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Abstract: Natural disasters such as flooding can severely affect human life and property. To provide
rescue through an emergency response team, we need an accurate flooding assessment of the
affected area after the event. Traditionally, it requires a lot of human resources to obtain an accurate
estimation of a flooded area. In this paper, we compared several traditional machine-learning
approaches for flood detection including multi-layer perceptron (MLP), support vector machine
(SVM), deep convolutional neural network (DCNN) with recent domain adaptation-based approaches,
based on a multi-modal and multi-temporal image dataset. Specifically, we used SPOT-5 and RADAR
images from the flood event that occurred in November 2000 in Gloucester, UK. Experimental results
show that the domain adaptation-based approach, semi-supervised domain adaptation (SSDA) with
20 labeled data samples, achieved slightly better values of the area under the precision-recall (PR)
curve (AUC) of 0.9173 and F1 score of 0.8846 than those by traditional machine approaches. However,
SSDA required much less labor for ground-truth labeling and should be recommended in practice.
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1. Introduction

Flooding is one of the most severe forms of natural disasters. It affected all over the world and
caused millions of human deaths [1,2]. Flooding is the second deadliest natural disaster in the United
States and hurricanes Katrina, Mathews, Florence and Sandy caused severe property damages and
thousands of lives were lost [3]. To mitigate the damage of flooding, an early accurate estimation of
the flooded area is a necessary step for a rescue team to help the people in the affected area.

Throughout the years, researchers developed automatic methods to monitor flood events using
remote sensing data. Automatic methods are quick, cost-effective, and monitoring from distance as
compared to traditional methods, which require labor, in-person visit and longer processing time.
In remote sensing domain, wide range of sensors are available. Some provide better spatial resolutions
and others provide more frequent temporal revisit. Remote sensing-based flood-detection methods
can be divided into two categories: optical and radar sensor. Optical data such as WorldView2 [4],
Landsat [5–7], Spot-5 [8], sentinel [9], Moderate-Resolution Imaging Spectroradiometer (MODIS) [7,10]
and RADAR [8,11–13] had been explored for flood detection. In the meanwhile, machine-learning
algorithms including decision tree algorithm [4,14], SVM [6,8], MLP [8] had been developed for
flood detection.

The data fusion technical committee (DFTC) of the IEEE Geo-Science and Remote Sensing Society
organized a contest to perform flood detection using a multi-temporal and multi-modal dataset in
2009 [8]. This dataset contains SPOT-5 satellite images and radar images from both the pre- and
post-flooding event occurred in 2000 in Gloucester, UK. In the contest, traditional machine-learning
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methods including SVM and MLP were winners in the supervised flood-detection scenario. The SVM
model used the SPOT-5 satellite images combined with four derived morphological channels from
the near infrared (NIR) channel in the original data for flood detection. The MLP model used both
the SPOT-5 satellite and radar images. Both the MLP and SVM methods concatenated the pre- and
post-event flooding data in training and testing and the two models provided similar performance [8].
Liu et al. introduced a homogeneous pixel transformation algorithm [15] to detect flood using the
same DFTC dataset [8].

Deep Learning is a subset of machine-learning techniques. We called the machine-learning model
as a deep learning model when we use multiple layers of neural network. Deep learning model has
been used in wide range of applications including computer vision [16–18], speech-based medical
diagnosis [19,20], cybersecurity [21,22], medical disease diagnosis [19,23], remote sensing [17,24,25]
domains. To train a deep learning model from a scratch, we usually need a lot of labeled data because
deep learning models contain a large number of trainable parameters. This usually posts a challenge
in practice because it is not always possible to collect sufficient labeled data for training. To solve this
problem, one possible solution is to fine-tune a pre-trained model with limited available labeled data.
Examples can be found in biomedical application [26], facial expression recognition [27] and plant
recognition [28].

