy classification results in many peatland mapping scenarios. The 
addition of a digital elevation model (DEM) or Landsat imagery has been found to improve results, with a 
combination of sensors together providing superior results to either one alone [10,12]. 

Most classifications of peatlands have been completed using a single image or a few intermittent 
images, often using different SAR beam-modes to capture different physical conditions that can be 
characterized at different incident angles [16], or using a few dates throughout the growing season to 
capture extremes in vegetation and wetness in spring and fall [12]. However, different peatland classes 
exhibit variability in temporal signatures in vegetation green-up and senescence, surface wetness, and 
water table depths. By only collecting imagery on a few extreme dates, the variability in timing of green-
up/senescence and flashiness of hydrologic conditions may not be captured. Recently, Li et al. [17] 
demonstrated that full growing season time series Sentinel-1 amplitude data enabled the differentiation of 
treed and non-treed wetland, and results were improved in comparison with using single images or using 
time-series with missing observations. However, this study did not differentiate treed peatlands from other 
types of treed wetlands. Similarly, Karlson et al. [18] used Sentinel-1 intensity and found high classification 
accuracy using intensity time series alone but noted significant improvement in accuracy when a high-
resolution DEM and derivatives were also included. 

1.2. Interferometric Coherence Used in Classification 

SAR sensors record both the amplitude and phase of backscattered signals. The phase is affected by 
differences in the satellite orbits in the two passes, topography, ground deformation or displacement, 
atmospheric propagation delays, and systematic and environmental noise [19]. SAR interferometry is the 
collection and processing of two SAR images of the same location captured from two spatially separate 
positions producing an interferometric pair. The two images can be captured through a single pass (two 
receiving antennas on the same platform), or from repeat passes where one or more sensors acquires images 
at two different times, with two parallel or nearly parallel flight-paths over the same area. The 
interferometric baseline is the relative difference in position between the sensors when they capture the 
two images. For images to be used as an interferometric pair, they must be the same mode (e.g., both must 
have the same polarization and incident angle). 

Several authors have recently incorporated time-series coherence into classification, observing 
increased accuracy over using intensity alone for mapping a variety of environments or conditions 
including urban areas [20], flooding [21], and general land-use mapping [22,23]. Notably, Sica et al. [23] fit 
an exponential model to their time series data to compute two coherence parameters; that is, the estimated 
target decorrelation constant, which measures how fast the exponential model decreases, and the long term 
coherence, which takes into account situations where a target might not decorrelate over a long period of 
time (e.g., hard surfaces). Using these parameters alongside the incident angle resulted in an overall 
accuracy around 78%, but a higher accuracy was obtained using intensity and incident angle alone (88%) 
or all parameters combined (91%). 

InSAR has also been used for monitoring water levels in herbaceous wetlands [24,25], where high 
coherence is attributed to double-bounce scattering. In these cases, water acts as the surface plane and 
emergent, herbaceous vegetation (e.g., grasses, cattails) acts as a vertical structure enabling a secondary 
reflection or “double-bounce” backscatter. While small pools do exist in some peatlands, peatlands are not 
generally dominated by standing water. Further, when they exist, emergent vegetation is rare and is often 
not herbaceous, but rather comprised of woody, vascular plants. Brisco et al. [26] found high coherence in 
both marsh and swamp classes, which both exhibit standing water and some exhibit woody vegetation. 
They observed that, in these types of environments, if an interaction between the canopy and water exists, 
it can become depolarized and still maintain coherence. They attribute this to the fact that the underlying 
water layer provides a stable, uniform dielectric plane that results in coherent backscatter. Although their 
study was carried out in swamps and marshes, there may be a similar mechanism that results in high 
coherence in peatlands. In the case of peatlands where no standing water exists, the water table beneath 
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the surface of the peat may act as the stable dielectric plane, and the dry sphagnum moss layer above the 
water table acts as depolarizing vegetation. Brisco et al. [26] also created a visualization scheme that 
highlights diversity in wetland type and structure, where the standard deviation in coherence and intensity 
were mapped to red and blue colour channels, respectively, and the mean coherence was mapped to the 
green channel. They did not test these statistics of their coherence time series in classification. Additionally, 
InSAR has been used in peatlands in a few instances to monitor surface degradation and displacement [27].  

1.3. Variable Selection in Classification 

Variable selection is often necessary or desired in remote sensing image classification analyses. When 
introducing variables or environments into an analysis, understanding the degree to which variables 
contribute to a particular criteria of interest (e.g., overall or class-specific accuracies) can provide insight 
into the nature of the study area or problem. Further, using this information to reduce the number of 
variables, when necessary, is important as it can lead to reduced processing times, reduced data 
redundancy, and sometimes higher accuracy. In these cases, determining a subset of variables that 
contribute most to a classification is an important task. The random forest classification algorithm has been 
used by many authors to assess the importance of variables and reduce the number of variables in 
classification, and in the interpretation of which topographic and physiographic features are most 
important in separating different classes [28]. However, several authors have indicated issues with using 
mean decrease in accuracy (MDA) for variable selection when highly correlated variables are included in 
the classification, or when too few trees are used in the classification [29]. 

Conversely, the Shapley value [30,31] produces unbiased estimates of variable contribution (i.e., 
importance) regardless of correlated variables and the classification parameters (so long as the classification 
parameters produce unbiased accuracy metrics and stable accuracy values). The Shapley value method, as 
introduced by Nandlall and Millard [32] and used here, treats each user-defined group of variables (where 
a group could contain one or more variables) as players in a collaborative game, where the goal of the game 
is to maximize the accuracy of the classifier. To compute the Shapley value, each classification was run 
multiple times (i.e., one model run for the full set of players (i.e., groups) as well as each of the possible 
subsets, excluding the empty set). In each run, a different combination of players is used; based on the 
change in accuracy during each run, the contribution of each player can be calculated. In this application, 
the Shapley value of each player represents the contribution made by that player to the overall accuracy of 
the classifier (and thus has the same units as accuracy, e.g., percentage). For more information on the how 
the Shapley value can be used in classification scenarios, the reader is directed to [32].  

