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Abstract: Mapping of agricultural crop types and practices is important for setting up agricultural
production plans and environmental conservation measures. Sugarcane is a major tropical and
subtropical crop; in general, it is grown in small fields with large spatio-temporal variations due to
various crop management practices, and satellite observations of sugarcane cultivation areas are often
obscured by clouds. Surface information with high spatio-temporal resolution obtained through the
use of emerging satellite constellation technology can be used to track crop growth patterns with high
resolution. In this study, we used Planet Dove imagery to reveal crop growth patterns and to map crop
types and practices on subtropical Kumejima Island, Japan (lat. 26◦21′01.1′′ N, long. 126◦46′16.0′′ E).
We eliminated misregistration between the red-green-blue (RGB) and near-infrared band imagery,
and generated a time series of seven vegetation indices to track crop growth patterns. Using the
Random Forest algorithm, we classified eight crop types and practices in the sugarcane. All the
vegetation indices tested showed high classification accuracy, and the normalized difference vegetation
index (NDVI) had an overall accuracy of 0.93 and Kappa of 0.92 range of accuracy for different crop
types and practices in the study area. The results for the user’s and producer’s accuracy of each class
were good. Analysis of the importance of variables indicated that five image sets are most important for
achieving high classification accuracy: Two image sets of the spring and summer sugarcane plantings
in each year of a two-year observation period, and one just before harvesting in the second year.
We conclude that high-temporal-resolution time series images obtained by a satellite constellation are
very effective in small-scale agricultural mapping with large spatio-temporal variations.
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1. Introduction

Agricultural land is a key component of land use and land cover. Nearly 40% of the Earth’s land
surface is now being used for agriculture [1]. The expansion of agricultural land to increase food
production and intensification of its use [2] has altered the structure and function of ecosystems and in
some cases has diminished their ability to continue providing valuable resources [1,3,4]. Many land
management applications require reliable and timely land cover mapping over large heterogeneous
landscapes [5]. Therefore, mapping and monitoring of agricultural land use is an important topic of
high public interest.

The use of satellite remote sensing to monitor the use and management of agricultural land over a
large area is an efficient approach (e.g., [6–17]). In agricultural mapping, vegetation indices are used to
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capture the unique growth pattern of each crop, and high classification accuracy has been achieved by
using multi-temporal imagery [10]. Multi-temporal Landsat data (spatial resolution = 30 m) has been
used in phenological analyses of various regions with varied land cover (e.g., [16,18–21]). However,
Landsat satellites (ex. TM, ETM+) collect data every 16 days, which makes it difficult to capture
agricultural events in some regions [22], because clouds often hamper image acquisition. According to
Whitcraft et al. (2015) [23], the potential for cloud cover is particularly high and agricultural events are
hard to capture using existing optical satellite observation networks in Southeast Asia, Southwest Africa,
and Central America, where agriculture relies on rainfall. Consequently, attention has been paid to
high-frequency observation satellites (e.g., MODerate resolution Imaging Spectroradiometer (MODIS);
spatial resolution = 250 m), and an agricultural monitoring method that uses high-temporal-resolution
data has been developed [7,14,24–27]. However, there is a fundamental limit to the spatial scale of the
agricultural field that can be monitored due to the effects of mixed pixels resulting from the lower
spatial resolution that is a trade-off with higher temporal resolution. In particular, many regions with
frequent cloud cover have small agricultural areas (<2 ha) [28,29], which cannot be reliably visualized
using these data.

Sugarcane is grown mainly in large-scale production areas such as Brazil, but its cultivation is also
possible in small areas on tropical and subtropical islands, where it is a major crop [30,31]. These areas
have high cloud cover potential which makes surface information imaging problematic [28,29]. In such
areas, sugarcane production planning is the main concern from the point of view of employment [32].
In Okinawa, Japan, sugarcane is the main crop, and production planning is a primary concern [33].
Soil runoff from sugarcane fields has a great impact on rivers and coastal ecosystems [34], and cropping
practices greatly affect its spatio-temporal fluctuations [35]. Therefore, it is important to understand the
spatial distribution of crop types in fields, as well as sugarcane cropping practices, for both agricultural
production planning and environmental conservation measures [36]. To achieve this understanding,
tracking crop growth patterns and mapping crop types and practices by remote sensing is required.
However, the crop types classification of sugarcane area in Japan does not provide satisfactory accuracy
in previous study [37]. In addition, sugarcane cropping practices has not been classified.