Flood detection attracted significant amount of attention after the competition and new datasets
and deep learning algorithms had been developed for this purpose. Deep learning algorithms such as
deep neural network [29], deep convolutional neural network (DCNN) [30,31] and fully convolutional
neural networks (F-CNNs) [32] with satellite images including Sentinel-2 [30], Planet [31], Landsat [32]
and Google Earth aerial imagery [29] have been used for flood detection. Unmanned aerial vehicles
(UAV) image data with VGG-based fully convolutional network (FCN-16s) was also developed for
flood detection [33].

Most of the flood-detection methods including the winners of the competition concatenated both
the pre- and post-event images for training [8]. For example, the ground-truth of region of interest
(ROI) in the competition were defined by examining both the pre- and post-event images and flood
and non-flooded regions were identified as ground-truth ROIs for training. However, it is not always
possible to obtain ground truth after the flood event in practice, making the developed methods
challenging to be applied in practice.

An alternative is to train a model using ROIs defined on pre-event images and directly apply
the trained model to post-event images for flood detection. However, models trained in one domain
usually cannot perform well in another domain if there are data distribution shifts between the two
domains, and there is a need to incorporate domain adaptation techniques to address the distribution
shift challenge. For example, if we train a classifier using the ground truths defined in pre-event
images and use the trained classifier directly to detect flood in post-event images, our experimental
results on the competition dataset showed that the performances dropped significantly.

To address this issue, researchers have developed many domain adaptation approaches among
which the generative adversarial network (GAN) [34]-based approaches have been very popular for
image classification and segmentation. Tzeng et al. used a GAN loss to mimic the target domain to
represent the source domain [35]. Motiian et al. used a Siamese architecture where they used a few
samples to adapt a model into different domain [36]. Our previous study used a semi-supervised
domain adaptation approach for seagrass detection and achieved better results in seagrass detection
as compared with other methods [18].

The motivation of this study is to perform a comparative study on the various domain adaptation
algorithms with those competition winners for flood detection on the competition dataset, and provide
useful practical suggestions for flood detection. Contributions of this paper are:

• We implemented domain adaptation methods and compared these methods with traditional
machine-learning algorithms for flood detection. To the best of our knowledge, we are the first to
implement a deep learning-based domain adaptation approach for flood detection.
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• Our experimental results showed that domain adaptation-based methods can achieve competitive
performance for flood detection and require much less labeled samples in the post-event images
for model fine-tuning.

• Our recommendation for the community is that domain adaptation methods require less labor
and are better tools for flood detection.

The paper is structured as follows: Section 2 describes data and experiment design.
Sections 3 and 4 present results and discussions, respectively, and Section 5 summarizes the paper.

2. Dataset and Experiment Design

2.1. Dataset

We used two heterogeneous satellite image sensors including SPOT-5 and a European Remote
Sensing 1 (ERS-1) SAR images as shown in Figure 1 from the competition [8]. The images were
captured from the flooding event occurred in November 2000 in Gloucester, UK. The SPOT-5 optical
sensor image contains three bands including Red, Green, and Near-inferred-1 and radar image only
contains the SAR channel. The green, red and near IR channels have spectral ranges of 0.50–0.60 µm,
0.61–0.68 µm, and 0.78–0.89 µm, respectively, with 20 m spatial resolution. The SAR image uses C-band,
5 GHZ frequency with linear VV polarization. The SAR images also use wave mode to collect the
temporal images with a spatial resolution of 10 m and a swath width of 5 km.

The pre-event and post-event images are shown in Figure 1. Two temporal images of SPOT-5 are
taken in September 2000 and November 2000 as shown in Figure 1a,c. The pre-event and post-event of
SAR images are taken in October 2000 and November 2000 as displayed in Figure 1b,d, respectively.
The original ground truth provided by the organizers were found to be inaccurate and we used the
updated ground truth [15] in our study as shown in Figure 2b. For the SAR image, we took a logarithm
operation on the pixel values and applied a de-speckle filtering process with a 7 × 7 window to
improve its resolution.

