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Abstract: In this paper, precipitation estimates derived from the Italian ground radar network (IT GR)
are used in conjunction with Spinning Enhanced Visible and InfraRed Imager (SEVIRI) measurements
to develop an operational oriented algorithm (RAdar INfrared Blending algorithm for Operational
Weather monitoring (RAINBOW)) able to provide precipitation pattern and intensity. The algorithm
evaluates surface precipitation over five geographical boxes (in which the study area is divided).
It is composed of two main modules that exploit a second-degree polynomial relationship between
the SEVIRI brightness temperature at 10.8 µm TB10.8 and the precipitation rate estimates from IT
GR. These relationships are applied to each acquisition of SEVIRI in order to provide a surface
precipitation map. The results, based on a number of case studies, show good performance of
RAINBOW when it is compared with ground reference (precipitation rate map from interpolated rain
gauge measurements), with high Probability of Detection (POD) and low False Alarm Ratio (FAR)
values, especially for light to moderate precipitation range. At the same time, the mean error (ME)
values are about 0 mmh−1, while root mean square error (RMSE) is about 2 mmh−1, highlighting
a limited variability of the RAINBOW estimations. The precipitation retrievals from RAINBOW
have been also compared with the European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT) Satellite Application Facility on Support to Operational Hydrology and
Water Management (H SAF) official microwave (MW)/infrared (IR) combined product (P-IN-SEVIRI).
RAINBOW shows better performances than P-IN-SEVIRI, in terms of both detection and estimates of
precipitation fields when they are compared to the ground reference. RAINBOW has been designed as
an operational product, to provide complementary information to that of the national radar network
where the IT GR coverage is absent, or the quality (expressed in terms of Quality Index (QI)) of
the RAINBOW estimates is low. The aim of RAINBOW is to complement the radar and rain gauge
network supporting the operational precipitation monitoring.
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1. Introduction

Accurate precipitation measurements are essential for the validation of global climate models
and for understanding the natural variability of the earth’s climate. Moreover, rainfall monitoring can
serve as an important element for risk management of severe precipitation events.

Although the importance of quantitative determination of rainfall is well recognized, reliable
retrieval of precipitation is often difficult. First, precipitation represents one of the most difficult
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atmospheric variables to be accurately measured due to its high temporal and spatial variability.
Furthermore, the only instruments that guarantee direct measurements of precipitation are rain gauges
and disdrometers. Both types of instruments, although, have a quite high temporal resolution,
and provide point-like measurements, ensuring a low spatial resolution. On the other hand,
ground-based radars provide measurements of rainfall with a relatively high spatial and temporal
resolution. Although they represent a valuable source of information, they provide an indirect
measurement of precipitation. In addition, radar observations are affected by several uncertainty
sources, including miscalibration, ground clutter, beam blocking, attenuation, Wireless Local Area
Network (W-LAN) interferences [1–4].

Space-borne monitoring of clouds and precipitation all around the globe has been gaining growing
interest from the international scientific community as a primary contribution to the improvement
of global precipitation measurement and to the determination and detection of the global climatic
changes. Most of the space-borne monitoring systems take advantage of passive instrumentation,
(e.g. radiometers), using both infrared (IR) and microwave (MW) emissions to retrieve cloud properties
and precipitation estimation. However, it is difficult to establish an exact quantitative relationship
between surface rain rate and the cloud physical quantities (e.g., brightness temperatures) measured
by the various sensors [5–8]).

IR-based estimates of rainfall exploit the sensitivity of the IR measurements to the uppermost layers
of clouds, but the measured cloud-top brightness temperatures do not provide sufficient information
to retrieve the actual intensity of surface rainfall with high reliability. However, the relevance of
IR estimates lie in the wide coverage of the earth at relatively high spatial and temporal resolution
provided by geosynchronous satellites [9–13]), being IR sensors, mainly mounted on geostationary
(GEO) satellites (e.g., the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of Meteosat
Second Generation (MSG) and the Geostationary Operational Environmental Satellite (GOES) Imagers).

However, rainfall estimates based on IR and VIS measurements are constantly evolving thanks
also to the improved performance of the sensors. In this regard, it should be noted that the IR and
VIS based rainfall retrievals have obtained an important improvement by the exploitation of optical
and microphysical clouds parameters (e.g., optical thickness, particle radius), thanks to the higher
enhanced spectral resolution of the new generation of geostationary sensors (e.g., MSG SEVIRI and
GOES Imagers) [14–18]. In addition, the use of optical and microphysical cloud parameters, the use
of classification schemes of convective and stratiform precipitation areas has also contributed to
improving the accuracy of rainfall estimates [18,19]. Therefore, while the cloud-top temperature is a
primary reference to detect deep convection and precipitation, the use of microphysics parameters and
of the cloud classification schemes helps to solve the ambiguities in the retrieval and to identify more
accurately the rainy area at the ground [20]. It is also worth mentioning that the combined use of both
IR and VIS radiation to provide meteorological products supporting nowcasting activities has been
widely studied in the EUMETSAT program—Satellite Application Facilities on Support to Nowcasting
and Very Short Range Forecasting (NWC SAF) [20–22]. Furthermore, significant progresses are being
made in the field of hyperspectral IR detection and substantial impacts are expected on the Numerical
Weather Prediction (NWP) [23–25].