1.4. Objectives 

Different peatland classes exhibit variability in temporal signatures in vegetation green-up and 
senescence, surface wetness, and water table depths. By only collecting imagery on a few extreme dates, 
the variability in timing of green-up/senescence and flashiness of hydrologic conditions may not be 
captured. Therefore, we hypothesized that full growing-season time series SAR imagery may produce 
higher accuracy results than using a few images. Additionally, we expected that variables that capture 
differences in time (i.e., coherence, difference in amplitude) may provide different information to a 
classifier than a time series of amplitude images that capture conditions on a given date. Thus, the main 
objectives of this study are (1a) to compare a Radarsat-2 (RS2) time series to Sentinel-1 (S1) time series to 
determine if the shorter temporal baseline of Sentinel-1 leads to improved classification results and (1b) to 
assess the impact of datasets that were acquired in different seasons (shorter lengths of time) to determine 
if imagery from one particular season contributed more to the classification than another, (2a) determine if 
coherence, amplitude, or difference in amplitude between image pairs produced better classification results 
for both S1 and RS2; and (2b) for coherence, amplitude, and difference of amplitude groups of variables, 
assess different polarization combinations (quad pol combinations for RS2, dual pol combinations for S1) 
and different RS2 Fine Quad incident angles. 

2. Study Area 

This study was conducted at Alfred Bog, a mined, temperate peatland in Eastern Ontario, Canada 
(Figure 1). This peatland has been the subject of several other studies and several remote sensing methods 
have been used to create peatland ecosystem maps of this site (e.g., [11,12]). A full description of the site 
and ecosystem characteristics can be found in Millard et al. [11]. The peatland consists of three peatland 
classes: open fen, open shrub bog, and treed bog (Figure 1). In some locations, the peatland naturally grades 
into upland forest, but in others, it abruptly ends at a current peat mining site or agricultural field. This 
peatland was monitored intensively during the growing seasons of 2013 and 2014 [33] in all peatland 
classes. Since 2015, it has only been monitored using a single meteorological station (met station) located 
in the shrub bog. Figure 2 displays the water table, rain, and soil moisture data collected at a shrub bog site 
throughout the year. At the met station during 2017, water tables vary from 24 cm to 36 cm below the 
surface (Figure 2); however, the fen area of the peatland is generally much wetter than the shrub bog with 
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water tables close to or at the surface in many areas. The fen water table is much more responsive to rain 
events than the bog (flashy). Spring and fall are generally wetter than summer, with a slight draw down in 
water table and reduction in wetness through August and September. 

Peatland vegetation is relatively sparse, especially in shrub bog and fen areas (Figure 1a and Figure 2, 
top panel). The fen exhibits string-flark patterning in some areas, with strings (ridges) being higher in 
elevation, drier, and covered in either shrubs or short trees. Flarks (hollows/depressions) are usually 
saturated at the surface or may exhibit standing water, depending on the recent rain conditions. Figure 2 
(top panel) displays boxplots of the enhanced vegetation index (EVI) produced from MODIS composites 
throughout the 2017 growing season. In all classes in the study area, vegetation is at its maximum in late June 
through early August. The shrub bog and fen classes exhibit lower EVI than treed bog, forest, and agriculture 
throughout the growing season until mid-September, when fen EVI is within the same range or higher as 
forest and agriculture, but with reduced variability. During this period, treed bog EVI is reduced. Coherence 
and amplitude for both S1 and RS2 are displayed in Figure 3, which visually indicates no separability between 
classes using S1 or RS2 amplitude on any given date. In S1 coherence, a distinct separability is visible between 
peatland and non-peatland classes on most dates throughout the growing season, with the exception of mid-
June, which coincides with low water table conditions and the beginning of vegetation green-up. However, 
on many dates, there is no distinction in the boxplots between the peatland classes. S1-coherence values are 
greater than 0.5 on many dates. RS2 coherence is significantly reduced in all classes, but some areas of the fen 
class increased to a coherence level greater than 0.4 in September. 

 
Figure 1. Map showing general location of Alfred bog within Canada (top) and insets; (a) vegetation density 
map derived from LiDAR; (b) classification derived from Landsat and LiDAR previous used by Millard and 
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Richardson, 2018; and (c), (d), (e), (f) Red-Green-Blue (RGB) colour composite of coherence using Sentinel-1 
and RADARSAT-2 generated from VV and VH polarization. S1, Sentinel-1; RS2, Radarsat-2. 

 
Figure 2. Enhanced vegetation index (EVI) from MODIS Aqua and Terra, depth to water table from the 
surface of the peatland, soil moisture at two depths, and rain—all measured over the 2017 growing season. 
Water table and soil moisture are measured at a meteorological station located in the shrub bog area of 
Alfred Bog. These measurements were commenced in late May 2017. Rain was measured at Environment 
and Climate Change Canada’s weather station in St. Albert, Ontario, approximately 40 km south east of 
Alfred Bog. 
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Figure 3. Example of coherence and amplitude of RADARSAT-2 FQ5 Ascending (ASC) mode and Sentinel-
1 VV imagery during the growing season of 2017 by class. Date for each image acquisition is at the mid-
point of the group of boxplots (e.g., for RS2 FQ5ASC mode imagery, the first image is acquired on 20 June 
2017). 
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3. Data and Methods 