(a) Pre-event SPOT image (b) Pre-event SAR Image (c) Post-event SPOT Image (d) Post-event SAR Image

Figure 1. Multi-modal and multi-temporal Images taken in Gloucester, UK. Spot-5 images are displayed
using Green, Red and NiR Band.

2.2. Data Augmentation with Morphological Operation

Some winners of the competition augmented the data with morphological operation. For a fair
comparison, we also created four additional bands using morphological operation as described in [8].
We used opening by reconstruction (OR) operation on the NIR band with a circular structuring element
radius of 40 and 100. In addition, we implemented closing by reconstruction (CR) operation on the
images resulted from the last step with a circular structuring element radius of 60 and 90. In total,
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we created four additional bands based on the original images. The created four bands for the pre-event
and post-event image are shown in Figure 3.

(a) (b)

Figure 2. Ground Truth. (a) Selected ROIs in the pre-event image; (b) Updated flooding ground truth
in the post-event image [15].

(a) OR 40 (b) CR 60 (c) OR 100 (d) CR 90

(e) OR 40 (f) CR 60 (g) OR 100 (h) CR 90

Figure 3. Derived morphological bands based on the pre-event (1st row) and post-event (2nd row)
SPOT-5 image’s NIR band. CR: Closing by Reconstruction. OR: Opening by Reconstruction.
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2.3. Models for Comparison

2.3.1. Multi-Layer Perceptron (MLP)

Multi-layer Perceptron (MLP) is also known as feed-forward artificial neural network (ANN)
uses a perceptron algorithm to perform tasks. Geoffrey Hinton et al. introduced a back-propagation
algorithm [37] which made the MLP algorithm effective and widely popular among researchers.
The back-propagation algorithm adjusts the weights of the MLP model to minimize the difference
between the actual output and the desired output [37]. MLP usually uses three layers of network
to perform classification and regression tasks. MLP algorithm has been effectively used for flood
detection by the winners of the competition [8].

We re-implemented the MLP classifier that achieved the best performance in the data fusion
contest [8]. This model stacked the SPOT-5 and radar images from both the pre-event (t1) and
post-event (t2) for flood detection. The stacked data consists of 8 bands as [Xt1

R , Xt1
G , Xt1

NIR, Xt1
SAR, Xt2

R ,
Xt2

G , Xt2
NIR, Xt2

SAR]. The model was trained using the labeled regions of interest (ROIs) in both the t1

and t2 images and then was applied to the whole images for flood detection. The architecture of the
MLP model is shown in Figure 4.

Figure 4. Multi-layer Perceptron Architecture.

2.3.2. Support Vector Machine (SVM)

Support Vector Machine [38] is another popular machine-learning method which has been
widely used for classification and is considered to be a baseline for image classification. SVM finds
hyper-planes among data points as classification boundaries. Linear, polynomial, Gaussian radial
basis function, and Hyperbolic tangent kernel is generally used for SVM classification. LIBSVM [39] is
a popular implementation for SVM models.

We followed the same settings of another winner in the competition who used an SVM classifier
for flood detection [8]. This model used the four additional bands created by morphological operation
on the NIR band in the post-event’s SPOT image as described in Section 2.2, making the input
data 10 bands as [Xt1

R , Xt1
G , Xt1

NIR, Xt2
R , Xt2

G , Xt2
NIR, Xt2

NIROR40 , Xt2
NIROR100 , Xt2

NIRCR60 , Xt2
NIRCR90 ]. Similarly,

the model was trained using the labeled ROIs in both the t1 and t2 images and then was applied to the
whole images for flood detection.
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2.3.3. Source Only (SO)

To compare with the domain adaptation-based flood-detection methods, we treated the pre-event
images as source domain and the post-event as target domain. The SO method is the baseline model,
in which we trained a classifier (CNN/MLP/SVM) only using the ROIs labeled in the pre-event images.
We then directly applied the trained classifier to the post-event images for flood detection.