Sugarcane has a relatively long harvest period (approximately 3 months) and multiple management
practices, and the spatio-temporal variations are large [38,39]. Therefore, monitoring sugarcane by
using satellite remotely sensed data is limited by spatio-temporal resolution [38]. Heterogeneous
agricultural landscapes are characterized by land cover categories that can be difficult to separate
spectrally due to low inter-class separability and high intra-class variability in a single image [5].
At the same time, observation with high spatial resolution is required [40], because many sugarcane
fields are small (<2 ha). Therefore, both high-frequency and high-spatial-resolution data are required
for classifying crop types and practices in agricultural land that includes sugarcane fields [39].

Recently, satellite constellations constructed by launching a large number of identical small
satellites have attracted attention as systems that achieve both high temporal (every day) and high
spatial resolution (3 m). Planet Labs, Inc. operates the largest satellite constellation, with Dove
nano-satellites collecting multi-band (blue, green, red, and near-infrared) images of the entire land
surface of the Earth every day; collection capacity is 200 million km2/day, based on a full constellation
of approximately 130 satellites [41]. Owing to the huge number of images obtained, the opportunities
for change detection and surface characterization are enormous, which encourages application of this
approach to agricultural monitoring [42–46]. Understanding the crop growth pattern revealed by
high-frequency and high-resolution observations may reveal the optimal observation dates for crop
types and practices classification.

The purpose of this study was to classify crop types and practices (i.e., sugarcane (ratoon),
sugarcane (spring planting), sugarcane (summer planting in 2018), sugarcane (summer planting in
2019), pasture, purple yam, pineapple and agricultural facility) on a subtropical island by using crop
growth patterns estimated from satellite constellation data of high temporal and spatial resolution and
to identify the most effective dates for undertaking the classification.
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2. Materials and Methods

2.1. Study Area

Kumejima Island (59 km2) is about 100 km west of the main Okinawa Island (Figure 1) and is
located in a subtropical climate [36]. The mean annual air temperature is 23.0 ◦C, annual rainfall is
2111.8 mm, 44% of which falls in the rainy season from May to June or is associated with typhoons
in August and September (Japan Meteorological Agency, http://www.data.jma.go.jp/obd/stats/etrn/).
The central part of the island is composed of volcanic rock and reaches a maximum altitude of 310 m
above sea level [36,47].
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Figure 1. Regional location map (inset) and Planet Dove image of Kumejima Island, Okinawa, Japan.

The study area was an agricultural area of 17.1 km2 (Ministry of Agriculture, Forestry and Fisheries,
Japan, MAFF; https://www.maff.go.jp/j/tokei/kouhyou/sakumotu/menseki/#c), which is covered by
sugarcane, pasture, purple yam, pineapple, agricultural facilities such as greenhouses, and other
crops such as squash, okra, and rice. Sugarcane is the predominant crop [36]. On Kumejima Island,
there are three key sugarcane management practices (Table 1): (1) Ratooning, in which sugarcane
grows from sprouts of underground stubble left in the field after harvest of the main crop (i.e., ratoon),
and is harvested about every 12 months, usually for at least 4 years, and then the crop is renewed
due to decreasing yield; (2) spring planting of seedlings (between February and May, just after
harvesting); and (3) summer planting of seedlings (between July and October). The sugar industry
equipment usually operates from January to March. In ratooning, sugarcane is harvested 12 months
after harvesting in previous year, in spring planting it is harvested 12 months after planting, and in
summer planting it is harvested in the sugar-production period 18 months after planting. About 63%
of farmers manage a sugarcane area of less than 1 ha [48].

http://www.data.jma.go.jp/obd/stats/etrn/
https://www.maff.go.jp/j/tokei/kouhyou/sakumotu/menseki/#c
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Table 1. Summary of typical crop management practices for sugarcane in the study area.