3.1. Choice of SAR Sensors 

There are several SAR sensors currently in operation, and many different options available between 
and within a single sensor. Generally, when choosing an SAR sensor to map peatlands, the wavelength 
(e.g., C-band, L-band, and X-band are common), polarization options (fully polarimetric sensors offer more 
information than dual or single-pol sensors), and spatial resolution are important. While L-band has been 
shown to provide unique information about peatland surfaces and is relatively insensitive to variability in 
vegetation [25], there are no publicly available L-band sensors in operation. Historic ALOS-1 imagery is 
available, but, as an archive, does not capture current conditions in peatlands. The European Space 
Agency’s (ESA) S1 constellation (two C-band, dual-pol VV and VH sensors with a 6- or 12-day repeat orbit) 
are open access and data are available for download shortly after acquisition. S1 has several modes, with 
the most commonly-collected over the Canadian landmass being the interferometric wide mode (IW), 
which repeatedly collects data using the same orbit geometry enabling interferometric products to be 
produced every 6 to 12 days. 

Canada currently operates RADARSAT-2 (RS2; a single C-band, quad-pol sensor with a 24-day repeat 
orbit) and the Radarsat Constellation Mission (RCM; three C-band, compact-pol sensors with up to a 4-day 
repeat orbit). RS2 is operated as a commercial sensor, but the owners of the sensor (Maxar) have an 
agreement with the Government of Canada to provide access to a quota of RS2 scenes to government 
departments. However, owing to the wide variety of modes available from RS2, users request imagery for 
a specific location, date, and mode, but must go through a “deconfliction” process whereby any conflicts 
between user requests are manually dealt with by the Canadian Space Agency before the image acquisition. 
This sometimes results in changes in the requested beam-mode and/or incident angle, so that sharing can 
occur between two users in a general area, or cancelation of the order owing a higher priority order (e.g., 
emergency) or a commercial order. Conversely, RCM will be operated with a “standard coverage”, where 
the specific beam-mode, repeat frequency, and resolution of the coverage vary by region within Canada. 
These modes are chosen in consultation with government departments based on their operational needs. 
Therefore, the repeatable coverage of S1 and RCM enables the collection of consistent and comparable data 
over time, which enables time series and interferometric analyses for peatlands across Canada, and 
internationally. 

3.2. Training Data 

Single pixel training data were collected throughout the study area using a combination of field visits 
and visual image interpretation (for details, see [11]). In the past, this training dataset at this site has been 
shown to produce high accuracy classification results with both LiDAR and Landsat data as input 
[11,12,32,33]. The training data were collected ensuring an equal number of points per class, based on the 
previous classification completed by Millard and Richardson [33]. A total of 250 points were randomly 
distributed throughout each of the five classes (1250 points in total). The class label for each point was 
verified visually with high resolution optical imagery. 

3.3. Sentinel-1 Processing 

S1 processing was completed using ESA’s Geohazards Thematic Exploitation Platform (GEP). GEP is 
an ESA originated R&D activity on the earth observation (EO) ground segment to demonstrate the benefits 
of new technologies for large scale processing of EO data. The platform was designed to support the 
geohazards community’s objectives. The platform allows both on demand processing for specific user 
needs and systematic processing to address common information needs of the geohazards community, as 
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well as massive processing on multi-tenant computing resources in the Cloud. To exploit the geo-
information generated using the platform, the GEP leverages open APIs for the integration of interactive 
processing and post-processing services. Today, the GEP allows the exploitation of 70+ terabytes of ERS 
and ENVISAT archive data and the Copernicus Sentinel-1, Sentinel-2, and Sentinel-3 available online. It 
offers about 40 EO processing services ranging from different categories such as conventional 
InSAR/optical services for earthquake response, to land subsidence and volcanoes monitoring, and 
advanced terrain motion services for SAR time series analysis. The code for the COIN processor in the GEP 
is available on github [34] and is based on the SNAP toolbox [35]. 

In this study, the COIN (“Coherence and Intensity Change”) application was used to produce a 
coherence image and a primary (reference) amplitude image for each Sentinel-1A TOPSAR interferometric 
wide mode image pair that was acquired over the study area from 1 April to 1 November 2017. This date 
range ensured that no snow still existed on the peatland at the time of acquisition and resulted in 15 pairs 
(16 images; Table 1). A pair consisted of a set of images from the same orbit acquired 12 days apart. The 
primary image was always selected as the image that occurred earliest in time. COIN pairs were calculated 
for both VV and VH polarizations [34]. S1 precise orbits were selected for processing and the Shuttle Radar 
Topography Mission (SRTM) 3 Arc-Second (90 m) DEM was used [34]. A coherence window of 10 × 40 
pixels in azimuth and range was used, as well as a multilook of 2 and 8 in range and azimuth. Coherence 
products were output at 15 m spatial resolution. 

The COIN application produces several products, but only the coherence (abbreviated as “S1-coh”) 
and the primary amplitude image (abbreviated as “S1-amp”) were downloaded. Following Brisco et al. 
(2017) [26], for each polarization in the S1 time series, we also produced nine metrics to be used in 
classification and visualization (standard deviation of coherence and amplitude, and mean coherence). For 
each polarization, the difference in amplitude (abbreviated as “S1-diff”) was also calculated between image 
pairs (based on the 12-day orbit). The “diff” variables were included as it was expected that they may 
capture the unique ecohydrological changes, similar to coherence. 

Table 1. List of Sentinel-1 (S1) and Radarsat-2 (RS2) images acquired in 2017 used to create interferometric 
pairs. All RS2 images were acquired 24 days apart. All S1 images were acquired 12 days apart, except for 12 
May–5 June, where an image was missing from the archive/was not acquired, and 23 June, where an S1-B 
image was available enabling 6-day separation of images. ASC = Ascending orbit, DESC = Descending orbit. 

