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Abstract: Peatlands constitute extremely valuable areas because of their ability to store large amounts
of soil organic carbon (SOC). Investigating different key peat soil properties, such as the extent,
thickness (or depth to mineral soil) and bulk density, is highly relevant for the precise calculation
of the amount of stored SOC at the field scale. However, conventional peat coring surveys are both
labor-intensive and time-consuming, and indirect mapping methods based on proximal sensors
appear as a powerful supplement to traditional surveys. The aim of the present study was to
assess the use of a non-invasive electromagnetic induction (EMI) technique as an augmentation to
a traditional peat coring survey that provides localized and discrete measurements. In particular,
a DUALEM-421S instrument was used to measure the apparent electrical conductivity (ECa) over a
10-ha field located in Jutland, Denmark. In the study area, the peat thickness varied notably from
north to south, with a range from 3 to 730 cm. Simple and multiple linear regressions with soil
observations from 110 sites were used to predict peat thickness from (a) raw ECa measurements
(i.e., single and multiple-coil predictions), (b) true electrical conductivity (σ) estimates calculated
using a quasi-three-dimensional inversion algorithm and (c) different combinations of ECa data with
environmental covariates (i.e., light detection and ranging (LiDAR)-based elevation and derived
terrain attributes). The results indicated that raw ECa data can already constitute relevant predictors
for peat thickness in the study area, with single-coil predictions yielding substantial accuracies with
coefficients of determination (R2) ranging from 0.63 to 0.86 and root mean square error (RMSE) values
between 74 and 122 cm, depending on the measuring DUALEM-421S coil configuration. While the
combinations of ECa data (both single and multiple-coil) with elevation generally provided slightly
higher accuracies, the uncertainty estimates for single-coil predictions were smaller (i.e., smaller 95%
confidence intervals). The present study demonstrates a high potential for EMI data to be used for
peat thickness mapping.

Keywords: digital soil mapping; proximal soil sensing; peat thickness; apparent electrical
conductivity; electromagnetic induction; quasi-3D inversion

1. Introduction

Under natural conditions, peatlands constitute carbon sinks. However, they have been used
both for fuel mining and agriculture for over 1000 years. Climate change and rapid land use change
have turned peatlands into carbon sources. Within the European Union 2030 climate and energy
framework, all member states have to report on the emissions and removals of greenhouse gases
from wetlands, including peatlands [1]. The assessment of key peat soil properties, such as the
extent, thickness (or depth to mineral soil) and bulk density, is highly relevant for the precise
calculation of the amount of stored soil organic carbon (SOC) at the field scale. Several methods
have been used to measure peat thickness (or depth to mineral layer) in the field. Conventional
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measurements using hand augers are still commonly used, although this process is labor-intensive
and time-consuming and only provides depth observations at single point locations. In different
Digital Soil Mapping (DSM) studies, models were derived to predict peat thickness using conventional
field observations and environmental data. Considering environmental data, a few studies mostly
used terrain attributes, including elevation and slope [2,3], only elevation [4] or the distance to a
river [5]. More recently, machine learning models have also been used [6–8] as well as regression
kriging [9]. Rudiyanto et al. [6] (2016) and Young et al. [9] (2018) built models using a relatively
limited amount of environmental data (i.e., elevation, slope, aspect, System of Automated Geoscientific
Analyses Wetness Index (SAGAWI) and nearest distance to river for the first study, and elevation,
slope, aspect, vegetation type and soil for the latter). Rudiyanto et al. [8] (2018) and Aitkenhead [7]
(2017) used a wide array of environmental covariates: topography (i.e., elevation, vegetation-corrected
elevation, and two derived terrain attributes—the Multi-Resolution Index of Valley Bottom Flatness
(MRVBF) and SAGAWI—Euclidean distances to rivers, seas and combined rivers and seas, radar
images (i.e., Sentinal-1A and ALOS-PALSAR) and vegetation (i.e., seven Landsat raw bands and the
normalized difference vegetation index) in Rudiyanto et al. [8] (2018), and topography (i.e., elevation
and seven derived terrain attributes), climate (i.e., 24 different meteorological layers), soil (i.e., land
cover, geology and soil maps) and vegetation (i.e., Landsat raw bands and derived vegetation indices)
in Aitkenhead [7] (2017).