Year i
Sugarcane crop

practice January February March April May June July August September October November December

Ratoon H H H Cm Cm Cm Cm Cm Cm Cm Cm Cm
Spring planting H H,Ps,P H,Ps,P Ps,P Ps,P Cm Cm Cm Cm Cm Cm Cm

Summer planting
(Year i) H H H F,Ps F,Ps F,Ps Ps,P Ps,P Ps,P Ps,P Cm Cm

Year i + 1
Sugarcane crop

practice January February March April May June July August September October November December

Ratoon H H H
Spring planting H H H

Summer planting
(Year i) Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm

Year i + 2
Sugarcane crop

practice January February March

Ratoon Cm: Crop management P: Planting
Spring planting F: Fallow Ps: Plowing

Summer planting
(Year i) H H H H: Harvest

Harvest season
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Cultivation of purple yam for confectionery products and as feed for meat calf husbandry is also
active, and new pastures are being developed in some parts of the island. Pineapples were cultivated
extensively on the island in the 1960s and 1970s, but are now grown only by some farmers and in
private gardens. Flowers, bitter gourd, mango, and banana are cultivated in agricultural facilities such
as greenhouses. Precise classification is required for various crop type fields on the island; this need also
provides us an opportunity to evaluate the performance of classification of crop types and practices
using high-frequency and high-spatial imagery from a satellite constellation.

2.2. Dove Satellite Image Pre-Processing

Planet Dove imagery was obtained from Planet Explorer (https://www.planet.com/explorer/)
and processed as shown in Figure 2. The image product is delivered as a continuous, split-frame
strip, with half-frames containing red-green-blue (RGB) and near-infrared (NIR) imagery, with an
observation interval of approximately 0.5 s [49].

Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 21 

 

Table 1. Summary of typical crop management practices for sugarcane in the study area. 

 Year i 

Sugarcane crop practice Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. 

Ratoon H H H Cm Cm Cm Cm Cm Cm Cm Cm Cm 

Spring planting H H,Ps,P H,Ps,P Ps,P Ps,P Cm Cm Cm Cm Cm Cm Cm 

Summer planting (Year i) H H H F,Ps F,Ps F,Ps Ps,P Ps,P Ps,P Ps,P Cm Cm 
 Year i + 1 

Sugarcane crop practice Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. 

Ratoon H H H          

Spring planting H H H          

Summer planting (Year i) Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm Cm 
 Year i + 2 

Sugarcane crop practice Jan. Feb. Mar.          

Ratoon     Cm: Crop management  P: Planting  

Spring planting     F: Fallow  Ps: Plowing  

Summer planting (Year i) H H H  H: Harvest      

 Harvest season          

Cultivation of purple yam for confectionery products and as feed for meat calf husbandry is also 

active, and new pastures are being developed in some parts of the island. Pineapples were cultivated 

extensively on the island in the 1960s and 1970s, but are now grown only by some farmers and in 

private gardens. Flowers, bitter gourd, mango, and banana are cultivated in agricultural facilities 

such as greenhouses. Precise classification is required for various crop type fields on the island; this 

need also provides us an opportunity to evaluate the performance of classification of crop types and 

practices using high-frequency and high-spatial imagery from a satellite constellation. 

2.2. Dove Satellite Image Pre-Processing 

Planet Dove imagery was obtained from Planet Explorer (https://www.planet.com/explorer/) 

and processed as shown in Figure 2. The image product is delivered as a continuous, split-frame strip, 

with half-frames containing red-green-blue (RGB) and near-infrared (NIR) imagery, with an 

observation interval of approximately 0.5 s [49]. 

 

Figure 2. Flowchart of image analysis. 

We used Dove ortho scenes (Planet Labs image product Level 3B: 4-Band PlanetScope Scene; 

spatial resolution = 3 m) from 1 July 2017 to 31 December 2019, which are orthorectified and 

radiometrically and sensor corrected. The geometric correction was based on digital elevation models 

with post-spacing between 30 and 90 m, with a root mean square error specification of <10 m [41]. 

We removed bad pixels using the unusable data mask provided with the products. We converted 

Figure 2. Flowchart of image analysis.

We used Dove ortho scenes (Planet Labs image product Level 3B: 4-Band PlanetScope Scene;
spatial resolution = 3 m) from 1 July 2017 to 31 December 2019, which are orthorectified and
radiometrically and sensor corrected. The geometric correction was based on digital elevation
models with post-spacing between 30 and 90 m, with a root mean square error specification of
<10 m [41]. We removed bad pixels using the unusable data mask provided with the products.
We converted radiance to top-of-atmospheric reflectance using the scaling factor provided with the
products. Dove satellites have been observed by two sensor types: Conventional type (PS2) and
next-generation type (PS2.SD). Since these sensors have different relative spectral response curves,
we transformed the next-generation-type values to match those of the conventional type using the
coefficient described in the metadata.