In source only models, we only used the pre-event image’s ROIs to learn the difference between
the flood and non-flood data without using any labeled and unlabeled data from the post-event images.
The CNN-SO model’s architecture is shown in Figure 5. Here, the DCNN model has two convolutional
layers and two fully connected layers. The convolutional layers use filters to search for task-specific
features in the images. If it finds similar features present in the images, the filters produce a high
agreement. Initially, the filters are random but after a few iterations, the filters are optimized to scan
task-specific features. After two convolutional layers, we used a fully connected layer as shown in
Figure 5. The fully connected layer works similarly to the MLP model. The last layer performs the
classification task and predicts the probability of being flood class or non-flood class.

Figure 5. Deep Convolutional Neural Network Architecture.

We stacked the images as [Xt1
R , Xt1

G , Xt1
NIR, Xt1

SAR, Xt1
NIROR40 , Xt1

NIROR100 , Xt1
NIRCR60 , Xt1

NIRCR90] for
training, and [Xt2

R , Xt2
G , Xt2

NIR, Xt2
SAR, Xt2

NIROR40 , Xt2
NIROR100 , Xt2

NIRCR60 , Xt2
NIRCR90] for flood detection. We

normalized the data between 0 to 1 in each band and used the labeled ROIs in the pre-event images
for training, no label information in the post-event images were used during training. All subsequent
methods described in Sections 2.3.4–2.3.7 used the same data composition.

2.3.4. Unsupervised Domain Adaptation (UDA)

Unsupervised domain adaptation based on generative adversarial network (GAN) [35] became
popular since GAN was created in 2014 [34], and we implemented the approach proposed for flood
detection. First, we trained a deep convolutional neural network (DCNN) model in the source domain
using all the labeled ROIs. After the training, the DCNN model learned the source embedding function,
Gs and source classifier Cs for flood detection (Figure 6a). In the second step, we used the unlabeled
data from both the source and target domains to match the marginal distribution between the source
(P(GS(Xs))) and the target domains (P(Gt(Xt))) based on the GAN loss (Figure 6b). The target
embedding was trained to represent the source embedding so that the classifier trained on the source
domain was used in the target domain for flood detection.

Let the source and target domain datasets to be denoted as Ds = {Xs,Ys} and Dt = {Xt},
respectively. First, we train a DCNN model using the labeled samples from the source domain
(Figure 6a),

Lc( fs) = E[l( fs(Xs), Ys)] (1)
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where fs is the DCNN model and E is the expectation function and l is any related loss functions.
fs can be divided into two function source embedding function, Gs and source classifier, Cs. We use
the trained source embedding function Gs to find an optimum target embedding function Gt using the
unlabeled data from both domains. We modify the target domain Gt using a GAN loss to match the
source domain embedding function Gs. The discriminator, D, in Figure 6b is trained using following
GAN loss,

LadvD (Xs, Xt, Gs, Gt) = Exs∼Xs [logD(Gs(xs))]− Ext∼Xt [log(1− D(Gt(xt)))] (2)

The target embedding function Gt uses the following generator loss to mimic the source domain,

MinGt LadvG (Xs, Xt, D) = −Ext∼Xt [logD(Gt(xt))] (3)

Using this feedback, the target embedding function Gt modifies its parameter so that the source
domain classifier can work on the target domain.

2.3.5. Semi-Supervised Domain Adaptation (SSDA)

We modified our previous work [18] for flood detection as shown in Figure 6. First, a DCNN
model was trained using the source domain labeled ROIs. After training, the source embedding
function was first adapted to target domain using UDA described in Section 2.3.4. Then, a few labeled
samples from the target domain were used to align the class-specific distribution between the source
and the target domain based on the semantic contrastive alignment and classification loss (CSA)
(Figure 6c). The CSA loss put the same class samples from different domains together and different
class samples from the different domains as far as possible (Figure 6d).