Within soil sensing, geophysical techniques constitute a powerful supplement to traditional coring
in the attempt to map peat properties at different scales. These methods cannot represent a complete
alternative to field coring although they can significantly reduce costs by limiting the dependency on
the latter only for calibration purposes. Peat displays particular electric properties, making geoelectric
methods more suitable for mapping its thickness or extent. Its electrical conductivity depends mainly
on the water content and amount of dissolved ions [10–12]). Peat also presents a high relative
dielectric permittivity due to its generally high water content, which allows it to be distinguished
from mineral soils with lower permittivity values [13]. Remote sensing and airborne geophysical
techniques represent the most suitable means to investigate peatlands at a large scale (>10 km2).
Several recent studies have successfully used airborne electromagnetic (AEM) methods to estimate
peatland thickness and extent [14–17]. Likewise, different proximal or ground-based geophysical
sensors have been accurately applied to map peat properties at smaller scales. Ground-penetrating
radar (GPR) and electrical conductivity or resistivity surveys have been predominantly used to map
peatlands [12]. In particular, GPR, which detects the contrast in dielectric permittivity, has been
extensively used to map peat thickness for the last three decades [18–22]. Other studies have used
complex electrical conductivity surveys [23] and electrical resistivity surveys [24] to explore the
stratigraphy of peat. Electrical conductivity surveys based on electromagnetic induction (EMI) measure
the apparent electrical conductivity (ECa) for a volume of soil. Recent advances in EMI technology
have resulted in the advent of on-the-go sensing systems, making it possible to determine ECa for
varying depths. ECa can further be used to determine true electrical conductivity (σ) estimates from
quasi-three-dimensional (quasi-3D) inversion models [25,26], thereby enabling the variation of soil
properties in 3D to be inferred [27–29]. To our knowledge, EMI surveys have only been implemented
in a few studies on peatlands: Theimer et al. [19] (1994) studied peat thickness, Slater and Reeve [21]
(2002) investigated peatland stratigraphy and hydrology, Comas et al. [30] (2011) focused on peat
basin morphology, and Koszinski et al. [31] (2015) and Altdorff et al. [32] (2016) estimated bulk density,
SOC content and stock. Furthermore, a recent study by Boaga et al. [33] (2020) hypothesized that
the combination of proximal and airborne electromagnetic data could be successfully used in a joint
inversion scheme with the aim of enhancing the AEM survey resolution where ground-based EMI
data are available and extending the results to larger areas where only AEM data might be available.

The aim of the present case study is to assess the use of data collected from a single-frequency
multi-receiver EMI instrument—namely a DUALEM-421S—for the prediction of peat thickness.
Soil observations were used for calibration and validation purposes. Linear regression (LR) and
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multiple linear regression (MLR) were used to investigate the spatial variability of peat thickness
over a 10 ha field area located in Jutland, Denmark. This was done solely from ECa measurements
(i.e., single and multiple-coil predictions) or from σ estimates calculated using a quasi-3D inversion
algorithm and from the combination of ECa data with environmental covariates (i.e., topography
variables comprising elevation and derived terrain attributes).

2. Materials and Methods

2.1. Study Area

The study area is a 10 ha agricultural field with a high peat thickness gradient (3–730 cm), located
in the Nørre Å valley in central Jutland, Denmark (Figure 1). The field mainly comprises organic
soil areas and small zones with mineral soils (coarse sand). This site is considered as a riparian fen
peatland [34] where vascular plants such as reeds and sedges dominate [12]. As will be discussed later,
and similar to Walter et al. [12] (2015), its specific configuration, underlain by sandy soils characterized
by low electrical conductivity, ensured a contrast with the peat layers, which generally present higher
electrical conductivity. The field belongs to the East Jutland glacial landscape and borders a young
moraine landscape to the West [35]. The originally uneven tunnel-valley bottom has been covered by
sea and organic sediments deposited after the last glaciation [36]. The study area is characterized by a
temperate oceanic climate with a winter mean temperature of 0 ◦C and a summer mean temperature of
17 ◦C. The annual precipitation ranges from 650 to 750 mm [37]. The field is tile-drained and currently
used as extensive grassland.

Figure 1. Location of soil observations collected during two sampling survey campaigns within the
study area (orthophoto from the spring 2006 as background [38]).

2.2. Soil Observations and Sampling Design

Soil observations were collected during two sampling survey campaigns in June 2017 and
May 2019 (Figure 1). The thickness of peat deposits (or depth to the mineral layer) was investigated
using a peat probe including a 120 cm main part and 94 cm extension rods. During the 2017 campaign,
76 soil observations were carried out following five pseudo-transects roughly in a southwest–northeast
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orientation. These first observations were restricted to the southern half of the study area as a plot
experiment was running in the northern part. The locations were selected directly in the field using
the results from a DUALEM-21S survey carried out at the same time. Preliminary ECa maps were
generated using kriging within ArcMap [39]. During the 2019 campaign, 34 soil observations were
carried out following three transects in a northwest–southeast orientation. Their locations were selected
using preliminary kriged ECa maps from a recent DUALEM-421S survey (i.e., from April 2019). In total,
110 soil observations were used as calibration and validation data within the predictive modeling of
peat thickness. The sampling approach can be compared to that recommended by Rudiyanto et al. [6]
(2016), which was based on (1) stratifying the study area by elevation (in our case, kriged ECa data)
and (2) sampling locations along transects crossing all strata or random locations within each stratum
(in our case, along transects). The precise location of each soil observation was determined in the
field using a conventional portable GPS system (Trimble SPS851 Global Navigation Satellite System,
Trimble Navigation Limited, Sunnyvale, CA, USA).

2.3. DUALEM-421S Data Collection

An EMI instrument typically comprises a transmitter (Tx) and a receiver (Rx) coil. A primary
magnetic field is generated by powering the Tx coil with an alternating current. This primary field
creates eddy currents in the conductive media present in the subsurface inducing a secondary magnetic
field. Both the primary and secondary fields are detected at the Rx coil. Since the primary field is
known depending on the Tx–Rx configuration, the secondary field can be calculated in relation to the
response to the actual subsurface properties [40]. The quadrature-phase and in-phase signal response
of an EMI instrument are representative of the ECa and magnetic susceptibility of the soil [41].