Mismatches in the band-to-band registration were confirmed by visual inspection, and all images
were re-registered by the zero-mean normalized cross-correlation method [50] with edge enhancing
by a Laplacian filter; images with a shift of more than 10 pixels were excluded from the analysis.
To maintain the continuity of pixel-based time series change, the registration between images was
processed by the same method as the band-to-band re-registration, and was based on the reference
image with an accurate position; images with a shift of more than 10 m were excluded from the analysis.

https://www.planet.com/explorer/
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We performed simple dark pixel subtraction to obtain surface reflectance [51]. Assuming the
presence of a pixel with zero reflectance (i.e., the radiance recorded by the sensor is solely from
atmospheric scattering), the minimum pixel value was subtracted from those of all other pixels to
remove the radiance derived from atmospheric scattering. Pixels from deep ocean areas were used for
this correction. In addition, we normalized the value of each band according to Ono et al. (2002) [52]
by dividing it by the summed value of all bands. Even on the same ground surface, the spectra observed
by the satellite vary considerably because of the influence of the surface slope and atmospheric effects,
but the shape of the spectra can be regarded as similar [52]. This characteristic allows suppression of
the topographic and atmospheric effects by normalizing with the total sum of reflectance [53].

These pre-processed Planet Dove images were also used to evaluate the temporal variation of
the pixels available for analysis. Specifically, the acquisition rates of analyzable pixels (i.e., not cloud
pollution pixels) in the five days composite image were calculated.

2.3. Time Series of Vegetation Indices

The vegetation indices are highly correlated with the biomass of vegetation, and their temporal
changes represent the growth pattern of crops [54]. NIR is the spectral region most responsive
to changes in vegetation density [42]. Rouse et al. (1974) [55] and Tucker (1979) [56] developed
the normalized difference vegetation index (NDVI), which is based on NIR and red bands and is
widely used. The soil-adjusted vegetation index (SAVI) [57], modified soil-adjusted vegetation index
(MSAVI) [58], and enhanced vegetation index (EVI) [59] were all developed on the basis of NDVI.
However, the usefulness of evaluating the vegetation temporal change pattern by using indices based
on the visible bands has also been demonstrated [60]. In Planet Dove satellite images with a split-frame
strip, observation times differ between RGB and NIR bands, which may result in misregistration
(see above). Thus, it is also necessary to consider vegetation indices that use visible wavelengths only.
These include the visible atmospherically resistant index (VARI) [17], green–red ratio vegetation index
(GRVI) [61,62], and normalized green ratio (GR) [60]. We calculated the following seven vegetation
indices from pre-processed Dove satellite images to create a vegetation index time series:

NDVI = (ρNIR − ρRed)/(ρNIR + ρRed) (1)

SAVI =
{
(1− 0.5) × (ρNIR − ρRed)

}
/(ρNIR + ρRed + 0.5) (2)

MSAVI =
{

2× ρNIR + 1−
√
(2× ρNIR + 1)2

− 8× (ρNIR − ρRed)

}
/2 (3)

EVI = 2.5× (ρNIR − ρRed)/(ρNIR + 6× ρRed − 7.5× ρBlue + 1) (4)

VARI = (ρGreen − ρRed)/(ρGreen + ρRed − ρBlue) (5)

GRVI = (ρGreen − ρRed)/(ρGreen + ρRed) (6)

GR = ρGreen/(ρRed + ρGreen + ρBlue) (7)

where ρBlue, ρGreen, ρRed and ρNIR are Planet Dove blue, green, red, and near-infrared band
reflectance, respectively.

To suppress atmospheric noise, we applied the best index slope extraction (BISE) algorithm [63]
and refined the time series data of the vegetation indices. The search range was set to 40 days for
10-day composite data (the missing periods were linearly interpolated), considering the observation
frequency and agricultural calendar in the target area. To deal with unequal observation intervals in
the 10-day composite data, we used an integrated algorithm based on BISE and the maximum value
interpolated (MVI) algorithm [64] to refine the vegetation index time series data on a daily basis.