To reduce the classwise distribution shift between the source and target domain, we used a few
labeled samples from the target domain Dt = {Xt, Yt} with the classification and contrastive semantic
alignment loss (CCSA) [18,36]. The classification loss was defined as,

LC(G ◦ C) = E[l( f (X), Y)] (4)

The contrastive semantic alignment (CSA) loss consists of semantic alignment loss and class
separation loss,

LCSA(G) = LSA(Gt) + LCS(Gt) (5)

where LSA(Gt) is the semantic alignment loss and LCS(Gt) is the class separation loss. LSA(Gt) is
computed as,

LSA(Gt) =
Nc

∑
a=1

d(p(Gs(Xs
a)), p(Gt(Xt

a))) (6)

where Nc is the number of classes, Xs
a = Xs/{Y = a} and Xt

a = Xt/{Y = a} are conditional random
variables and d is a distance metric between source Xs

a and target Xt
a distributions.

We used the semantic alignment loss to map samples from the same class from source domain and
target as close as possible. We also used the following class separation loss to map samples carrying
different class labels from different domains as far as possible in the embedding space,

LCS(Gt) = ∑
a,b|a 6=b

k(p(Gs(Xs
a)), p(Gt(Xt

b))) (7)

where k denotes the similarity matrix. If the distributions of Xs
a and Xt

b are close to each other the
loss function puts a penalty to keep them separate. Figure 6d represents the working procedure of
the CSA loss. The semantic alignment, class separation and classification loss are represented as the
orange arrows, red dashed line and blue solid line, respectively. During testing, we used the trained
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target mapping function, Gt, to find the new representation. The overall classification and contrastive
semantic alignment loss becomes,

LCCSA(Gt) = LC(Gt ◦ Ct) + LSA(Gt) + LCS(Gt) (8)

(a) Source domain supervised DCNN model training

(b) Target domain embedding function learned using unsupervised adversarial domain adaptation

(c) Target domain supervised adaptation using CCSA loss

(d) Training and testing steps of CCSA loss using labeled samples

Figure 6. Semi-supervised domain adaptation (SSDA) method for flood detection.
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2.3.6. SVM, MLP and DCNN Fine-Tuned with 1, 3, 5, 10, and 20 Samples/Shots

First, we used the labeled ROIs in the pre-event images to train the classifiers (SVM/MLP/DCNN).
Then, we used 1, 3, 5, and 20 labeled samples from the post-event images to fine-tune the classifiers.
The fine-tuned classifiers were applied to classify the post-event images.

2.3.7. MLP and SVM with 20 Samples from Post-Event Images

We combined the ROIs in the pre-event images with 20 labeled samples from ROIs in the
post-event images to train the SVM and the MLP classifiers. After training, we used trained classifiers
for flood detection. In other domain adaptation methods, the pre-event image ROIs were used for
training and a few labeled samples from post-event images were used to adapt the trained model to
detect flood in target domain. This experiment was conducted to test if the sequential use of pre- and
post-event labeled samples can provide any advantage.

2.4. Evaluation Metrics

Our dataset contains much more non-flooded pixels than flooded ones and is highly imbalanced.
It was found that for binary imbalanced dataset, the precision-recall (PR) curve is a good performance
metric to assess effectiveness of different classification models [40,41]. The area under the PR
curve (AUC) is also computed as a performance metric. In addition, we apply 0.5 as threshold
to flood-detection probability maps to obtain the final detections, which are used to compute precision,
recall and F1 score metrics for different models as follows.

Precision =
# o f true f lood pixels detected

# o f total pixels detected
(9)

Recall =
# o f true f lood pixels detected
# o f total labeled f lood pixels

(10)

F1− score =
2 ∗ Precision ∗ Recall

Precision + Recall
(11)