In our study, the ECa data were collected using a single-frequency multi-receiver DUALEM-421S
instrument. The instrument operates at a low frequency (9 kHz) and comprises three pairs of
perpendicular (PRP) and horizontal coplanar (HCP) coil arrays. The Tx coil is located at one end
and is shared by all Rx coils. The distances from the Tx to the PRP and HCP Rx coils are 1.1, 2.1 and
4.1 m, and 1, 2 and 4 m, respectively. The depth of exploration (DOE) is the depth at which the signal
accumulates 70% of its total sensitivity [41]. At low induction numbers, the DOE is a function of the
coil spacing (S) and orientation, and the DOEs for the PRP and HCP configurations are 0.5 S and 1.6 S,
respectively, when the instrument is placed on the ground [42]. As such, the DOE sfor the different
coil configurations are as follows: for the 1 m Rx coils, 0–50 cm (1mPRP), 0–160 cm (1mHCP); for the
2 m Rx coils, 0–100 cm (2mPRP) and 0–320 cm (2mHCP); and for the 4 m Rx coils, 0–200 cm (4mPRP)
and 0–640 cm (4mHCP).

The DUALEM-421S survey consisted of crossing the field in about 60 roughly parallel transects
in a southwest–northeast orientation (Figure 2). The transects were spaced approximately 5–6 m
apart with the instrument held 0.3 m above the surface of the ground. Notably, two small zones in
the northwestern part of the study area could not be surveyed because of the prohibitively dense
vegetation due to the former plot experiment (Figure 2). A total of 48,150 ECa measurements were
collected and georeferenced using a real-time kinematic (RTK) Trimble SPS851 global navigation
satellite system (GNSS, Trimble Navigation Limited, Sunnyvale, CA, USA) installed on the top of the
Tx coil. The RTK/GNSS georeferencing and ECa data were logged using an ALGIZ 10X data logger
and StarPal HGIS Professional logging software.
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Figure 2. Location of the DUALEM-421S survey transects within the study area.

2.4. DUALEM-421S Data Processing and Inversion

Aarhus Workbench software [43] was used for dedicated data processing and inversion. Firstly,
data processing was performed using both automatic and manual steps. In the automatic data
processing, the negative ECa values were removed and the measurements from different channels
were corrected for the offset between the RTK/GNSS and the center of the Tx–Rx arrays. An average
sounding distance of 1 m was chosen, and the data from all channels were averaged using a running
mean width of 3 m to improve the signal-to-noise ratio. An appropriate choice of the sounding distance
and running mean width was necessary in order not to smear the data generated by the soil variability
at hand and to discard the redundant information to reduce the computation time for performing
inversions. Later, a manual inspection of the raw data was performed to remove the potential noise
due to anthropogenic coupling; for example, this relates to buried cables, field monitoring installations
or the proximity of the instrument to the ATV when making turns. The changes made in the raw data
were integrated back into the averaged data generated through the automatic processing step.

After data processing, the inversions were performed using a fully nonlinear inversion routine
(AarhusInv code) with a quasi-3D spatially constrained algorithm that applied constraints in both
in-line and cross-line directions using Delaunay triangulation [25,26]. The inversions were executed
using two-layered, three-layered, four-layered, smooth, blocky and sharp models with an initial σ

estimate of 25 mS/m. Later, the σ estimates were retrieved using a depth interval of 50 cm starting
from 0 to 750 cm (i.e., 15 layers for each model). As a final step, quality control was accomplished
by plotting the total residual, data residuals and depth of investigation (DOI) to assess the quality of
inversions. We refer to a report [44] for a detailed explanation on the regularization schemes employed
and Christiansen et al. [45] (2016) for a more comprehensive overview of the data processing and
inversion of a DUALEM instrument using the Aarhus Workbench software.

2.5. Environmental Covariates

In addition to the six ECa and six σ-based variables (i.e., 1mPRP, 1mHCP, 2mPRP, 2mHCP,
4mPRP, and 4mHCP, and σ2-layered, σ3-layered, σ4-layered, σblocky, σsmooth, and σsharp), we tested a few
environmental covariates (i.e., topography variables) as predictors for the peat thickness modeling:
(a) a Digital Elevation Model (DEM) derived from the national 1.6 m resolution airborne LiDAR data
and (b) terrain attributes derived from the DEM using ArcGIS [31] or SAGAGIS [36]. The different
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terrain attributes were as follows: slope gradient, MRVBF (an indicator of depositional areas to
identify valley bottoms), SAGAWI (a topographic wetness index calculated from the slope gradient
and modified catchment area), profile curvature (curvature parallel to the maximum slope) and plan
curvature (curvature perpendicular to the maximum slope) and the sine and cosine of the surface
aspect (see Figure 3 for examples). Depending on the topography and peat formation, different terrain
attributes can display different prediction capacities [13].

Figure 3. Examples of environmental covariates tested for the prediction of peat thickness: (a) Digital
Elevation Model (DEM), (b) slope gradient, (c) Multi-Resolution Index of Valley Bottom Flatness
(MRVBF), and (d) System of Automated Geoscientific Analyses Wetness Index (SAGAWI).