On the other hand, MW-based observations have the great advantage of providing a more
direct measurement of the precipitation due to the ability of MW radiation to penetrate precipitating
clouds and interact with its liquid and ice hydrometeors [26–30]). At the same time, they suffer of
the insufficient temporal frequency of Low Earth Orbit (LEO) satellite overpasses (which carry MW
instruments), with respect to the high variability of the precipitation in time and space.

To reduce the evidenced limitations and obtain satisfactory precipitation measurements in terms of
accuracy, spatial, and temporal resolution, researchers have increasingly moved to using combinations
of sensors. The joint use of MW and IR measurements has long been recognized as very effective as it
combines the accuracy of the instantaneous MW data and the repetition and coverage characteristics
of the IR geostationary measurements [12,31–34]).
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The higher number of LEO-GEO satellites orbiting around the globe has made available a
significant amount of precipitation estimates. The availability of these estimates are useful to build
accurate and reliable multi-satellite datasets. The goal is to provide products with the best short-range
estimates, called High Resolution Precipitation Products (HRPP). The Tropical Rainfall Measuring
Mission’s (TRMM) Multisatellite Precipitation Analysis (TMPA) was produced according to this
line, since it combines precipitation estimates from multiple satellites, as well as from rain gauges,
where feasible, to generate rainfall data [35,36].

The Climate Prediction Center morphing method (CMORPH) uses motion vectors from dynamic
GEO-IR images to fill the temporal gaps between two available Passive Microwave (PMW) rainfall
estimates [37]. The Japanese Global Precipitation Measurement (GPM) standard product Global
Satellite Mapping of Precipitation (GSMaP) is a PMW–IR precipitation product. The algorithm
integrates PMW data with infrared radiometer data to achieve high temporal and spatial resolution
global precipitation estimates [38]. The National Oceanic and Atmospheric Administration (NOAA)
Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm estimates rainfall at a
fine temporal resolution using PMW (SSM/I—-Special Sensor Microwave/Imager) and GEO (GOES)
satellites. It uses SSM/I data for rain/no-rain pixels classification, and then GOES data to calibrate the
relationship between brightness temperature and rain rate via linear regression for the precipitating
pixels [39,40]. The PERSIANN (Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks) algorithm of the Center for Hydrometeorology and Remote Sensing
(CHRS) is an adaptive, multi-platform precipitation estimation algorithm, based on an artificial neural
network approach. It merges high quality data from National Aeronautics and Space Administration
(NASA), National Oceanic and Atmospheric Administration (NOAA), and Defense Meteorological
Satellite Program (DMSP) low-altitude polar-orbit satellites with sampled data from geosynchronous
satellites [41–43]. The Integrated Multi-satellitE Retrievals for GPM (IMERG) is a merged precipitation
product developed by the US GPM science team. This algorithm is intended to produce fine time-
and space-scale estimates for the entire globe using inter-calibrated, merged, and interpolated data
from all available PMW satellites, together with microwave-calibrated infrared (IR) satellite estimates,
precipitation gauge analyses, and other precipitation estimators [44].

The combination of MW and IR measurements generally follows two main techniques—the so-called
“blended” or “microwave-calibrated” and “morphing”. The first one is based on a calibration of IR cloud
top temperatures measurements using the MW (namely Passive MW-PMW) precipitation estimates,
in order to generate local relationships between the IR and PMW observations [31,32,35,43,45–50]).
The derived relationships are then applied to the IR data, increasing the spatial and temporal extent
of the precipitation estimation with respect to the PMW overpasses. The “morphing” technique is
based on the evidence that IR data, locally updated using PMW-based rainfall measurements, can be
employed to measure cloud movement, propagating forward in time the rain field, between the
consecutive LEO PMW satellite overpasses [37,51–54]. Basically, this technique derives estimates of
precipitation from infrared data when passive microwave information is unavailable.

This paper describes an algorithm, named RAINBOW (RAdar INfrared Blending algorithm
for Operational Weather monitoring) combining the data collected by SEVIRI and by the Italian
ground-based radars network, coordinated by the Italian Department of Civil Protection (IT GR) to
provide precipitation estimation over Italy. The main objective of the algorithm is to provide rainfall
estimates from SEVIRI observations, by exploiting the portion of IT GR data with the highest quality.
The algorithm has been developed by using the “blended” approach taking using the Surface Rainfall
Intensity (SRI) composite product obtained by combining the measurements from all the radars of the
network. The Italian ground radar network represents a valuable monitoring system for the detection
and warning of severe weather and related hydro-geological risks. As a matter of fact, Italy, and more
generally the Mediterranean basin, is affected by severe weather events of different nature (e.g., deep
convective systems, cyclones, tropical-like cyclones, etc.) hitting coastal as well as inland areas, causing
serious damages and casualties [55–62]).
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The IT GR is also currently an important part of the ground reference system for the Precipitation
Product Validation Group of the EUMETSAT Satellite Application Facility for Support to Operational
Hydrology and Water Management project [63]. However, the spatial heterogeneity of the data quality,
related to orography and spatial coverage of the IT GR network, imposes the selection of the data to be
used for blending.

The RAINBOW algorithm presented in this paper has been developed within the agreement
between the Italian Department of Civil Protection and the Institute of Atmospheric Sciences and
Climate (ISAC) of the National Research Council of Italy (CNR). The concept is to design an operational
product to complement the radar monitoring of relevant precipitation events by covering both sea
areas (not covered by IT GR) and areas where the quality of IT GR data is lower due to limited coverage
and orographic obstruction. One of the request that has to be satisfied by RAINBOW is the as short as
possible running time in order to provide precipitation estimates as soon as the SEVIRI acquisition
is available.