Sensor Date 
Sensor 

Information Sensor Date 
Sensor 

Information 

S1 06-April Track 33 RS2 21-July FQ1W ASC 

S1 18-April Track 33 RS2 14-August FQ1W ASC 

S1 30-April Track 33 RS2 07-September FQ1W ASC 

S1 12-May Track 33 RS2 01-October FQ1W ASC 

S1 05-June Track 33 RS2 25-October FQ1W ASC 

S1 23-June Track 33 RS2 20-June FQ5W ASC 

S1 29-June Track 33 RS2 14-July FQ5W ASC 

S1 11-July Track 33 RS2 07-August FQ5W ASC 

S1 23-July Track 33 RS2 31-August FQ5W ASC 

S1 04-August Track 33 RS2 24-September FQ5W ASC 

S1 16-August Track 33 RS2 18-October FQ5W ASC 
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S1 28-August Track 33 RS2 20-June FQ1W DESC 

S1 09-September Track 33 RS2 14-July FQ1W DESC 

S1 21-September Track 33 RS2 07-August FQ1W DESC 

S1 03-October Track 33 RS2 31-August FQ1W DESC 

S1 15-October Track 33 RS2 24-September FQ1W DESC 

   RS2 18-October FQ1W DESC 

3.4. RADARSAT-2 Processing 

All available Fine Quad Wide images of beam-mode FQW1ASC, FQW5ASC and FQ5WDESC were 
selected over the study area in 24-day intervals from 1 April to 1 November 2017 using MacDonald 
Detwiller and Associates’ Acquisition Planning Tool. These beam-modes were selected as they had been 
previously collected at this site for other studies. However, owing to conflicts with higher priority users, a 
time series of images for the full growing season could not be acquired for any specific beam mode. In this 
study, six FQ1DESC images were acquired between 20 June and 18 October 2017, in addition to six 
FQ1DESC images acquired on the same dates as the FQ1ASC images; five FQ1ASC images were acquired 
between 21 July and 25 October 2017 (17 images; Table 1). Each of these images was acquired in single-look 
complex (SLC) format and scaled using Land-LUT [36]. 

These RS2 images were processed using PCI Geomatica v2018 software to produce amplitude images 
(abbreviated as “RS2-amp”) and difference in amplitude (abbreviated as “RS2-diff”). The raw imagery was 
converted to sigma-nought backscatter in the following polarizations: HH, HV (considered synonymous 
with VH), and VV. Several polarimetric decomposition parameters were also computed (abbreviated as 
“RS2-decomp”) using the PCI Geomatica Polarimetric Workstation extension: Freeman Durden [37], 
Cloude-Pottier [38], and Touzi [13]. These were chosen based on previous work using decompositions in 
classification and modelling in peatlands (for information on the processing of and use of these 
decompositions in peatland ecosystem mapping, see [10,33]). Finally, coherence (abbreviated as “RS2-coh”) 
was calculated in PCI Geomatica using the Interferometry extension, resulting in 16 pairs. Each image pair 
was coregistered with sub-pixel accuracy. Using PCI’s automatic coregistration and resampling algorithm 
(INSCOREG), control points are acquired automatically, outliers are removed, and pixels are resampled to 
match the reference file. A total of 500 Ground Control Points (GCPs) were used and a minimum acceptance 
score of 0.75 was used in coregistration. Next, a filtered interferogram was created for each image pair, 
using a 9 × 9-pixel window, for each polarization (HH, HV, VV). Finally, the amplitude and coherence data 
were converted to real numbers at a 15 m spatial resolution. Similar to S1, RS2 difference in amplitude 
images (“RS2-diff”) were computed by subtracting the amplitude of the secondary image from that of the 
primary image in each pair. 

3.5. Random Forest Classification Scenarios and the Shapley Value 

All images were clipped to the study area, and then stacked into one multi-channel file. Including all 
dates for amplitude, amplitude difference and decompositions, all date pairs for coherence, and difference 
images for both sensors resulted in a stack of more than 600 channels. 

To investigate which variables and combinations of variables produce the highest classification 
accuracy, and which variables and combinations contribute the most to these classifications, we created 
thirty (30) scenarios that allowed for the assessment of different sensors, polarizations, types of variables 
(amp, coh, decomp, diff), beam-modes, and seasonality (Table 2). For each scenario, variables were 
arranged into variable-groupings (abbreviated as “groups”) based on assessment criteria. Some scenarios 
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included two groups (e.g., comparing all RS2 variables compared with all S1 variables), whereas others 
included up to four different groups. Classifications were generated by the RandomForest algorithm [39] 
in the randomForest package [40] of R [41], using 1000 trees (ntree), and the square root of the number of 
variables was tested at each split (mtry). The parameter mtry controls the diversity of the grown trees in the 
random forest model. The value of mtry, equal to the square root of the number of predictor variables, 
provides optimum diversity for the RF models [42] so that useful information in predictor variables can 
potentially contribute to the majority vote. The number of trees directly affects the stability of the 
accuracies. To achieve stable accuracy values, the guidelines suggested by Behnamian et al. [43] have been 
followed in this study. These parameters, ntree and mtry, have been shown to produce optimal random 
forest performance and consistent results at this site and others in the past [11,43]. 

3.6. Assessing Variable Importance and the Contribution of Groups of Variables 

We produced estimates of variable contribution using the Shapley value. To compute the Shapley 
value, for each scenario, classifications were run several times, based on the number of variable groups in 
the scenario. Accuracy metrics (out of bag) were averaged based on all model runs in each scenario. We 
also assessed variable importance using MDA, but only ran this analysis one time with all variables for 
each scenario using 10,000 trees. This large number of trees was used because producing stable variable 
importance values requires assessment of the number of trees and, in the past, a minimum of 10,000 trees 
was required at this site using similar input data and classes [43]. However, we note that we have included 
many highly correlated variables in classification, which has been shown to introduce bias in MDA 
rankings [29] and, therefore, the interpretation of this analysis should be considered carefully. To determine 
if the number of variables could be reduced based on the MDA variable importance ranking, we then used 
the 10 and 20 most important variables in classification alone in order. 