2.6. Predictive Modelling of Peat Thickness

Linear regression (LR) was used in order to predict peat thickness from the raw ECa measured
by the different coils of the DUALEM-421S (i.e., single-coil predictions) and also from the σ estimates
calculated using quasi-3D inversion models. Multiple linear regressions (MLR) enabled the prediction
of peat thickness from different combinations of ECa (i.e., multiple-coil predictions) and of ECa and
environmental covariates (i.e., elevation and derived terrain attributes). Leave-one-out cross validation
(LOOCV) enabled the assessment of the performance of LR and MLR models for the calibration
and prediction of peat thickness. The metrics used were the coefficient of determination (R2), root
mean square error (RMSE) and Lin’s concordance correlation coefficient (CCC). In the present study,
all maps were generated at a 1.6 m spatial resolution with UTM zone 32N, ETRS 1989 as the projected
coordinate system.

3. Results and Discussion

3.1. Preliminary Analysis of ECa Data

Table 1 shows the summary statistics for ECa measured by the DUALEM-421S for the whole
survey area and at the soil observation sites. As expected in a typical fen [12], ECa values were relatively
low, ranging from 1.6 to 65.9 mS/m when considering all the coil arrays (Table 1). Considering the
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mean and maximal values, ECa generally increased with the theoretical DOE of the measuring coil
configurations. On average, 4mPRP and 4mHCP coil configurations (27.1 and 25.6 mS/m, respectively)
were higher than 2mPRP and 2mHCP (23.7 and 24.7 mS/m, respectively), followed by 1mPRP and
1mHCP (17.1 and 20.9 mS/m, respectively).

The summary statistics of the ECa values for the 110 soil observation sites were slightly lower
compared to the entirety of the survey data. This was mainly because we had relatively few soil
observations in areas in which thick peat layers were expected. Nevertheless, as the sampling was
done with consideration to the coverage of the areas representing ECa variability from low to high,
the soil observations can be approximated to provide a relatively accurate representation of the
survey data.

Table 1. Summary statistics for the apparent electrical conductivity (ECa—mS/m) measured by a
DUALEM-421S for the whole survey area and at the soil observation sites.

ECa (mS/m)

Data Source n Min. Mean Median Max. Skewness CV (%)

Survey data
1mPRP 48,150 3.7 17.1 17.5 43.6 0.17 37.4
1mHCP 48,150 1.6 20.9 21.8 56.4 0.09 47.8
2mPRP 48,150 5.1 23.7 24.5 58 0.07 39
2mHCP 48,150 4.3 24.7 25.5 62.6 0.14 45.9
4mPRP 48,150 6.2 27.1 28.1 65.9 0.12 41.4
4mHCP 48,150 8.1 25.6 25.1 60.8 0.29 41.6

Soil observation sites
1mPRP 110 2.5 14.1 13.4 39.2 0.47 52.4
1mHCP 110 0.6 15.5 14.3 47.2 0.46 68.7
2mPRP 110 4.2 18.9 17.9 53.7 0.54 54.5
2mHCP 110 4.2 18.2 16.1 50.1 0.59 61.2
4mPRP 110 6.1 20.8 19 56.5 0.60 55.3
4mHCP 110 7.1 19.4 16.2 44.3 0.76 48.5

n: number of measurements/observations; Min.: minimum; Max.: maximum; CV: coefficient of variation;
PRP: perpendicular coplanar coil array; HCP: horizontal coplanar coil array.

3.2. Spatial Distribution of Peat Thickness and ECa

Figure 4 represents the peat thickness measured at the soil observation sites. It shows that the peat
thickness mainly decreases from north to south over the study area. The maximal value of 730 cm was
measured in the northwest corner of the study area, while minimal values, close to zero, were recorded
in the southeast border area (Table 2). In general, relatively large peat thicknesses (i.e., >250 cm) were
observed to the northern half of the study area, while small peat thicknesses (i.e., <250 cm) to no peat
layer were observed in the southern half.

A preliminary map representing ECa (Figure 5) was generated using ordinary kriging within
ArcMap [39]. The interpolated ECa contour plots (Figure 5) all indicate the same general pattern with a
decrease from north to south over the study area. The maximal ECa values (>40 mS/m) were measured
in the northwest corner of the study area, while the minimal values (<10 mS/m) were recorded in the
southeast border area (Figure 5). Again, ECa values generally increased with the theoretical DOE of
the measuring coil configurations.
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Figure 4. Peat thickness (cm) measured at soil observation points and locations of cross-sections S1 and S2.

Table 2. Summary statistics for peat thickness at the soil observation sites.

Soil Observation Sites n Min. Mean Median Max. Skewness CV (%)

Peat thickness (cm) 110 3 230 210 730 0.91 89.7

n: number of measurements/observations; Min.: minimum; Max.: maximum; CV: coefficient of variation.