This paper is organized as follows. Section 2 presents the instrumentation and methodology used
in the design of the algorithm. Section 3 reports the results obtained by the algorithm when it is applied
to selected case studies with the relative discussion. The conclusions are then reported in Section 4.

2. Instrumentation and Methods

Two-and-a-half years of data (from 1 July 2015 to 31 December 2017) collected by the IT GR network,
and by the SEVIRI radiometer, have been used to develop the RAINBOW algorithm. The algorithm
combines the SEVIRI brightness temperature and the precipitation rate estimated from the ground
radars (GRs) to derive a relationship between these two quantities to be applied to each SEVIRI
acquisition (i.e., every fifteen minutes). The area of interest is centered on the Italian peninsula, namely
between 36–48◦N and 6–20◦E.

2.1. IT GR Network

At the time of the work, the Italian ground radar (GR) network includes 20 C-band and 3
X-band radar, managed by 11 administrations. Moreover, 7 C-band and 3 X-band systems (all with
dual-polarization capability) are managed by the Department of Civil Protection (DPC), which is also
the developer and distributor of the national precipitation product. The spatial distribution of the IT
GR network with the associated Quality Index (QI) is depicted on Figure 1. The processing architecture
is basically composed of two main steps, where the radar measurements are first locally processed by a
unique software system, then all the products are centralized to generate the national level products.

There are different sources that can increase the uncertainty in the radar precipitation estimation [64].
The main errors can be identified by contamination by non-weather returns (clutter), partial beam
blocking, beam broadening at increasing distances, vertical variability of precipitation [32,65,66],
and rain path attenuation [1,67–69]. Due to the morphology of the Italian territory, the uncertainty
can be mainly associated to the orography-related effects, especially in southern Italy where the radar
coverage as well as the radar overlapping is poor [3,70]. Another error source is the Radio Local
Area Network (RLAN) interferences, which are properly dealt with and filtered out using an effective
algorithm based on a multi-parameter fuzzy logic approach that also make use of the Signal Quality
Index (SQI).
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The processing system aims at identifying most of the uncertainty sources in order to compensate
them, whenever it is possible, before estimating precipitation. As described in [71], the data quality
index results from the combination of the partial QIs associated to each identified error source.
A point-by-point description of the operational radar processing chain can be found in [72]. A sensitivity
analysis, previously conducted, compared hourly rain gauge and radar data for increasing QI values.
The results evidenced that the error (i.e., the difference between radar and rain gauges estimates) has
its minimum value for QI = 0.60. At higher QI values, the error increased because of the presence of
outliers together to a marked decrease of the sample size [72]. Following this analysis, only QI values
equal or greater than 0.60 are considered reliable and are used within RAINBOW algorithm.

Furthermore, a filtering process is applied to the GR data by comparing them with the data
collected by the Italian rain gauges network. The radar data showing marked differences with respect
to the rain gauges measurements are discarded. The analysis is based on the ratio between the
rain gauges and ground radars hourly cumulated data. Namely, the GR data are discarded if the
ratio is less than 0.1, being this value chosen because it is much smaller than the average value
that the ratio assumes close to the location of a calibrated polarimetric weather radar [73]. At the
end of this operational process chain, the Surface Rainfall Intensity (SRI) product is provided over
a 1 × 1 km2 grid with a temporal resolution of 10 min. The SRI is obtained taking into account the
orography (and the clutter associated), the technical characteristics of the radar (e.g., the various
elevation angles and the scanning time frequency, the correction of the partial beam blocking [74,75].
In particular, the single-site SRI is estimated considered the whole radar volume in polar coordinates,
then the national composite is computed in Cartesian coordinates. For a given geographical location,
the single site SRI is retrieved combining the radar observations at all elevation scans θk, through a
quality-weighted average [71,75,76]. Finally, the national SRI composite is built by combining the
single-radar rainfall maps through a quality-weighted approach. In case in a given geographical
location two or more radar SRI estimates are available, the one with the highest quality weights more.
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2.2. SEVIRI Radiometer

The Spinning Enhanced Visible and InfraRed Imager (SEVIRI) radiometer [77] is the main
instrument onboard of Meteosat Second Generation (MSG). The MSG is a geostationary satellite located
at about 36,000 km above the Earth surface at 0◦N, 0◦E. SEVIRI is a passive microwave instrument
collecting radiation from a target area and focusing it on detectors sensitive to 12 different bands of the
electromagnetic spectrum. The twelve channels are distributed among visible part of electromagnetic
spectrum (channels VIS 0.6 µm and VIS 0.8 µm), near-infrared (channel NIR 1.6 µm), infrared (channels
IR 3.9 to IR 13.4 µm—for a total of eight channels) and High Resolution Visible (channel HRV 0.75 µm).
The SEVIRI nominal time resolution is 15 min, of which twelve minutes are allocated to collect images,
while the remaining three minutes are used for calibration, retrace, and stabilization. The SEVIRI spatial
resolutions ranges from 1 km for the HRV channel to 3 km for VIS-NIR-IR channels at sub-satellite
point (i.e., at 0◦N, 0◦E). The spatial resolution decreases moving away from the sub-satellite point
(e.g., over the study area, the Italian peninsula, it is around 4 km for the VIS-NIR-IR channels).