2.5. Hyper-Parameter Determination

We selected a patch-size of 5× 5 in our experiments after considering the trade-off between
performance and computational time. In the SSDA method, 10,000 labeled samples from each class in
the source domain were randomly selected to pair with a few labeled samples in the target domain for
adaptation. For the embedding functions in source domain, Gs and target domain, Gt, we used two
convolutional layers followed by a flatten layer as embedding functions. The first layer had 25 filters
with a size of 2× 2× 8 and the second layer had 25 filters with a size of 4× 4× 20. All layers used the
ReLu activation function. Both classifiers, Cs and Ct in CNN models contained a fully connected layer
with 25 hidden units. The output layer had 2 units with SoftMax activation function for classification.
We trained the source CNN models for 200 epochs with a batch size of 128. We trained the UDA step
for 300 epochs and the SSDA step for 240 epochs in all experiments. We followed similar settings of
the competition [8] and used an SVM classifier from the scikit-learn library [42] with a linear kernel.
The SVM was implemented based on libsvm [39]. We use a grid search optimization technique to
optimize the SVM classifier’s parameters. We perform a grid search among linear and RBF kernels,
C parameters between 1 to 1000 and Gamma value between 1 × 10−3 and 1 × 10−4. Similarly, the MLP
classifier had two hidden layers with 40 hidden unites each.

3. Results

In Table 1, the classification performances of SVM source only (SO), MLP SO, and DCNN SO
methods are shown in the first three rows. The unsupervised domain adaptation results are shown in
the fourth row in Table 1. Row 5 to row 23 are results by 1-shot, 3-shot, 5-shot, 10-shot, and 20-shot
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from the post-event images with MLP fine-tuning (FT), SVM FT, DCNN FT, and Semi-supervised
domain adaptation (SSDA) approaches. The last two rows show results by the two winners: MLP [8]
and SVM [8] in the flood-detection competition.

Table 1. Performance comparison. Precision, Recall, and F-1 score are calculated using 0.5 as threshold,
and the area under the PR curve (AUC) values are computed on the OPP and MO-DS images. OPP:
Original predication probability. MO-DS: Morphological operation with a disk structure.

Methods
Recall Precision F1-Score PR-AUC

OPP MO-DS OPP MO-DS OPP MO-DS OPP MO-DS

SVM-SO 0.9761 0.9740 0.1950 0.2108 0.3251 0.3466 0.7904 0.8132
MLP-SO 0 0 0 0 NA NA 0.2032 0.2203
CNN-SO 0.8853 0.8571 0.3653 0.4201 0.5172 0.5638 0.7681 0.8070

UDA 0.8764 0.8554 0.8246 0.8754 0.8497 0.8652 0.8508 0.8833
MLP 20 shots 0.9007 0.8593 0.2017 0.2206 0.3295 0.3510 0.2460 0.2605

DCNN 1-shot FT 0.8076 0.7757 0.5683 0.6201 0.6671 0.6892 0.8281 0.8524
MLP 1-shot FT 0.9311 0.9279 0.4871 0.5305 0.6396 0.6751 0.7900 0.8617
SVM 1-shot FT 0.0723 0.0654 0.0115 0.0105 0.0199 0.0181 0.0485 0.0484

SSDA 1-shot 0.8407 0.8111 0.8623 0.8972 0.8513 0.8520 0.7155 0.8433

DCNN 3-shot FT 0.8699 0.8514 0.7772 0.8259 0.8209 0.8385 0.7783 0.8115
MLP 3-shot FT 0.9168 0.9118 0.6045 0.6539 0.7286 0.7616 0.8470 0.8829
SVM 3-shot FT 0.9092 0.9023 0.7182 0.7631 0.8025 0.8269 0.8780 0.8969

SSDA 3-shot 0.9341 0.9306 0.5409 0.5899 0.6851 0.7221 0.8906 0.9062

DCNN 5-shot FT 0.7934 0.7600 0.8975 0.9261 0.8422 0.8349 0.8349 0.8577
MLP 5-shot FT 0.8404 0.8199 0.8765 0.9055 0.8580 0.8605 0.8910 0.9064
SVM 5-shot FT 0.8792 0.8650 0.8244 0.8614 0.8509 0.8632 0.8797 0.8984