Figure 5. Contour plots of the interpolated apparent electrical conductivity (ECa—mS/m) collected
using the six different coils configurations of a DUALEM-421S instrument: (a) 1mPRP, (b) 1mHCP,
(c) 2mPRP, (d) 2mHCP, (e) 4mPRP and (f) 4mHCP.
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3.3. Direct Correlation between Peat Thickness and Predictor Variables

Table 3 shows the zero-order correlations (Pearson’s r correlation coefficient) of the different
predictor variables to the target variable. The ECa-based variables correlated best with peat thickness,
with r values ranging from 0.80 to 0.93. The DEM and σ-based predictor variables were also highly
correlated with peat thickness, with r values of −0.69 and a range from 0.70 to 0.72, respectively.
MRVBF and SAGAWI were moderately correlated (r values of 0.41 and 0.31, respectively), while the
remaining topography-based variables were not correlated significantly with the target variable
(r values ranging from −0.19 to 0.16). Subsequently, DEM and MRVBF were used to build the models
in combination with single or multiple-coil ECa measurements.

Table 3. Pearson’s r correlation coefficient between the target variable (i.e., peat thickness) and the ECa,
σ and topography-based predictor variables.

1mPRP 1mHCP 2mPRP 2mHCP 4mPRP 4mHCP

0.80 0.86 0.84 0.90 0.88 0.93

σ2-layered σ3-layered σ4-layered σblocky σsharp σsmooth

0.71 0.72 0.71 0.70 0.71 0.71

DEM slope MRVBF SAGAWI plan curv prof curv cos aps sin asp

−0.69 −0.19 0.41 0.31 −0.15 −0.04 0.16 −0.04

DEM: Digital Elevation Model; MRVBF: Multi-Resolution Index of Valley Bottom Flatness; SAGAWI: System
of Automated Geoscientific Analyses Wetness Index; prof curv: profile curvature; plan curv: plan curvature;
cos asp and sin asp: cosine and sine of aspect.

3.4. Predicting Peat Thickness with ECa Data from Single-Coil Configurations

Figure 6 shows the measured peat thickness versus the measured ECa collected using the six
different coil configurations of the DUALEM-421S instrument, including the corresponding LR
equations and R2. R2 values ranged between 0.63 and 0.86. The highest R2 (0.86) was recorded
for 4mHCP, while the lowest (0.63) was for 1mPRP. This finding is coherent as the peat thickness
ranged from 3 to 730 cm and was thus best represented by the 4mHCP coil configuration, which
presents the largest DOE (0–640 cm), in contrast to the 1mPRP coil configuration with the smallest
DOE (0–50 cm).

Figure 7 shows the measured peat thickness versus that predicted by the LR models for each coil
configuration including the LR equations and LOOCV performance metrics. From Figure 7, it is evident
that peat thickness is clearly underestimated for values larger than 500 cm, especially in the shallow
measuring channels (1mPRP, 2mPRP, and 1mHCP) due to their limited DOE. The underestimation
becomes less prominent with an increase in DOE, with the 4mHCP providing the most accurate
predictions for the larger (i.e., >500 cm) peat thicknesses. Table 4 summarizes the LOOCV performance
metrics (R2, RMSE, and CCC) for the different LR models. RMSE and CCC values ranged between 74
and 122 cm and 0.77 and 0.92, respectively. In accordance with the R2 variation previously described,
the lowest RMSE and highest CCC were found for 4mHCP, while the highest RMSE and lowest CCC
were recorded for 1mPRP. The RMSE variation represented about 7% of the measured peat thickness
range. CCC was ranked excellent (i.e., >0.75) for all predictions using the Fleiss interpretation [46].
In accordance with Altdorff et al. [32] (2016), we suggest that these particularly good prediction results
demonstrate the suitability of EMI surveys for soils with high variability.
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Figure 6. Measured peat thickness (cm) vs. measured apparent electrical conductivity (ECa—mS/m)
collected using the six different coil configurations of a DUALEM-421S instrument: (a) 1mPRP,
(b) 2mPRP, (c) 4mPRP, (d) 1mHCP, (e) 2mHCP and (f) 4mHCP (fitted regression line represented
on each plot).

Figure 7. Measured vs. predicted peat thickness (cm) using leave-one-out cross validation (LOOCV)
for ECa collected from the six different coil configurations of a DUALEM-421S instrument: (a) 1mPRP,
(b) 2mPRP, (c) 4mPRP, (d) 1mHCP, (e) 2mHCP and (f) 4mHCP (1:1 identity line represented on
each plot).
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Table 4. LOOCV performance metrics for models predicting peat thickness from single-coil ECa data
(LR), different combinations of ECa data (i.e., multiple-coil predictions) and environmental covariates
(MLR), and from the average σ calculated using different inversion models (LR).