SEVIRI measures the radiation emitted by a target located along the radiometer field of view
(i.e., the total radiation emitted by clouds). Depending on the considered channel, the amount of
measured radiation is representative of different cloud characteristics. While the measurement in
the VIS channels gives an indication about the optical depth of the cloud, the measurement in the IR
channels are generally indicative of different cloud properties. In this study, we focused only on three
IR channels, namely channels 5, 6, and 9. Channels 5 and 6 are centered in the emission spectrum of
the water vapor (WV) at wavelengths at 6.25 and 7.35 µm, respectively, giving an indication about the
cloud optical depth other than to determine the water vapor distribution in two distinct layers of the
atmosphere. The IR 10.8 µm channel provides continuous observation of the cloud top temperature.
For these channels, the final output of SEVIRI is the brightness temperature (TB) that is defined as the
temperature of a black body, which emits the same amount of radiation as observed.

2.3. P-IN-SEVIRI

P-IN-SEVIRI is a precipitation product developed in the Satellite Application Facility on Support
to Operational Hydrology and Water Management (H SAF) project [78], providing instantaneous
precipitation rate at spatial and temporal SEVIRI resolution. It is provided by EUMETSAT, and it is
based on an underlying collection of time and space overlapping overpasses from SEVIRI IR imagers
and surface rain rate estimates (through the use of algorithms based on Low Earth Orbit-Passive
Microwave (LEO PMW) radiometers), which constitutes a look up table of geo-located relationships
between rain rate and TB at 10.8 µm, updated as soon as new overlapping SEVIRI IR and LEO
PMW overpasses are available. The processing method is called “Rapid Update” (RU) blending
technique [79].

As new input datasets (MW and IR) are available in the processing chain, the MW-derived rain rat
(RR) pixels are paired with their time and space-coincident geostationary 10.8 µm IR TB data, using a
10-min maximum allowed time offset between the pixel acquisition times and a maximum space offset
of 10 km between the pixel coordinates. Each co-located data increments the histograms of TB and RR
within a latitude-longitude box 2.5◦ wide (i.e., a 2.5◦ × 2.5◦ box), as well as the eight surrounding boxes
(this overlap ensures a fairly smooth transition in the histogram shape between neighboring boxes).
The rationale behind these threshold values for time collocation and box size is discussed by [80].

In order to set-up a meaningful statistical ensemble, the method can look at older MW-IR slot
intersections (no older than 24 h), until a certain (75%) box coverage is reached and a minimum number
of coincident observations are gathered for a 2.5◦ × 2.5◦ region (at present 400 points, this is a tunable
parameter in the procedure). Thus, the RU technique requires an initial start-up time period (~24 h),
to allow for establishing meaningful, initial relationships all over the considered area.

As soon as a box is refreshed with new data, a probabilistic histogram matching relationship is
updated using the MW RR and IR TB probability distribution functions (PDF), and an updated lookup
table (histogram file) is created.
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2.4. GRISO

The Random Generator of Spatial Interpolation from uncertain Observations (GRISO) [81,82]
is an improved kriging-like technique implemented by the International Centre on Environmental
Monitoring (CIMA Research Foundation) to provide rainfall rate estimates. As input, GRISO uses the
data from the Italian rain gauge network composed by roughly 3000 tipping bucket gauges (the number
can change because of new instrument installation or malfunctioning of the available ones). While, in
general, the rain gauge temporal sampling can change, instrument-by-instrument, ranging between 1 to
60 min (the minimum sampling time for Italian rain gauges is set to 15 min), the minimum detectable
rain amount is equal to 0.2 mm. The GRISO technique preserves the rainfall rate values measured at
the gauge location, allowing for a dynamical definition of the covariance structure associated with each
rain gauge by the interpolation procedure. Each correlation structure depends both on the rain gauge
location and on the accumulation time considered. Furthermore, GRISO is adopted in the H SAF
validation procedure in comparison with European ground data [63] and respect to Dual-frequency
Precipitation Radar (DPR) precipitation product [72]. The GRISO data available are provided over a
regular grid (1 km × 1 km) with an hourly time step.

2.5. Parallax Correction

As highlighted in Sections 2.1 and 2.2, IT GR has higher spatial resolution than SEVIRI (i.e., 1 km
versus to 4 km). The first step to correctly match ground-based radar and satellite observation is the
upscale of the IT GR data to the SEVIRI resolution. Preliminarily, it has to be highlighted that satellite
observations of the top surface of clouds is affected by the parallax effect (parallax error), which results
in a dislocation of the ground mapped position. The parallax error is a function of three factors that is
latitude, longitude, and height of the cloud other than the radius of Earth. While latitude and longitude
of the cloud and radius of Earth are known, the height of the cloud has to be determined.

To this end, the TB measured by SEVIRI channel 9 (TB10.8) is matched with the vertical profiles of
temperature provided by European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis
(ERA-Interim) data [83–85]. The ERA-Interim data are provided on the same grid of SEVIRI over 37 not
equi-spaced pressure levels (from 10 to 1000 hPa corresponding to altitudes ranging from 0 to 16 km about
with spatial resolution between 240 and 1400 m about) with a time resolution of six hours (i.e., four runs
of the model per day). For each SEVIRI instantaneous field of view (IFOV), the TB10.8 is compared with
the corresponding and closest in time vertical profile of temperature provided by ERA-Interim in order
to estimate the cloud top height. At this point, the formula reported by Equation (1) can be applied to
quantify the parallax displacement as function of longitude and latitude:

∆γ(λ,φ) =
P·
√

1− cos2λ·cos2φ

P·cosλ·cosφ− 1
·
h
R

(1)

where P = 1 + H
R with H distance between satellite and Earth surface (~36,000 km), R radius of Earth,

h height of cloud top, λ and φ longitude and latitude, respectively. Once that ∆γ(λ,φ) is calculated,
it can be converted in number of SEVIRI IFOV displacement both in longitude and latitude. The cloud
is then moved to the correct position. The parallax displacement can be marked over the Mediterranean
area depending on the cloud top height.