4. Results 

4.1. Assessment of Overall, User’s, and Producer’s Accuracy 

Accuracy assessments for all 30 scenarios are displayed in Figure 4 and scenarios are described in 
Table 2. Using only growing season time series SAR imagery for classification, including short baseline (12-
day) dual-pol SAR data, resulted in the highest classification accuracy. The highest overall classification 
accuracy was produced using all RS2 and S1 channels (all coherence, amplitude, and difference channels—
Figures 4 and 5). However, both the RS2/S1-coherence and S1-coh classifications produced results within 
1% of the “best” results. All classifications that included S1-coh produced high accuracy results. The lowest 
classification accuracy was found using S1-diff, with less than 50% accuracy overall in several classes. With 
longer baselines (24 days), coherence alone did not produce high accuracy results, but when used in 
addition to amplitude, difference, or decomposition variables, this led to increases in classification 
accuracy. However, these were never as accurate as using short-baseline (S1) coherence information. For 
example, RS2-coh alone resulted in low accuracy (<60%), but the classification improved to 68% when 
amplitude and difference variables were included. 

High user’s (UA) and producer’s accuracies (PA) were found in peatland classes in several 
classification scenarios: (1) in all scenarios where both RS2 and S1 were combined; (2) in all classifications 
where S1-coh was included; and (3) in classifications where RS2-coh was combined with amplitude, 
difference in amplitude, or decompositions, except when using only HV polarization (Figure 4). RS2 
generally produced lower user’s and producer’s accuracy in the shrub bog and treed bog than when using 
S1 datasets. The S1-amp and S1-diff classification also produced low user’s and producer’s accuracy in all 
classes except agriculture. S1-coh alone produced the highest user’s and producer’s accuracies in the 
wetland classes. 
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There was no consistency in which sensor, or by including any type of variable, produced the highest 
UA or PA in the peatland classes; however, almost all classifications that produced the highest UA or PA 
included a coherence variable. Two exceptions are PA for shrub bog and fen, where accuracy was highest 
using RS2-amp, RS2-diff, S1-amp, and S1-diff together (86.4% and 89.1% PA, respectively). 

The highest UA in the agriculture class was obtained using S1-amp and S1-diff together (90.1% UA), 
but the highest PA in agriculture was obtained using S1coh only. UA forest was low in many classification 
scenarios. UA was less than 75% in most scenarios except those including S1-coh and RS2-diff, or where 
RS2-decomp and RS2-amp were combined with S1-amp and S1-diff, or where all RS2 parameters were 
included (8 of 30 scenarios). PA for forest was acceptably high in many scenarios, with the best results 
being obtained using RS2-coh and S1-coh together. 

Statistical metrics of S1 and RS2 coherence, as described in Brisco et al. [26], were produced for 
visualization (Figure 1); we also used these 12 variables alone in classification. The RGB visualization 
method introduced by Brisco et al. [26] indicates that peatlands have distinct temporal coherence patterns 
as compared with other surrounding classes and within the peatland. The combination of mean, standard 
deviation, and maximum for the full growing season S1-coh and S1-amp produced an overall accuracy of 
78.6%, which is similar to the S1-coh classifications where each individual pair was used. User’s and 
producer’s accuracies were also similar to the S1-coh classifications. This indicates that producing statistical 
metrics of coherence and amplitude may be a potential solution to reducing the number of channels used 
in image classification.  
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Table 2. Results of scenarios that compare different sensors, data types, seasons, and so on, listed by 
objective addressed and sensors used in assessment. Bold font in Shapley value column indicates the most 
important group of variables in that comparison. Italicized font in overall accuracy column indicates the 
classification scenario with the highest overall accuracy. 