R2 RMSE (cm) CCC

Single-coil ECa
1mPRP 0.63 103 0.84
1mHCP 0.74 122 0.77
2mPRP 0.70 89 0.89
2mHCP 0.81 111 0.82
4mPRP 0.78 74 0.92
4mHCP 0.86 94 0.87

Multiple-coil ECa
1m coils 0.80 90 0.88
2m coils 0.85 78 0.91
4m coils 0.87 73 0.92
PRP coils 0.85 78 0.91
HCP coils 0.87 72 0.92
All coils 0.87 72 0.92

Single-coil ECa + DEM
1mPRP + DEM 0.74 103 0.84
1mHCP + DEM 0.80 89 0.88
2mPRP + DEM 0.78 93 0.87
2mHCP + DEM 0.85 78 0.91
4mPRP + DEM 0.84 81 0.90
4mHCP + DEM 0.89 67 0.93

Multiple-coil ECa + DEM
1m coils + DEM 0.85 79 0.91
2m coils + DEM 0.88 70 0.93
4m coils + DEM 0.89 66 0.93
PRP coils + DEM 0.88 70 0.93
HCP coils + DEM 0.89 66 0.94
All coils + DEM 0.90 65 0.94

Single-coil ECa + DEM + MRVBF
1mPRP + DEM + MRVBF 0.74 102 0.85
1mHCP + DEM + MRVBF 0.81 88 0.89
2mPRP + DEM + MRVBF 0.79 93 0.87
2mHCP + DEM + MRVBF 0.85 78 0.91
4mPRP + DEM + MRVBF 0.84 81 0.90
4mHCP + DEM + MRVBF 0.89 67 0.93

Multiple-coil ECa + DEM + MRVBF
1m coils + DEM + MRVBF 0.85 79 0.91
2m coils + DEM + MRVBF 0.88 70 0.93
4m coils + DEM + MRVBF 0.89 66 0.93
PRP coils + DEM + MRVBF 0.88 70 0.93
HCP coils + DEM + MRVBF 0.89 66 0.94
All coils + DEM + MRVBF 0.90 65 0.94

Average σ
σ2-layered 0.50 142 0.67
σ3-layered 0.51 141 0.68
σ4-layered 0.51 141 0.67
σblocky 0.48 145 0.65
σsharp 0.50 143 0.66

σsmooth 0.50 143 0.66

R2: coefficient of determination; RMSE: root mean square error; CCC: Lin’s concordance correlation coefficient.



Remote Sens. 2020, 12, 2458 12 of 21

3.5. Predicting Peat Thickness with Combinations of ECa Data and Environmental Covariates

From Table 4, we can compare the results of all models predicting peat thickness. Multiple-coil
ECa MLR models yielded better predictions than single-coil ECa LR models: while R2 values were
comparable or higher, RMSE and CCC were consistently lower and higher, respectively. Moreover,
considering the MLR models built with different combinations of ECa data and environmental
covariates, the addition of elevation data (i.e., DEM) improved the single and multiple-coil predictions.
The R2 value did not increase drastically (with gains ranging from 0.02 to 0.11), which indicates that the
MLR models comprising the DEM explained between 2% and 11% more variation than the LR models.
While RMSE generally decreased (variation between −33 and +7 cm), CCC mostly increased (with a
variation between −0.02 and +0.11). However, the addition of other terrain attributes only provided
small improvements to some of the single-coil predictions and did not generate any upgrade for the
multiple-coil predictions. According to Nathans et al. [47] (2012), a predictor variable displaying no or
a very weak correlation to a target variable can still contribute significantly to a MLR model. Acting as
a noise suppressor, the predictor variable removes irrelevant variance from other predictors within the
regression [47]. In contrast to Altdorff et al. [32] (2016), the prediction accuracy was not impacted by
the use of additional topography-based variables, which did not act as noise suppressors in our study.
Table 4 displays the results obtained with the addition of MRVBF for illustration. Here, R2 and CCC
increased by 0.01 and RMSE decreased by 1 cm for only three different combinations.

Figure 8 shows the measured peat thickness versus that predicted by the models yielding the
best performances in the categories of single-coil or multiple-coil ECa models and their respective
combinations with the DEM (i.e., 4mHCP, all coils, 4mHCP plus DEM and all coils plus DEM). For these
selected models, R2 values ranged from 0.86 to 0.90, while RMSE values ranged from 65 to 94 cm.
In particular, the predictions were more accurate for the larger (i.e., >500 cm) peat thicknesses when
compared to the single-coil configurations. These results can be compared with previous DSM studies.
Using elevation and slope data, Holden and Connolly [2] (2011) and Parry et al. [3] (2012) obtained
lower R2 values ranging from 0.58 to 0.63 for the former and a value of 0.53 (with a RMSE of 14 cm)
for the latter. Similar to Altdorff et al. [32] (2016), Parry et al. [3] (2012) suggested that the predictions
were worsened in the case of shallow peat and a lesser variation in peat thickness. Several studies
by Rudiyanto et al. [4,6,8] reported predictions with similar performances. Using LR or an empirical
peat thickness model with elevation data, Rudiyanto et al. [4] (2015) obtained R2 values of 0.90 and
0.93 and RMSE values of 69 and 58 cm, respectively. A study by Rudiyanto et al. [6] (2016) compared
four machine learning algorithms (i.e., cubist, random forest, quantile regression forest and artificial
neural networks) using several environmental covariates (i.e., elevation, slope, aspect, SAGAWI and
nearest distance to river). The best models yielded R2 values ranging from 0.67 to 0.92 and RMSE
values ranging from 60 to 110 cm. Finally, Rudiyanto et al. [8] (2018) compared an array of machine
learning algorithms (e.g., partial least squares regression, cubist, random forest, quantile regression
forest, artificial neural networks and support vector machines) using many environmental covariates
(i.e., DEM and derived terrain attributes, Euclidean distances to water bodies and radar and optical
satellite images). The best models demonstrated better performance for calibration data (R2 from 0.95
to 0.99, and RMSE from 28 to 110 cm) than for validation data (with all models presenting similar
mean values of R2 and RMSE of 0.6 and 250 cm, respectively). Notably, the predictions of these studies
were carried out on larger study areas (ranging from 1000 to 100,000 ha).
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Figure 8. Measured vs. predicted peat thickness (cm) using (a) 4mHCP, (b) the combination of all six
coils, (c) the combination of 4mHCP and DEM and (d) the combination of all six coils and DEM (1:1
identity line represented on each plot).