Remote Sens. 2020, 12, 2419 7 of 21

2.4. Ground Truthing

Agricultural field polygon data were obtained from the Ministry of Agriculture, Forestry and
Fisheries, Japan (available at: https://www.maff.go.jp/j/tokei/porigon/) and used to draw the shape of
each parcel of agricultural land on satellite images (Figure 1). To gather reference data (i.e., training and
validation data) for image classification, we conducted field surveys in the study area. Crop types and
land cover conditions were recorded in each field and period (November 2018 and February, May, July,
and October 2019). Main crop types and practices were recorded to the agricultural field polygon data.
The following classes were used: (1) Sugarcane (ratoon), (2) sugarcane (spring planting), (3) sugarcane
(summer planting in 2018), (4) sugarcane (summer planting in 2019), (5) pasture, (6) purple yam,
(7) pineapple, (8) agricultural facility (e.g., vinyl greenhouse).

The use of available agricultural field boundary data improved the accuracy of classification
because it allowed us to eliminate the effect of spectral variability within the agricultural field and
the mixed-pixel effect [65]. Therefore, we used the agricultural field polygon data and extracted pure
pixels corresponding only to the agricultural land. Sample sizes of reference data sets for each class
were: (1) 36,902, (2) 12,671, (3) 17,743, (4) 2897, (5) 55,335, (6) 6628, (7) 874, and (8) 4281 pixels.

2.5. Classification and Accuracy Assessment

Considering the growing periods of pineapple and summer planting of sugarcane, the time series
should span multiple years [37]. We used the time series data between 1 August 2017 and 30 November
2019 to generate a dataset for classification and validation. In the analysis of high-dimensional datasets,
machine learning classification yields better results than the parametric classification algorithms
do [66]. In particular, Random Forest (RF) [67] classification performs well without the need for
complicated initial parameters, and is frequently used in land cover classification based on remote
sensing data [68–71]. In general, machine learning algorithms, including RF, can be considered as
black-box-type classifiers: The split rules for classification by RF are unknown [5], but RF can indicate
the degrees of importance of variables for the general classification by the mean decrease in the Gini
index [5]. The greater this decrease, the more important the variable is in the performance of the
classification model. The relative importance of each variable was evaluated by normalizing to the
sum of the mean decreases in the Gini index of all variables obtained during the classification model
construction based on RF; this sum was considered to be 1. Such estimation is important for choosing
appropriate dates for images that should be used to classify fields with high spatio-temporal variability.
Therefore, we adopted RF to classify crop types and practices. For model development, tuning,
and accuracy assessment, we used the add-on packages within version 3.6.1 of the 64-bit version of
R [72]. The randomForest package [73] was used to build classifications with RF.

The classification parameters were set as follows. (1) The size of the training data was set to 500;
this choice was based on our preliminary test with different sizes of the training data (n = 100, 200,
300, 400, 500). (2) The number of trees (ntree) was set to 500 after preliminary verification, in line with
common practice [74]. (3) The other adjustable RF tuning parameter, mtry, controls the number of
variables randomly considered at each split during tree building, and performance of RF is believed
to be “somewhat sensitive” to this parameter [75]. The default value of mtry is the square root of p,
where p equals the number of predictor variables within a dataset [73]. Generally, the default value is
used [74], but in this study, mtry was tuned by the tuneRF function.

Classifications and validations of each vegetation index time series were conducted 10 times,
each creating a confusion matrix. Training data were randomly sampled from the dataset (500 pixels
in each class). Validation data were randomly sampled from a dataset that was not used as training
data according to the area ratio of the class in the classification map (class of minimum area ratio was
30). Then the confusion matrix was used to calculate the evaluation indices: Overall accuracy (OA),
producer’s accuracy of each class, user’s accuracy of each class, and Kappa [76]. Kappa is defined as:

Kappa = (Po − Pe)/(1− Pe) (8)

https://www.maff.go.jp/j/tokei/porigon/
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where Po is the proportion of cases correctly classified (i.e., overall accuracy) and Pe is the
expected proportion of cases correctly classified by chance [77]. The Kappa ranges from −1 to
+1, where +1 indicates perfect agreement, and values of zero or less indicate a performance no better
than random [78]. The Kappa has been traditionally used in accuracy assessment for classification map
based on remote sensing. One such interpretation scale that has been widely used in remote sensing
applications is that proposed by Landis and Koch (1977) [79] criteria [77]: Poor for negative Kappa
values, slight for 0.00 < Kappa ≤ 0.20, fair for 0.20 < Kappa ≤ 0.40, moderate for 0.40 < Kappa ≤ 0.60,
substantial for 0.60 < Kappa 0.80, and almost perfect for >0.80.