Objective 1 

Scenario ID Groups Shapley Value Overall Accuracy Objective Addressed Sensor 

1 
RS2 (all) 0.4 

81.2 1 S1 & RS2 
S1 (All) 0.41 

2 
RS2 amp + RS2 coh 0.39 

80.9 1 S1 & RS2 
S1 amp + S1 coh 0.41 

Objective 1a 

Scenario ID Groups Shapley Value Overall Accuracy Objective Addressed Sensors 

3 
RS2 Summer (all) quad 0.41 

78.7 1a RS2 
RS2 Fall (all) quad 0.38 

4 
RS2 Summer amp quad 0.43 

78.1 1a RS2 
RS2 Fall amp quad 0.35 

5 
RS2 Summer diff quad 0.28 

71.9 1a RS2 
RS2 Fall diff quad 0.44 

6 
RS2 Summer decomp 0.34 

73.6 1a RS2 
RS2 Fall decomp 0.4 

7 
S1 Spring coh 0.25 

80.6 1a S1 S1 Summer coh 0.27 
S1 Fall coh 0.28 

8 
S1 Spring amp 0.23 

68.1 1a S1 S1 Summer amp 0.26 
S1 Fall amp 0.19 

9 
S1 Spring diff 0.12 

45.3 1a S1 S1 Summer diff 0.18 
S1 Fall diff 0.15 

10 
S1 Spring (all) 0.25 

80.7 1a S1 S1 Summer (all) 0.28 
S1Fall (all) 0.27 

11 S1 VV (all) 0.41 79.6 1a S1 



Remote Sens. 2020, 12, 2465 15 of 23 

S1 VH (all) 0.39 
Objective 2 

Scenario ID Groups Shapley Value Overall Accuracy Objective Addressed Sensors 

12 

RS2 quad coh 0.17 

78.8 2 RS2 
RS2 quad amp 0.22 
RS2 quad diff 0.2 

RS2 quad decomp 0.2 

13 
S1 coh 0.37 

80.9 2 S1 S1 amp 0.28 
S1 diff 0.16 

Objective 2a 

Scenario ID Groups Shapley Value Overall Accuracy Objective Addressed Sensors 

14 
RS2 quad pol amp 0.43 

76.3 1 & 2a RS2 & S1 
S1 dual pol amp 0.34 

15 
RS2 quad amp + diff 0.46 

78 1 & 2a RS2 & S1 
S1 dual amp + diff 0.35 

16 
RS2 quad coherence 0.32 

80.9 2a RS2 & S1 
S1 dual pol coh 0.49 

17 
RS2 dual pol coh 0.28 

78.2 2a RS2 & S1 
S1 dual pol coh 0.5 

18 
RS2 FQ1ASC quad coh 0.18 

59.7 2a RS2 RS2 FQ1DESC quad coh 0.2 
RS2 FQ5DESC quad coh 0.22 

19 
RS2 dual HHHV coh 0.23 

72.5 2a RS2 RS2 dual HHHV amp 0.28 
RS2 dual HHHV diff 0.22 

20 
RS2 dual VVHV coh 0.21 

75 2a RS2 RS2 dual VVHV amp 0.29 
RS2 dual VVHV diff 0.25 

21 
RS2 HH coh 0.22 

76 2a RS2 RS2 HH amp 0.25 
RS2 HH diff 0.29 

22 
RS2 HV coh 0.2 

67.8 2a RS2 
RS2 HV amp 0.29 
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RS2 HV diff 0.2 

23 
RS2 VV coh 0.29 

72.4 2a RS2 RS2 VV amp 0.25 
RS2 VV diff 0.19 

24 
RS2 coh HH 0.21 

59.9 2a RS2 RS2 coh HV 0.18 
RS2 coh VV 0.21 

25 
RS2 amp HH 0.21 

68.4 2a RS2 RS2 amp HV 0.27 
RS2 amp VV 0.21 

26 
RS2 diff HH 0.31 

69.9 2a RS2 RS2 diff HV 0.21 
RS2 diff VV 0.18 

27 
S1 VV coh 0.47 

79 2a S1 S1 VV amp 0.2 
S1 VV diff 0.12 

28 
S1 VH coh 0.4 

80.4 2a S1 S1 VH amp 0.26 
S1 VH diff 0.14 

29 
S1 VV coh 0.42 

78.6 2a S1 
S1 VH coh 0.37 

30 
S1 VV amp 0.3 

68.8 2a S1 
S1 VH amp 0.39 
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Figure 4. Overall, user’s, and producer’s accuracy per class for the 30 scenarios. Scenario information 
(including which variables are included in each) is listed in Table 2; hollow and solid circles represent 
producer’s and user’s accuracies, respectively. The objectives that each of the classifications address are 
indicated on the left.
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Figure 5. Comparison of coherence-based classifications. (a) Previous classification created using a 
combination of Landsat-8 and LiDAR data used in Millard and Richardson, 2018. (b) S1-coh + RS2-
coh = 81.2% accuracy, (c) RS2-coh = 59.7% accuracy, (d) S1-coh = 80.9% accuracy. 

4.2. Comparing Variable Importance (MDA), Contributions, and Interactions (Shapley Value) 

When mean decrease in accuracy (MDA) was used to assess individual variable importance, the 
most important variables were mainly made up of a mix of S1-amp and S1-coh. The top 10 most 
important variables included VH amplitude from May, June, and August; VV amplitude from June; 
and both VH and VV coherence from August and September (Figure 6). For rankings of the 10–20 
most important variables, both VV and VH coherence dominated the list. Between rankings 20–30 of 
the most important variables, several RS2 variables are included, such as Freeman Durden power 
due to rough surface (October); HH; pedestal height (June); and the first, second, and third 
Eigenvalue. Figure 6 displays the top 30 ranked variables, their importance, and the type of variable 
(S1-coh, RS2-amp, and so on). Most of these RS2 variables were produced using FQ1 imagery, except 
pedestal height, which was produced using the FQ5 image. We ran three additional RF classifications 
with the top 10, 20, and 30 variables only, and found that using only the 10 most important variables 
resulted in a lower classification accuracy (74.7% overall, but unacceptably low user’s and producer’s 
accuracy (<65%) in the peatland classes). Including the top 20 and 30 variables resulted in overall 
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accuracies of 78.6% and 79.2% respectively, and user’s and producer’s accuracies were between 68% 
and 70% for wetland classes. This indicates that, although the top 10 variables were made up of S1-
coh and S1-amp, which, as a complete time series produced high results, classification accuracy was 
reduced when only a selection of the time series was used. 

When RS2 and S1 were used in classification together, S1 always resulted in a higher Shapley 
value, with one exception, indicating that it was generally contributing more to overall classification 
accuracy than RS2. The only exception to this was when quad-pol RS2 amplitude and S1 dual-pol 
amplitude were used in combination; however, this classification resulted in poor UA and PA in the 
treed bog class, and poor UA in forests. S1 produced the greatest difference in contribution when 
coherence was used, indicating that of all the variables types tested, short-baseline dual-pol 
coherence contributed the most to the classification. As noted earlier, this set of variables alone 
produced high accuracy, and accuracy was only increased slightly when RS2 variables and other S1 
variables were included; therefore, we do not note any interactions between coherence and other 
variables that lead to an increase in classification accuracy. Conversely, there were no scenarios where 
RS2-coh (long-baseline) group of variables provided the highest overall accuracy. When S1-coh is not 
included in classifications, RS2 quad-pol amp values are usually more important than S1-amp or S1-
diff. One exception occurred in comparing the contributions of RS2-decomp and RS2-amp against S1-
amp and S1-diff. 