Figure 2 shows the parallax displacement (in km) as function of latitude, longitude and cloud top
height. The parallax displacement for low clouds is almost constant around 2.3 km, regardless of the
coordinates (latitude, longitude) of the measurement point. For higher cloud top, the displacement
becomes significant (up to 15–20 km), depending also on the geographical position. The displacement
varies by about 5/6 km for cloud heights of 11/14 km moving from south to north (i.e., from 36◦N to
46◦N and at a given longitude). Moving from west to east (and, therefore, at the same latitude), the
variability of the parallax displacement is more limited (from about 1.5 to 2 km).
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Figure 2. Parallax displacement as function of latitude, longitude, and cloud top height.

2.6. RAINBOW Algorithm

The RAINBOW algorithm is composed by a static module, which has been developed using
historical data, and a dynamic module, which continuously updates the data to be used.

Both static and dynamic modules of RAINBOW have been developed for each of the five
geographical boxes in which the area of interest has been divided (Figure 3). The choice to divide
the area of study in geographical boxes is mainly related to the fact that precipitations with different
microphysics properties can occurred over the Italian territory (e.g., a precipitation over the Alps may
have different characteristics of a simultaneous precipitation over sea and/or in proximity of the coast).
In addition, the precipitation occurring at the same time in different locations could be at different stage
of its evolution. Dividing the area of study in geographical boxes mitigates the problems deriving from
the situations just above described. In general, the smaller the box the better is the characterization
of the precipitation. However, the box size has to be large enough to ensure an adequate number
of samples in order to perform a reliable calibration. At the same time, an excessive number of
geographical boxes can create discontinuities in the transition zones (i.e., on the line connecting two
adjacent boxes). It was found that a good trade-off for the Italian country was to divide the country in
five boxes.
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The RAINBOW algorithm works with data at SEVIRI spatial and temporal resolution and
provides the output at the same spatial and temporal resolution. Thus, the first step is to downscale
the SRI data at SEVIRI resolution. The SRI pixels selected for each SEVIRI IFOV have to satisfy two
different thresholds:

The mean QI is calculated considering all the IT GR pixels within a SEVIRI IFOV. To consider the
IFOV useful, the mean QI has to be higher than 60%.

If the threshold of 60% for the mean QI is overcome, the mean SRI (i.e., the mean precipitation
rate for a SEVIRI IFOV) is calculated by considering only the pixel with QI ≥ 80%. The threshold at
80% allows to discard the pixels affected by any possible spurious signal (e.g., noise, beam blockage,
etc.). At the same time, the maximum SRI value is stored.

At this point, RAINBOW decides if to use the static or dynamic part of the algorithm. The decision
is based on the number of useful IFOVs in each geographical box (i.e., the IFOVs with both RR
and TB data) collected both in the last hour with respect to the running time and in the last SEVIRI
acquisition (we recall that GR data have higher temporal resolution than SEVIRI, ten versus 15 min,
respectively). In particular, if the number of useful IFOVs in the last hour is higher (or equal) than 50%
and, the number of useful IFOVs in the last acquisition is higher (or equal) than 10% or lower than
10% but the maximum RR exceed 3 mmh−1, the dynamic module of RAINBOW algorithm is applied.
On the other hand, if these conditions are not satisfied, the static module of RAINBOW algorithm
is used. The thresholds are defined through sensitivity tests changing both the percentage of useful
IFOVs and the maximum RR value. The final output of both dynamic and static part of RAINBOW is a
RR-TB10.8 relationship, for each geographical box, to be applied to the SEVIRI data in order to give
precipitation estimation. The main difference between the two modules is that the dynamic one updates
and changes the RR-TB10.8 relationship at each new SEVIRI acquisition, while the static one makes use
of RR-TB10.8 relationships obtained by considering the whole dataset available (i.e., from 1 July, 2015
to 31 December, 2017). Furthermore, a RR-TB10.8 relationship for each meteorological season is derived
in the static module. The RR-TB10.8 relationship is obtained by sampling the TB10.8 between 200 K
and 270 K in 35 bins 2 K width. For each bin, the mean rainfall rate and the mean of maxima rainfall
rates are calculated. More specifically, the TB10.8 spectrum is split in two parts, one between 200 K
and 220 K and one between 220 K and 270 K, and two RR-TB10.8 relationships are derived. A second
degree polynomial RR-TB10.8 relationship is derived for the first part of TB10.8 spectrum (200 ≤ TB10.8