3. Results

3.1. Band-To-Band Re-Registration of Planet Dove Satellite Images

Figure 3 shows the results of validation of the original band-to-band registration. Misregistration
between RGB bands was observed in images with heavy cloud cover, images of the sea, and images
taken by the next-generation sensor types (PS2.SD); this sensor took about 1% of all images analyzed.
Misregistration was not observed in clear land images taken by the conventional sensor types (PS2).
Therefore, no re-registration between RGB bands was performed for images taken with the PS2
sensors, and images taken by PS2.SD sensors were removed from the analysis. In many images,
misregistration was seen between the RGB and NIR bands; these images were re-registered by matching
the NIR band image to the RGB band image.

3.2. Crop Growth Patterns Estimated by Planet Dove Imagery

Figure 4 shows the average NDVI time series of each crop type and practice in the field survey
area created from the Planet Dove images. These series represent the crop growth patterns of each
crop type and practice. Ratooning and spring planting of sugarcane had a similar crop growth pattern.
In the summer planting of sugarcane, changes in the percentage of vegetation cover with time differed
greatly from those in ratooning and spring planting. Pastures had high NDVI values throughout the
year. Pineapple had a lower NDVI value throughout the year than did pastures. Agricultural facilities
had lower NDVI values than any crop types and practices. The NDVI value of purple yam peaked
in July, then decreased gradually, and was lowest in November. While the acquisition rates of the
original NDVI values based on Planet Dove imagery were low from January to February and in June,
spectra related to land cover information were usually obtained within 5 to 10 days for the rest of
the periods.
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3.3. Mapping and Classification Accuracy of Crop Types and Practices Using NDVI Time Series

Figure 5 shows the classification accuracy of each vegetation index time series evaluated from
10 random samplings of training data. High classification accuracy was obtained with all vegetation
indices (Figure 5). All vegetation indices have an average OA exceeding 0.91, and the average
Kappa exceeding 0.89. Vegetation indices based on both visible and NIR bands (NDVI, SAVI, MSAVI,
and EVI) provided slightly better classification accuracy than those based on visible bands only
(VARI, GRVI, and GR). This can be confirmed by the threshold based on the average value of
classification by all vegetation indices (red line in Figure 5). No significant difference was found
between NDVI and other vegetation indices based on visible and NIR bands. This suggested that the
NIR band, which reflects vegetation better than visible wavelengths [80], could be effectively used after
band-to-band re-registering. Because NDVI did not differ from other NIR-based vegetation indices,
we recommend the traditional and versatile NDVI classification.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 21 

 

 

Figure 5. Overall accuracy (OA) and Kappa of each vegetation index time series (n = 10). Red line 

shows the average of all values of each evaluation index. 

We created a crop type and practice map using the NDVI time series (Figure 6). In this map, the 

class with the maximum average value of the class probabilities when the classification was 

conducted 10 times by RF. Class probability indicates the probability that a pixel belongs to each class 

when classified by RF. Even though classification in this map was on a pixel basis, the segments of 

crop types and practices were adequately represented in most of the agricultural parcels. 

 

Figure 6. Crop type and practice map based on classification using NDVI time series (adopt the 

maximum class of the class probability averages; n = 10). The left image in the inset was taken by an 

unmanned aerial vehicle in October 2019. 

We compared the percentage of pure pixels that can be classified with the Planet Dove imagery 

with other representative medium-resolution satellite images. The ratio of pure pixel area to 

agricultural land area (agricultural field polygon data) was 85.2% in Planet Dove imagery (spatial 

resolution, 3 m), 55.5% in Sentinel-2 (10 m), and 11.3% in Landsat images (30 m). The presence or 

Figure 5. Overall accuracy (OA) and Kappa of each vegetation index time series (n = 10). Red line
shows the average of all values of each evaluation index.

We created a crop type and practice map using the NDVI time series (Figure 6). In this map,
the class with the maximum average value of the class probabilities when the classification was
conducted 10 times by RF. Class probability indicates the probability that a pixel belongs to each class
when classified by RF. Even though classification in this map was on a pixel basis, the segments of crop
types and practices were adequately represented in most of the agricultural parcels.