In assessing different types of RS2 variables, RS2-amp always contributed more to the 
classification than coherence when both quad and dual-pol scenarios were considered. The opposite 
was found for S1, where coherence provided much more to classifications than amplitude or 
difference variables, even in single polarization scenarios (either VV or VH). This indicates that RS2 
data were highly important to the above-mentioned scenarios when quad-pol amplitude was 
considered without coherence. 

In assessing the contribution of variable seasonality, a fair comparison cannot be made between 
RS2 and S1 as the RS2 data did not include any spring images. However, when all RS2 variables were 
considered alone and when amplitude alone was considered, the summer images contributed 
marginally more to the classification than fall images. When considering decompositions and 
difference variables, fall images contributed considerably more than summer images. In assessing S1 
variable seasonality, in all cases, spring contributed somewhat less to the classification than fall and 
summer, which resulted in very similar contributions for both amp and diff scenarios. When all S1 
variables were considered together, however, summer images contributed slightly more than fall 
images (Shapley value of 0.28 vs. 0.25). 

Several scenarios assessing the contribution of polarization were made. In comparing 
polarizations within a single RS2 data type, there was no consensus among the scenarios indicating 
any single polarization that consistently contributed more. For coherence, HH and VV resulted in the 
same Shapley value (0.21), where HV contributed less (0.18). HH resulted in a considerably higher 
Shapley value when only assessing the difference variables (0.31 vs. 0.21 and 0.18), but when 
comparing intensity, HV contributed more. However, all RS2 scenarios where polarizations were 
compared were completed using a single RS2 data type, and the classification results were poor in all 
cases. For S1, VV produced somewhat higher contributions than VH. VH produced higher 
contributions than VV for both S1 diff and amp, but similar to RS2, S1 scenarios where a single 
variable type was used, the classification results were poor, with the exception of when coherence 
was used alone. 

Overall, the results indicate that growing season short-baseline time-series coherence can 
produce high accuracy classifications, including using coherence data alone for classification, and 
contributes the most to all classifications where these variables were included. 
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Figure 6. Variable importance and type for top 30 variables, based on mean decrease in accuracy 
(MDA) ranking using all RS2 and S1 channels. 

5. Discussion 

5.1. Issues with Collecting Time Series Data 

In this study, short-baseline dual-pol (S1, 12-day) coherence collected over one growing season 
(15 pairs) produced highly accurate classification results and accuracy only increased slightly when 
time-series amplitude images were added. The resulting classifications were able to differentiate 
important wetland classes with higher accuracy than has been achieved using single-image, fully 
polarimetric decomposition parameters, and at similar levels of accuracy as those obtained in the past 
using LiDAR or Landsat imagery. In the past, a combination of Landsat and RS2 had been the 
preferred sensor for mapping peatland classes at this site. However, although Landsat is freely 
available, the spatial resolution is somewhat coarse and, therefore, Sentinel-2 and Sentinel-1 
coherence fusion should be explored. In the past, SAR amplitude and polarimetric decomposition 
parameters have not been widely successful for differentiating peatland classes and multi-source 
imagery was required. When this is the case, decisions often need to be made to up-scale or down-
scale image parameters so all can be stacked into one raster file for classification. For example, when 
working with S1 and Landsat data, scaling S1 up to 30 m spatial resolution will result in 
generalization of spatial detail, whereas oversampling Landsat imagery to match 15 m S1 would 
result in resampled pixels (providing no additional information), more data storage requirements, 
and longer processing times. 

Seventeen longer-baseline quad-pol (Radarsat-2, 24 day) coherence time series datasets were 
also collected over one growing season, but these data were collected using three different beam 
modes and two different incident angles. The results did not indicate that RS2 coherence could be 
used for mapping peatland classes as low accuracy was achieved (<60%). As amplitude, polarimetric 
decompositions alone produced significantly higher accuracy than coherence alone and RS2 
coherence always resulted in a lower contribution than these other variables, the effort to include 
coherence pairs from RS2 imagery does not seem necessary in this classification scenario. This is likely 
owing to the configuration of the coherence pairs in this specific time series. Long baselines result in 
degraded coherence over time, and, because peatlands are somewhat vegetated, small changes in 
vegetation between acquisitions, or changes in wetness or wind during the acquisition [24], will result 
in decorrelation and, therefore, less meaningful information provided to the classifier. Moreover, 
because we were unable to capture an entire growing season with a single beam-mode/incident angle, 
it is possible that some of the important temporal changes in the different peatland classes are not 
captured in the time series (i.e., missing April–June images). This may also be compounded by the 
fact that we have acquired FQ1DESC and FQ5ASC images on the same dates (morning and evening), 
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so although we have the same total number of images as we have in the S1 time series, the RS2 data 
time series captures much less temporal variability than S1. The dense time series that S1 standard 
coverage provides has been proven to be more valuable for monitoring peatland ecosystems than 
collecting fully-polarimetric data with a less-dense time series. 

Algorithms in ESA’s Geohazard Thematic Exploitation Platform enabled quick and easy 
processing of S1 coherence and amplitude images. As the GEP is a cloud-based processing service, 
only the results are downloaded and can be visually assessed online for errors before downloading. 
This resulted in significantly less data than if it had been locally processed using SNAP or other 
InSAR processing software. However, options for processing via the exposed on-demand processing 
services are somewhat limited in comparison with using a full InSAR processing software. For 
example, only two DEMs are available for terrain correction (GETASSE30 and SRTM 3 arc-second). 
However, a variety of different processor options are available including COIN (used here) and the 
SNAP interferometric processor, which can produce displacement measurements as well. Moreover, 
additional capabilities would be available leveraging the GEP development and integration 
environment (based on Jupyter Notebooks), which allows accessing full functionality of InSAR and 
optical processing software (such as SNAP and the Orfeo toolboxes). 