≤ 220 K), while a first degree polynomial RR-TB10.8 relationship is derived for the first part of TB10.8

spectrum (220 < TB10.8 ≤ 270 K).
Figure 4 shows, as an example, the RR-TB10.8 relationship obtained from the whole dataset for each

season and each box used by the static module of the algorithm. It outlines how the higher rainfall rates
are associated to the lower TB10.8. Fall and summer (Figure 4a–d) are the seasons where this relationship
is more straightforward for all the considered geographical boxes. At the same time, winter (Figure 4b)
is the season with the lowest precipitation rate (as could be expected) and with a very light relationship
between RR and TB10.8. Together to the RR-TB10.8 relationship, the probability of precipitation (POP)
is calculated for each TB10.8 bin and the corresponding POP-TB10.8 relationship is derived. The POP
is defined as the ratio between the number of SEVIRI IFOVs with precipitation (RR ≥ 0.25 mmh−1)
and the number of SEVIRI IFOVs with no precipitation (RR < 0.25 mmh−1). As for the RR-TB10.8

relationship, the dynamic module of RAINBOW updates and changes the POP-TB10.8 relationship at
each SEVIRI acquisition, while the static module again takes advantages of the POP-TB10.8 relationship
(for each box and each season) built by using the whole available dataset.
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Figure 5 reports the POP-TB10.8 relationships derived for each season and each box. The POP
clearly increases decreasing the TB10.8 during fall and summer season (Figure 5a–d), reaching the
100% for TB10.8 as low as 210 K (boxes 2 and 3 show a decrease of POP for TB10.8 < 210 K during
fall season—Figure 5a). Not as straightforward as for fall/summer is the POP-TB10.8 relationship for
spring/winter (Figure 5b–c). There is a sharp decrease of POP at TB10.8 higher than 255 K. At the same
time, POP increases decreasing TB10.8 up to 220 K about; then, the trend diversifies among the boxes,
with most of them showing a marked decrease of POP for TB10.8 lower than 220 K. Among these,
someone present a sharp increase when TB10.8 reaches values lower than 210K. The decrease of POP at
lower TB10.8 values is mainly related to the presence of cirrus clouds, which are no-precipitating clouds
with very low cloud top temperature. The occurrence of cirrus clouds reaches a maximum (minimum)
in winter (summer) [86]. This aspect is related to the lower temperature in the troposphere during
winter that favors both the formation and the maintenance of ice crystals, which are the constituents of
this type of clouds [87].
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3. Results

The methodology described above has been applied to several case studies. The algorithm
performances were analyzed by comparing the RAINBOW precipitation retrievals with the outputs of
GRISO and P-IN-SEVIRI on a regular grid (0.25◦ × 0.25◦) for ten selected case studies (occurred in 2016
and 2017). Furthermore, the potentialities and limitations of RAINBOW are discussed for two outputs
of the algorithm considering two different case studies.

The first considered event occurred in the night between 9 and 10 September, 2017, causing a
flash flood which hit the coastal city of Livorno (43.5◦N, 10.3◦E), in the Tuscany region. In the area
around the city, three rain gauges measured more than 230 mm of accumulated precipitation in six
hours (00:00–06:00 UTC), with peaks of 150 mm h−1 registered between 01:00 and 03:00 UTC.

Regarding the event observed on 10 September 2017, Figure 6 shows the TB10.8 as measured by
SEVIRI (Figure 6a), the instantaneous rainfall rate as estimated by IT GR network at SEVIRI spatial
resolution (Figure 6b) and by RAINBOW (Figure 6c) at 01:12 UTC, respectively. The SEVIRI TB10.8

(Figure 6a) highlights the presence of a V-shaped thunderstorm hitting mainly the north part of Tuscany
region. The updraft core developed over sea, just offshore of the coastal line remained stationary
for several hours (roughly between 18:00 UTC of 9 September and the 03:00 UTC of 10 September).
Values of TB10.8 as low as about 210 K are measured in the updraft core corresponding to a cloud
top height around 12 km. The plot also outlines the presence of a storm line across the Sardinia
region. The IT GR network estimated rainfall rate values up to 50 mmh−1 (Figure 6b) within a SEVIRI
IFOV (i.e., round 4 km × 4 km). At the same time, the spatial extension of the storm is quite limited
both in terms of cloud and precipitation coverage. The same can be said for the precipitation across
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the Sardinia even if the estimated rainfall rates reach lower values up to 40 mmh−1. Finally, lighter
precipitation is detected in the northern part of Italy. The RAINBOW rainfall rate estimation (Figure 6c)
captures well the two most intense precipitation zones (i.e., the area around Livorno and over Sardinia)
but tends to detect precipitation over a larger area than radar. At the same time, the precipitation peak
is well identified in both location and intensity, with a slight underestimation of the most intense cells.
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Figure 6. Snapshot relative to the 01:12 UTC of 10 September, 2017. Panel (a) shows the TB10.8 as
measured by Spinning Enhanced Visible and InfraRed Imager (SEVIRI), (b) the instantaneous rainfall
rate as estimated by Italian ground radar network (IT GR) network at SEVIRI spatial resolution and (c)
by RAdar INfrared Blending algorithm for Operational Weather monitoring (RAINBOW).

Figure 7 shows a snapshot relative to the 04:12 UTC for the case study of 14 October, 2016.
Although the storm involved the same region (at least at that time), different properties of RAINBOW
can be highlighted by the analysis if this case study. The case study reported in Figure 7 presents
different characteristics showing two convective cells, one between Tuscany and Emilia Romagna
regions, and one out of the Italian territory over south France (partially over sea and partially over
land). Both convective cells have bigger spatial extension and even colder TB10.8 values up to 205 K
about (Figure 7a). To the big cloud extension does not correspond an equal precipitation extension; in
fact, the IT GR network shows scattered and small precipitation clusters with a quite wide range of
intensity from few mmh−1 to almost 50 mmh−1 (Figure 7b). Analyzing the precipitation estimated by
RAINBOW, it is possible to note significant differences with respect to SRI (Figure 7c):
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Figure 7. Snapshot relative to the 04:12 UTC of 14 October, 2016. Panel (a) shows the TB10.8 as measured
by SEVIRI, (b) the instantaneous rainfall rate as estimated by IT GR network at SEVIRI spatial resolution
and (c) by RAINBOW.