SSDA 5-shot 0.8493 0.8216 0.8989 0.9293 0.8734 0.8721 0.8209 0.8901

DCNN 10-shot FT 0.8349 0.8088 0.8635 0.9004 0.8490 0.8521 0.8163 0.8439
MLP 10-shot FT 0.8505 0.8313 0.8515 0.8862 0.8510 0.8578 0.8813 0.9019
SVM 10-shot FT 0.8720 0.8562 0.8460 0.8798 0.8588 0.8678 0.8820 0.8998

SSDA 10-shot 0.8750 0.8518 0.8515 0.9027 0.8631 0.8765 0.8506 0.9035

DCNN 20-shot FT 0.8812 0.8619 0.7472 0.8317 0.8087 0.8466 0.8663 0.8925
MLP 20-shot FT 0.8756 0.8502 0.7879 0.8465 0.8294 0.8484 0.8194 0.8966
SVM 20-shot FT 0.8901 0.8704 0.8012 0.8566 0.8433 0.8634 0.8532 0.8960

SSDA 20-shot 0.8831 0.8704 0.8681 0.8992 0.8755 0.8846 0.8669 0.9173

SVM [8] 0.9393 0.9333 0.6263 0.7126 0.7515 0.8082 0.8442 0.8727
MLP [8] 0.9406 0.9287 0.5472 0.7139 0.6919 0.8073 0.8567 0.8949

Original Predicted Probability (OPP) Results

Each method produced a flooding probability map and we computed Precision, Recall and
F1-score on the thresholded original maps for comparison, shown as ‘OPP’ in Table 1. We also
compare the PR-AUC values to evaluate the flood-detection performance of each method. The OPP
maps for different models are shown in Figure 7. We use a ‘jet’ color-map (Matlab) to show the
flood-detection probability for each method. Color blue represents the probability ‘0’ and color red
represents probability ‘1’. Also, we add a color-bar to display different probability values. The PR
curves for the last six flood-detection scenarios in Table 1 are shown in Figure 8a.
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(a) CNN-SO (b) MLP SO (c) SVM-SO (d) UDA

(e) SVM 1-shot FT (f) SVM 20-shot FT (g) MLP 1-shot FT (h) MLP 20-shot FT

(i) DCNN 1-shot FT (j) DCNN 20-shot FT (k) SSDA 1-shot (l) SSDA 20-shot

(m) SVM [8] (n) MLP [8]
Figure 7. Original predicted probability (OPP) maps. Blue represents the probability ‘0’ and Red
represents probability ‘1’.
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Figure 8. PR curves by different approaches on: (a) OPP map and (b) MO-DS map.

Results after Morphological Operation with Disk Structure on OPP (MO-DS)

To remove the false positive points from the OPP maps, we applied morphological operation on
the maps with a structuring element size of 5. The classification maps for different models are shown
in Figure 9 and performance metrics shown as ‘MO-DS’ are listed in Table 1. Similarly, we display the
probability maps using ‘jet’ colormaps where blue represents the probability ‘0’ whereas red represents
the probability of ‘1’. The PR curves for the last six flood-detection scenarios in Table 1 are shown in
Figure 8b.
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(a) CNN-SO (b) SVM-SO (c) MLP SO (d) UDA

(e) SVM 1-shot FT (f) SVM 20-shot FT (g) MLP 1-shot FT (h) MLP 20-shot FT

(i) DCNN 1-shot FT (j) DCNN 20-shot FT (k) SSDA 1-shot (l) SSDA 20-shot

(m) SVM [8] (n) MLP [8]
Figure 9. Output after morphological operation with disk structures (MO-DS) on the OPPs.
Blue represents the probability ‘0’ and Red represents probability ‘1’.