5.2. Comparison of Variable Importance (MDA) and Contribution (Shapley) 

While MDA simply provides an estimate of how much a single variable is important to the 
classification (based on the averaged decrease in accuracy when that variable is removed from a 
classification), the Shapley value provides a measure of percentage-wise contribution made by a 
group of variables (or a variable, though computationally expensive) for classification in a specific 
scenario. 

In this study, ranking variables solely using MDA did not provide a robust method of variable 
selection, as variable importance rankings not only do not allow an assessment of the interaction 
between variables to be assessed, but also are biased in the presence of correlated predictor variables 
[39,42]. When the temporal signatures of different classes vary, the interaction between different 
variables will provide more meaningful information than a single variable alone, noting that multi-
temporal predictor variables over an area of interest could be inevitably correlated. As RF is based 
on classification and regression trees, variable interaction is modeled within the tree [44], but MDA 
does not necessarily reflect the power of these interactions when correlated variables are included. 
The Shapley value enables the exploration of additional information about interactions between 
groups of variables by showing what each contributes individually, although it is up to the user to 
define the groups. While estimating a Shapley value for each variable is technically possible, in 
practice, the number of groups is limited by the fact that the number of unique combinations of 
“groups” scales exponentially, requiring a large number of classifications to be run [30]. For example, 
if we wanted to test which S1 coherence interferometric pair contributed most to the classification, as 
we have 15 unique S1 coherence pairs, this would result in 15 “groups” for comparison by the Shapley 
value algorithm. Therefore, there would be 32,767 unique combinations of “groups” (215-1), thus RF 
classification would need to be run 32,767 times to produce the Shapley value. Depending on the 
dataset being used and RF parameters, this could take a considerable amount of time and computing 
power (Figure 7). It is notable that this is one of the reasons only 1000 trees are grown in the RF 
models in this study; however, the stability of the accuracy values is controlled as described in [39]. 
On the other hand, for five groups, there are only 31 unique combinations, which is significantly more 
feasible. Figure 7 indicates the runtime and output file size in MiB using the cooptrees package [45] 
in R to compute the Shapley value based on 1–11 players. 

The Shapley value is, therefore, useful when deciding between different sensors, or different 
data types, or in cases where the variables are already reduced to a small number and the user is 
interested in assessing the contribution of each individual variable. In this study, the Shapley value 
indicated that S1 coherence contributed most to almost all of the classifications in which it was 
included. Thus, in an operational context, we would prioritize processing S1 coherence data, rather 
than processing RS2 polarimetric decomposition parameters. Importantly, this guidance was not 
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easily interpretable from the accuracy assessments, confusion matrix, or MDA variable importance 
values. 

 

Figure 7. Indicating run-time and output file size for 1–11 player scenarios for computing the Shapley 
value using the cooptrees package in R using dual-28 core Intel Xeon Gold processors. Note: the time 
and memory allocation listed above does not include the allotments for running the random forest 
(RF) classification models, only for calculating the Shapley value. 

6. Conclusions 

In this study, we determined that growing season time series Sentinel-1 short-baseline (12-day) 
coherence data could produce classifications of acceptable overall accuracy, as well as acceptable 
user’s and producer’s accuracy in peatland classes. The results of the S1 coherence classifications 
were significantly better than using RS2 coherence, likely owing to the difference in baseline and 
specific acquisition dates of the data in this study. However, when amplitude or polarimetric 
decomposition parameters were also included, RS2 produced acceptable levels of accuracy as well. 
Despite being dual-pol, the use of S1 led to higher accuracies than both quad-pol Radarsat-2 data. 
This is attributed to the shorter temporal baseline (12 days vs. 24 days) and, although both sensors 
collected a similar number of images over the growing season, a full growing season time-series was 
able to be collected with S1, but the RS2 dataset excluded spring images, and duplicate dates were 
acquired at different incident angles, resulting in a coarser time-series. With repeatable coverage 
available in Sentinel, it was possible to obtain images in the same geometry throughout the growing 
season without issues of conflict, thereby providing an estimate of change every 12 days. S1 coherence 
(12-day repeat) contributed most to almost all of the classifications in which it was included, where 
RS2 coherence (24-day repeat) was not found to contribute highly in the classification of peatland 
ecosystems. Therefore, in an operational peatland mapping situation, it is recommended to prioritize 
processing S1 coherence data, rather than processing RS2 polarimetric decomposition parameters. 

This study also demonstrated the use of Shapley values in comparing different sensors, types of 
variables, or seasonal data. Mean decrease in accuracy, as calculated through the random forest 
classifier, is biased when correlated variables are included, making it difficult to determine the true 
and proportional importance of a single variable with respect to other variables. Importantly, MDA 
does not consider interactions between variables. In using time-series data in classification, the 
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variability between and within different ecosystems throughout the time-series has been shown to 
produce higher accuracy results than using a few dates over a growing season, thus using MDA to 
rank and reduce low ranking variables can result in a weaker classification than if the entire time 
series is used. Importantly, the use of the Shapley value enables the identification of the importance 
of using the entire time series, whereas this benefit was not easily interpretable from the accuracy 
assessments, confusion matrix, or MDA variable importance values. 

The use of short-baseline time-series coherence in classification will be extended to mapping 
other peatlands and wetland ecosystems. Future work will also assess the temporal patterns in 
coherence in relation to temporal patterns in vegetation and hydrologic change across a single 
growing season, and between growing seasons at several temperate and subarctic peatland sites. 
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