We compared the percentage of pure pixels that can be classified with the Planet Dove imagery
with other representative medium-resolution satellite images. The ratio of pure pixel area to agricultural
land area (agricultural field polygon data) was 85.2% in Planet Dove imagery (spatial resolution, 3 m),
55.5% in Sentinel-2 (10 m), and 11.3% in Landsat images (30 m). The presence or absence of target
pixels in the polygon data was 99.8% in Planet Dove imagery, 90.3% in Sentinel-2 imagery, and 16.4%
in Landsat imagery.

Table 2 shows a confusion matrix that combines the results of 10 trials of classification using the
NDVI time series. The classification accuracy of crop type and practice using NDVI time series was
0.93 for OA and 0.92 for Kappa (Table 2). The accuracy of classification into sugarcane vs. others was
0.98 for OA and 0.97 for Kappa. The producer’s accuracy and user’s accuracy of sugarcane were 0.98
and 0.99 respectively, and the other’s were 0.99 and 0.98 respectively. This result is superior to the
published values of OA (0.84–0.96) and Kappa (0.59–0.87) obtained using remotely sensed satellite
imagery (combination of Formosat/MS, ALOS/AVNIR2, SPOT/HRV and HRG [37], combination of
Landsat sensors [81,82], MODIS [83]). However, it should be noted that the previous studies were not
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necessarily limited to crop type classification as in this study (for example, forests were included in
other class [37]).
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unmanned aerial vehicle in October 2019.

3.4. Assessment of the Optimal Dates and Required Observation Periods for Classification

Figure 7 shows the time series changes in the importance of variables based on normalized
reduction of Gini; the importance seemed to have a seasonal variation. The peak days of time series
with 10-day intervals coincided with the timing of crop planting and harvesting (Figure 4). Figure 8
shows the normalized mean decrease of Gini reassessed by classification using only NDVI images of
14 peak days. We found that classification accuracy varied with the number of images used for crop
type and practice classification (Figure 9), where the variables used were added from the date with the
most variable importance (i.e., normalized mean decrease Gini) shown in Figure 8.
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Table 2. Confusion matrix of the map shown in Figure 6. From the reference dataset based on the field survey, the reference data not used for training were used for
validation. The number of samples in each class was determined by the area ratio, with the minimum set to 100.

Reference Classes Classified Total Producer’s Accuracy

AF Pasture Spring Plant Purple Yam Ratoon SP2018 SP2019 Pineapple

Agricultural facility 100 0 0 0 0 0 0 0 100 1.00
Pasture 1 682 3 3 2 6 0 14 711 0.96

Spring planting 0 1 194 1 16 0 3 0 215 0.90
Purple yam 0 4 1 204 2 2 0 0 213 0.96

Ratoon 1 2 47 6 868 5 32 9 970 0.89
Summer planting,

2018 2 1 2 0 9 245 0 3 262 0.94

Summer planting,
2019 0 0 3 2 2 0 217 1 225 0.96

Pineapple 1 1 0 0 0 1 0 206 209 0.99
Total 105 691 250 216 899 259 252 233 2905

User’s accuracy 0.95 0.99 0.78 0.94 0.97 0.95 0.86 0.88
Overall accuracy 0.93

Kappa 0.92
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4. Discussion

4.1. Band-To-Band Registration of Planet Dove Satellite Images

The deliberately inexpensive sensor designs and commercial off-the-shelf components of small
satellites worsen the consistency of acquired data quality in comparison with that of traditional large
satellites [42]. Measurements over slightly mismatched areas from different spectral bands lead to
much less accurate science data products when they are used together in heterogeneous areas [84].
Because the imager of PS2 had a split-frame visible (VIS) + NIR filter [41] and the RGB bands were
recorded in the same frame based on the Bayer array [83], there was no misregistration between
RGB bands. On the other hand, misregistration between RGB and NIR bands recorded in different
frames was seen in many images (Figure 3c,d) of wide areas with contamination by small clouds.
This band-to-band misregistration suggests that the registration was matched to the drifting cloud
that could not be removed because of the difference in observation timing of approximately 0.5 s
between the RGB bands and the NIR band. Images with misregistration between some RGB bands
were taken by the PS2.SD sensors. Because PS2.SD has a four-band frame imager with a butcher-block
filter providing blue, green, red, and NIR stripes [43], the observation timing differs slightly among all
four bands. Therefore, misregistration may occur in all bands, even between RGB bands.