The rainfall rate peak estimated by RAINBOW is weaker than that estimated by IT GR, with
maximum values around 20 mmh−1. This can be mainly attributed to the limited number of IFOVs
with intense rainfall rate considered in the calibration process.

RAINBOW is able to estimate precipitation for the convective cell over France and for the small cell
on the border between Tuscany and Umbria region (red circle in Figure 7c). However, the precipitation
corresponding to this latter cell is slightly overestimated, in terms of spatial extension, by RAINBOW.
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On the other hand, the precipitation cluster centered on the coastal line of Tuscany is well detected by
RAINBOW. In the operational frame in which the algorithm is intended, this case study highlights
the potentialities of RAINBOW. The precipitation detection of the two cells can be considered as
warning of a possible event moving toward the Italian territory and as complementary to the SRI
estimation, respectively.

4. Discussion

The algorithm performances were assessed by comparing the RAINBOW outputs with the GRISO
data (taken as reference) on a regular 0.25◦ × 0.25◦ grid for 10 case studies. Since both RAINBOW
and GRISO are provided at higher but different spatial resolutions, they are up-scaled to a regular
0.25◦ × 0.25◦ grid. Both categorical scores (Probability of Detection (POD), False Alarm Ratio (FAR),
Heidke Skill Score (HSS)) and continuous scores (mean error (ME) and root mean square error (RMSE))
have been considered [88]. The analysis has been done on an hourly basis (mm of rain fell in this
time interval) considering the entire event of each case study. Furthermore, a minimum cumulative
hourly rainfall threshold of 0.25 mm and three different intervals of cumulated rain are considered:
light 0.25–1 mm, moderate 1–10 mm, and heavy 10–100 mm. The statistical scores above reported
have been calculated even between P-IN-SEVIRI and GRISO in order to compare the RAINBOW and
P-IN-SEVIRI performances.

The results shown in Figure 8 evidence excellent algorithm performance especially for moderate
and heavy precipitation intensity. The Probability of Detection (POD)—Figure 8a) ranges between
0.8 and 1, except for light precipitation (0.25–1 mm); the False Alarm Ratio (FAR)—Figure 8b) has a
specular trend with respect to the POD, with higher values for light precipitation and lower for the
other rain intervals, while the Heidke Skill Score (HSS)—Figure 8c) follows the trend of the POD with
values up to 0.8. It should be noted that the values of POD, FAR, and HSS are almost constant for all
10 case studies, underlining an excellent stability of the algorithm. In particular, HSS increases with
time, highlighting that the continuous update of DPR GR network plays a crucial role in the RAINBOW
performance by supplying ever-higher quality data input.
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Figure 8. (a) Probability of Detection (POD), (b) False Alarm Ratio (FAR), and (c) Heidke Skill Score
(HSS) scores calculated by comparing the RAINBOW outputs with the Random Generator of Spatial
Interpolation from uncertain Observations (GRISO) data (taken as reference) on a regular 0.25◦ × 0.25◦

grid for 10 case studies. A minimum cumulated rain threshold is set at 0.25 mm and three different
intervals of cumulated rain are considered: light 0.25–1 mm, moderate 1–10 mm, and heavy 10–100 mm.

The algorithm error in estimating the precipitation rate is quantified with respect to GRISO by
calculating the mean error (ME) and the root mean square error (RMSE). Figure 9a shows that the ME
oscillates around 0 mm for all cases and for all precipitation intervals except for heavy intensity where
the values range between −7 and −9 mm indicating a clear underestimation of the higher intensities by
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the algorithm. The good results are confirmed by the RMSE (Figure 9b), which never exceeds 3 mm
except for intense rainfall.
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Figure 9. (a) Mean error (ME) and (b) root mean square error (RMSE) scores calculated by comparing
the RAINBOW outputs with the GRISO data (taken as reference) on a regular 0.25◦ × 0.25◦ grid for 10
case studies. A minimum cumulated rain threshold is set at 0.25 mm and three different intervals of
cumulated rain are considered: light 0.25–1 mm, moderate 1–10 mm, and heavy 10–100 mm.

A sensitivity study has been conducted in order to evaluate the performance of RAINBOW as a
function of the resolution of the regular grid. To this end, four different grids have been chosen ranging
from 0.1◦ × 0.1◦ to 0.25◦ × 0.25◦. The analysis has been always done on an hourly basis considering
only the minimum cumulative hourly rainfall threshold of 0.25 mm.

The results shown in Figure 10 evidence very stable values for the categorical scores as a function
of the resolution of the grid. In particular, POD (Figure 10a) has constant values slightly higher than
0.8, while both FAR and HSS (Figure 10b,c, respectively) show a more irregular trend only for the
0.1◦ × 0.1◦ grid with higher and lower values, respectively, than the other grids.
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Figure 10. (a) POD, (b) FAR, and (c) HSS scores calculated by comparing the RAINBOW outputs
with the GRISO data (taken as reference) on different regular grids for 10 case studies. A minimum
cumulated rain threshold is set at 0.25 mm.