Remote Sens. 2020, 12, 2455 14 of 17

4. Discussions

First, we compare the source only models in Table 1. In this setting, the CNN-SO method achieved
the best F1 score of 0.5638 as compared with MLP-SO and SVM-SO (0.3466). For PR-AUC metric,
CNN-SO (0.8070) and SVM-SO (0.8132) showed similar outcomes. The MLP-SO method failed to
detect any flood samples in the post-event images. The UDA method, which used only unlabeled
samples from the target domain performed better than all the source only models. It achieved similar
results (F1 score of 0.8652 and PR-AUC of 0.8833) as compared to other few-shot methods which used
a few labeled samples from the post-event images. For this dataset, UDA performed superbly without
any labeled samples from target domain and the predicted flooding map is shown in Figure 9d. If we
compare the UDA performance with the ground truth shown in Figure 2b, we can see that UDA
produced very few false positives. The false positives were reduced by the post-processing step as
shown in Figure 7d (before) and in Figure 9d (after) the processing step.

Next, we compare the performance of the SSDA method with the SVM, MLP and DCNN models
with fine-tuning as described in Section 2.3.6. We can observe that all the methods performed similarly
except that the SVM 1 shot FT method failed the task with Recall below 1% (Table 1). The classification
prediction maps shown in Figures 7e and 9e justify the results where the flood regions show close to ‘0’
probabilities. In addition, SSDA methods are slightly better than the other three methods. In terms
of PR-AUC and F1 score, SSDA achieved the highest scores three times and four times, respectively,
as shown in the prediction maps (Figures 7 and 9). If we analyze the fine-tuning results by SVM,
MLP and DCNN in Figures 7 and 9, MLP and DCNN performed similarly where the SVM fine-tuning
with 1-shot was much worse. With 20 shots of labeled samples, SVM improved by a large margin as
shown in Figure 9f as compared with the 1-shot result shown in Figure 9e. In Table 1, all the methods
improved with increased number of shots. Please note that the improvements by all the methods from
10-shot to 20-shot are marginal. Therefore, we chose 20 labeled samples from the post-event images for
fine-tuning and all the fine-tuning methods produced stable performances in the post-event images.

Flooding map predicted by the SVM classifier [8] had many false positives as shown in Figure 7m.
After the morphological operation post-processing step, false positives were reduced by a large margin
as shown in Figure 9m. The competition winner, the MLP classifier [8], showed similar performances.
If we compare the PR-AUC metrics in Table 1, SSDA 20-shot achieved the best PR-AUC values after
post-processing whereas SSDA 3-shot achieved the best PR-AUC value in original predicted probability
map. After applying the morphological operation on the model predicted flood map in Figure 8a,
all approaches improved their detection performances as shown in Figure 8b. In Figure 8a,b, SSDA
20-shot achieved the best performances.

It is worth noting that both the SVM and MLP classifiers used 48,684 labeled samples from the pre-
and post-events images, respectively, for training. On the other hand, the domain adaptation method,
SSDA, only used the 48,684 labeled samples from the pre-event images for training, and a few labeled
samples in the post-event images for adaptation. Though the competition winner methods used more
samples for training, these methods performed slightly worse than the SSDA 20-shot approach (0.8727
(SVM) and 0.8949 (MLP) vs. 0.9173). In addition, the SVM and MLP models [8] had a high chance to fail
if the pre- and post-event images were not registered. The MLP and SVM with 20 samples described
in Section 2.3.7 performed poorly as compared with the other methods in Table 1. Our experiments
suggested that domain adaptation-based method, SSDA, is preferred for flood detection.

5. Conclusions

In this paper, we conducted a comparative study of various methods for flood detection
including SVM, MLP, deep CNN models and domain adaptation method combined with those
models. The comparison was conducted on the multi-temporal optical (Spot-5) and radar (SAR) sensor
image dataset used for the flood-detection competition organized by DFTC in 2009. We found that
all the compared methods performed similarly in flood detection, and the SSDA method, which is
a combination of deep CNN with a semi-supervised domain adaptation strategy, achieved slightly
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better performance using much less training samples as compared with the competition winner
methods. Our study suggests that the SSDA method is an effective algorithm for flood detection and it
is preferred in practice. In future work, we will apply domain adaptation methods to more datasets
across different locations to further validate our findings.
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