3.6. Predicting Peat Thickness from Average σ Calculated Using a Quasi-3D Inversion Algorithm

For each soil observation site, we calculated the average value from the σ estimates for the range
corresponding to the peat thickness measured at the specific point. For instance, for the soil observation
site with the maximum measured thickness of 730 cm, we calculated the average value from 15 σ

estimates derived for each 50 cm layer corresponding to the depth interval from 0 down to 750 cm.
Table 4 summarizes the LOOCV performance metrics for the LR models between peat thickness and
the different average σ estimates. The three metrics were similar for the six different inversion models.
In comparison with the predictions obtained from single-coil ECa, σ-based predictions were poorer
for all metrics: R2 and CCC values were lower (ranging between 0.48 and 0.51, and 0.65 and 0.68,
respectively) while RMSE values were higher (ranging between 141 and 145 cm). R2 values indicate
that the σ-based models explain between 12% and 38% less variation, and CCC values were ranked
as fair to good [46]. Altdorff et al. [32] (2016) reported that inversion did not provide substantial
estimates of peat thickness. However, they associated these weak results to the narrow range of
peat thickness in their study area, among others, which is not the case in the present investigation.
While σ represents the true electrical conductivity estimated at different depth intervals for a specific
location, the peat thickness corresponds to a sole measurement at a precise location. It is therefore
difficult to predict peat thickness directly from σ estimates. We attempted to avoid this pitfall by
calculating the average σ separately for each soil observation site; unfortunately, this still resulted in
poor predictions in comparison with the predictions made directly from ECa. One explanation lies in
the DOI. Figure 9 shows the DOI for σsmooth, which provided the lowest total residual of 0.88 out of
all models: two-layered (1.73), three-layered (1.43), four-layered (1.20), blocky (0.91) and sharp (0.98).
The smooth model was selected for illustration as it requires the least strict assumptions regarding the
subsurface architecture and provides reasonable σ estimates in most cases. From Figure 9, areas with
expected peat layers located in the northern half of the study area presented a shallow DOI (generally
smaller than 400 cm, which is the average DOI value considering the whole study area). These shallow
DOIs could explain the poor predictions for areas with peat layers thicker than 400 cm.
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Figure 9. Depth of investigation (DOI) for the calculated true electrical conductivity (σsmooth) estimates
over the study area.

Although the inversions yielded poorer predictions, they can be advantageous to understand the
conductivity distribution with depth. This is particularly important as the electrical conductivity of
peat is highly dependent on the water content [10–12]. After inverting the data, we have derived the
distribution of σsmooth estimates at the 110 observation points (Figure 10) to determine if there was
a contrast between the peat and underlying layers. We observed that the transition is more gradual;
however, overall, it can be deduced that the peat presents a conductive overburden on resistive
sandy soils.

Figure 10. Distribution of the calculated average true electrical conductivity (σsmooth) estimates over
the study area for peat and the underlying layers.

Two cross-sections (i.e., S1 and S2, represented in Figure 4) showing the calculated σsmooth
estimates are used for further interpretation (Figure 11). S1 is approximately oriented in the west–east
direction and S2 in the north-.south direction (Figure 4). S1 is located in the northern half of the study
area; accordingly, the soil observation sites along this cross-section mostly present relatively large peat
thicknesses (i.e., >250 cm). Along S1 (Figure 11a), the correlations between σ and peat thickness were
not evident. For example, large peat thicknesses occur to the eastern side (i.e., 170–290 m in the profile)
even though σ values were low (i.e., <25 mS/m) in the topsoil (i.e., 0–2 m). Likewise, the σ values were
generally high to the western side (i.e., 0–90 m in the profile) where the observed peat thicknesses
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were small. Interestingly, the expected relationship (i.e., high σ at large peat thickness locations) was
only observed at the center of the profile (i.e., within 100–160 m). These σ variations could result
from variations in water content or cation exchange capacity within the soil, which are associated
with peat properties such as bulk density, SOC content and degree of decomposition [32]. However,
the expected patterns were evidently observed along S2—a cross-section along which high variability
in peat thicknesses was observed (Figure 4). Along S2 (Figure 11b), the section to the northern side
showed higher σ values where relatively large peat thicknesses (i.e., >250 cm) occur, in comparison to
the southern side with shallow or no peat. In both cross-sections, it can be seen that the DOI does not
reach the bottom of peat layers at the locations where the σ values were high, thereby limiting our
capability for interpretation.