The continuous scores in Figure 11 confirm the results shown in Figure 10. The ME (Figure 11a) is
always negative, around −0.4 mm, except for the first two case studies of 0.1◦ × 0.1◦ grid. On the other
hand, the RMSE (Figure 11b) has very limited variations around 3.2 (mm), while for 0.1◦ × 0.1◦ grid,
it shows an irregular trend with values dropping down up to 1.8 mm.
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Figure 11. (a) ME and (b) RMSE scores calculated by comparing the RAINBOW outputs with the
GRISO data (taken as reference) on different regular grids for 10 case studies. A minimum cumulated
rain threshold is set at 0.25 mm.

The same analyses, shown in Figures 8 and 9, have been carried out by comparing the statistical
scores calculated for RAINBOW with those one calculated for P-IN-SEVIRI product (always taking
GRISO as reference). The results are ported in Figures 10 and 11 for categorical and continuous
scores, respectively.

Figure 12 evidences the better performances of RAINBOW in detecting precipitation.
The PODRAINBOW is always higher than PODP-IN-SEVIRI (Figure 12a) regardless the intensity of
precipitation (different marker shape in the plot) and the different events (labeled by different colors).
For light precipitation (circle markers), the PODP-IN-SEVIRI does not exceed 0.3, while PODRAINBOW

ranges between 0.5 and 0.7. At moderate and heavy precipitation (and even not considering any
rain intervals), while PODRAINBOW is always above 0.8, PODP-IN-SEVIRI shows a wide range of values
between 0.2 and 1. At the same time, the FAR is very similar between the two algorithms with most of
the points on the one-to-one line and at values generally lower than 0.4 (Figure 12b). The combination
of POD and FAR results in constantly higher values oh HSSRAINBOW with respect to P-IN-SEVIRI
(Figure 12c). The very good performances of RAINBOW in detecting the precipitation are confirmed
by continuous scores, which refer to the precipitation rate estimation.
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Figure 12. Comparison of (a) POD, (b) FAR, and (c) HSS scores calculated for RAINBOW and
P-IN-SEVIRI outputs with respect to the GRISO data (taken as reference) on a regular 0.25◦ × 0.25◦ grid
for 10 case studies. A minimum cumulated rain threshold is set at 0.25 mm and three different intervals
of cumulated rain are considered: light 0.25–1 mm, moderate 1–10 mm, and heavy 10–100 mm.

Figure 13a shows that MERAINBOW and MEP-IN-SEVIRI are very similar for heavier precipitation
intensity, while MERAINBOW and MEP-IN-SEVIRI assume values around 0 mm and slightly negative,
respectively, for light to moderate precipitation intensity. On the other hand, RMSERAINBOW is generally
lower than RMSEP-IN-SEVIRI regardless the precipitation rate (Figure 13b).
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Figure 13. Comparison of (a) ME and (b) RMSE scores calculated for RAINBOW and P-IN-SEVIRI
outputs with respect to the GRISO data (taken as reference) on a regular 0.25◦ × 0.25◦ grid for 10
case studies. A minimum cumulated rain threshold is set at 0.25 mm and three different intervals of
cumulated rain are considered: light 0.25–1 mm, moderate 1–10 mm, and heavy 10–100 mm.

5. Conclusions

A new algorithm (RAINBOW) based on the combination of the data collected by SEVIRI onboard
of MSG) and by the Italian ground-based radars network (IT GR) to provide precipitation estimation
over Italy has been described. The algorithm, consisting of two main modules and operating over five
geographical boxes in which the study area is divided, derives and updates (whenever it is possible)
second degree polynomial RR-TB10.8 relationships. These relationships are applied to each acquisition
of SEVIRI in order to provide a precipitation map. The results, based on a number of case studies,
show good performance of the algorithm when it is compared with ground reference (i.e., GRISO
precipitation pattern and intensity derived from rain gauge measurements), with high/low values for
POD/FAR especially for light to moderate precipitation range. At the same time, the ME values are
close to 0 mmh−1, while RMSE is about 2 mmh−1, highlighting a remarkable accuracy of RAINBOW
estimates, whereas the capability to detect the precipitation pattern and intensity decreases for severe
phenomena. It has to be remarked that severe events could be characterized by high spatial variability,
which cannot be accomplished by RAINBOW (due to the SEVIRI instrument characteristics). It is worth
noting that the performance of RAINBOW are quite constant through the different case studies with a
slight improvement of the performance over time. This is related to the fact that RAINBOW relies on
the high quality precipitation rate estimates from IT GR network, which are constantly maintained
and upgraded. Furthermore, RAINBOW shows better performance than P-IN-SEVIRI (i.e., the H SAF
product based on IR-derived precipitation estimation) when both products are compared to GRISO.

RAINBOW was conceived as an operational product to supply data where the IT GR coverage
is absent or it presents low QI values. In this regard, the main aim of RAINBOW is the detection of
extreme events that are barely observed by IT GR network in order to support the pre-alarm system for
the hydro-geological risks and the life threatening conditions related to the incoming extreme events.
Furthermore, the algorithm has to comply with short running time and with ease of management,
which are fundamental aspects in a pre-alarm system. RAINBOW ensures running time comparable
(or even shorter) with the IT GR running time and significantly shorter than P-IN-SEVIRI running time.

The next launch (scheduled in December 2021) of Flexible Combined Imager (FCI) on board of
Meteosat Third Generation (MTG), will be useful to further improve the performance of RAINBOW.
The higher number of channels available, the higher spatial and temporal resolution will provide
higher quality data to characterize, also, very local severe events.
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