Figure 11. Cross-sections S1 (a) and S2 (b) showing the calculated σsmooth estimates (for each soil
observation site, peat layers are represented in red and underlying layers in green).
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3.7. Predictive Maps for Peat Thickness

Predictive maps for peat thickness were generated using ordinary kriging within ArcMap [39].
Figure 12 displays the interpolated contour plots for peat thickness predicted by the single-coil ECa

LR models. All six predictive maps show the same general pattern with a decrease of peat thickness
from north to south over the study area, which is consistent with Figure 4. The main variation is in the
size of the area, with a predicted peat thickness larger than 500 cm in the northern part of the study
area. This area increases with the theoretical DOE of the measuring coil arrays. Figure 13 presents
the predictions from the four best models selected previously (i.e., 4mHCP, all coils, 4mHCP plus
DEM and all coils plus DEM). These four models show the same general patterns, with the only clear
variation being the extent of the predicted areas with the largest and smallest peat thicknesses in the
northern and southern parts of the study area, respectively.

Figure 12. Contour plots of the interpolated peat thickness (cm) predicted from the apparent electrical
conductivity (ECa—mS/m) collected using the six different coil configurations of a DUALEM-421S
instrument: (a) 1mPRP, (b) 1mHCP, (c) 2mPRP, (d) 2mHCP, (e) 4mPRP and (f) 4mHCP .

3.8. Uncertainty Assessment

Figure 14 shows the 95% confidence interval (CI) for each selected model over the study area.
The northwestern part of the study area presents both the largest predicted peat thickness values and
the largest CIs in all four models. The large CIs in this particular area can be explained by (a) a relative
under-sampling in comparison with the middle/southern areas (Figure 1); (b) the limitation due to the
DOE for 4mHCP (i.e., 0 to 640 cm) when the largest peat thickness recorded in the area was 730 cm
and (c) the fact that the DUALEM-421S could not be used to survey two small areas covered by overly
dense vegetation resulting from the former plot experiment (Figure 2). The other area with large CIs in
three models (i.e., 4mHCP plus DEM, all coils and all coils plus DEM) is located in the southwestern
part of the study area and presents small predicted peat thickness values (Figure 13b–d). The large CIs
in this specific area can be attributed to the lack of soil observations (Figure 1). Notably, the CIs for peat
thickness predictions are much smaller for 4mHCP and 4mHCP plus DEM models (Figure 14a,c) than
for all coils and all coils plus DEM models (Figure 14b,d). These results suggest that the single-coil
predictions, using 4mHCP with or without the DEM as an additional predictor, provided the most
reliable results (i.e., high accuracy and low uncertainty) in our case, which can be further used for
decision-making; for example, in the case of peatland restoration.
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Figure 13. Contour plots of the interpolated peat thickness (cm) predicted from (a) 4mHCP, (b) the
combination of all six coils, (c) the combination of 4mHCP and the DEM and (d) the combination of all
six coils and the DEM.

Figure 14. Plots of 95% confidence intervals for the peat thickness (cm) predicted from (a) 4mHCP,
(b) the combination of all six coils, (c) the combination of 4mHCP and the DEM and (d) the combination
of all six coils and the DEM.



Remote Sens. 2020, 12, 2458 18 of 21

4. Conclusions

The present case study demonstrated that data collected with a single-frequency multi-receiver
electromagnetic induction (EMI) instrument enabled the non-invasive and reliable prediction of peat
thickness over a 10 ha field. The results indicated that raw ECa data can already constitute valuable
predictors for peat thickness (i.e., within single-coil predictions). The use of σ estimates calculated from
quasi-3D inversion resulted in poor predictions for this case study. This outcome can be explained by
the shallow depths of investigation obtained in areas with thick peat layers after the inversion of the
ECa measurements. Peat thickness could also be predicted with multiple linear regression based on the
combination of ECa data (i.e., multiple-coil predictions), and further with the addition of environmental
covariates (i.e., elevation and different derived terrain attributes). While multiple-coil predictions
and the addition of elevation data generally provided slightly higher accuracies than single-coil
predictions, their corresponding uncertainty estimates calculated from 95% confidence intervals were
larger. Therefore, we suggest that for our case study, the single-coil predictions—in particular using
4mHCP with or without elevation as an additional predictor—provided the most reliable results
(i.e., high accuracy and low uncertainty) for use in decision-making; for example, in the case of
peatland restoration. Notably, the significant results obtained in this study can be explained by
the high variability in peat thickness of the selected field area. Finally, this study demonstrates the
considerable potential of EMI data for use in peat thickness mapping.

A future development of the present study will aim at the intensive investigation of the spatial
variability of different key peat soil properties, such as soil organic carbon content, bulk density and
soil organic carbon stock. This subsequent study would greatly benefit from inversion modeling
and the use of an EMI instrument which can reach a larger DOI over the whole field, yielding more
detailed information on the peat and underlying layers. To achieve this, a comprehensive soil sampling
procedure guided by a more appropriate soil sampling design (for example, from a conditioned
Latin hypercube sampling approach; the procedure in [48] can be adopted to measure different soil
properties at consistent depth intervals). Furthermore, this study can greatly benefit from the use of a
combination of complementary techniques such as visible near-infrared (vis–NIR) spectroscopy for a
more accurate representation of peat and the underlying layers. Fusing EMI and vis–NIR data will
allow the SOC content to be mapped at different depths and enable the further assessment of the SOC
stocks over the study area.
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