4.2. Crop Growth Patterns Estimated by Planet Dove Imagery

Ratooning and spring planting of sugarcane had similar crop growth patterns (Figure 4). The only
major difference in land cover condition between ratooning and spring planting was whether or not
there was tillage after harvesting and if it was completely exposed to bare land, and the NDVI-based
crop growth pattern is considered to be similar because the growing periods were the same. The NDVI
time series clearly represented the summer planting of sugarcane. NDVI time series of summer
planting did not always maintain the lowest NDVI value from harvest to re-planting. This process
is due to the growth of weeds or residual sugarcane stocks in the agricultural field left after harvest,
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and these being embedded in the soil by tillage just before planting. Pineapple had a lower NDVI value
than that of pastures, possibly because of the difference in vegetation cover ratio. On Kumejima Island,
50% of purple yam is planted in spring (March to May), 30% in summer (June to August), and 20% in
autumn (September to November); it is harvested 5 or 6 months after planting. Since the purple yam
fields are usually transposed in one or two years, the crop growth patterns of 2017 and 2018 may
have been unclear due to a mixture of other crop type and practice patterns. These results adequately
represent the agricultural calendar of the crop types and practices according to the interviews with
farmers, and indicate that Planet Dove images can reveal crop growth patterns.

The NDVI time series generated from Planet Dove images contains noise components due to
individual differences in sensors [85]. The Planet Dove’s broadband sensor has a smaller NDVI range
and a negative bias compared with the Landsat-8/OLI sensor. However, the relationship between
NDVIs is linear, and the coefficient of determination is very high (top-of-atmosphere reflectance: 0.96;
surface reflectance (6SV): 0.99). The variations in NDVI calculated from Planet Dove were within the
range of approximately ±0.1 [85]. This means the variations had no considerable effect on our crop
growth pattern observations because they were smaller than the range of temporal NDVI variations
observed in this study (Figure 4).

4.3. Mapping and Classification Accuracy of Crop Type and Practice Using NDVI Time Series

The classification accuracy of SAVI was slightly higher than that of NDVI (Figure 5). SAVI was
developed to reduce soil effects, which affect NDVI [57]. This may be the reason for the slightly
higher classification accuracy of SAVI, because the amount of vegetation could be estimated more
accurately than with NDVI on agricultural land with low vegetation cover. MSAVI and EVI had
slightly lower classification accuracy than NDVI, possibly because the parameters in their equations
were not properly estimated owing to the dispersion of reflectance observed by Planet Dove sensors.
EVI uses the blue band in addition to the red and near-infrared bands [59], so the increased number of
bands may have increased the variability of the index. Moreover, EVI used the parameters developed
for the MODIS sensor, which may not be suitable for broadband Planet Dove sensors. The effects of
these parameters on EVI should be clarified by more detailed research. Therefore, we used NDVI to
create a crop type and practice map.

To the best of our knowledge, this study was the first to attempt to classify typical sugarcane
crop practices in Japan using satellite remote sensing. The NDVI time series generated by Planet
Dove satellite imagery classified sugarcane crop practices with good accuracy, exhibiting 0.93 for OA
and 0.88 for Kappa, calculated based on Table 2. The slight confusion was mainly between ratoon
and spring planting of sugarcane. There is no large difference in the growing season between these
crop practices (Figure 4). Variations in the NDVI values due to individual differences in sensors [85]
could have obscured the slight differences in the NDVI time series of the ratoon and spring planting,
which have similar growth periods, resulting in a slight confusion of the two classes shown in Table 2.
The only difference is that for spring planting season, vegetation is completely removed in spring
planting fields, whereas the soil of ratoon fields is covered with dry sugarcane leaves remaining after
harvest (mulching); therefore, in the NDVI time series, spring planting showed a slightly lower value
than that of the ratoon (Figure 4). Hence, the presence or absence of mulching in the early stages of
growth is the key to discriminating between ratoon and spring planting. It is necessary to examine the
sub-classification algorithm for ratoon and spring planting with a focus on the spring planting season.
At the same time, the classification between crop practices that show similar crop growth patterns
requires further efforts to suppress noise in the NDVI time series based on Planet Dove imagery caused
by individual differences in sensors [85].

The results for the user’s and producer’s accuracy of each class were good (Table 2). The producer’s
accuracy of ratoon was the lowest and ratoon was the most underestimated class (Table 2), indicating that
ratoon sugarcane fields had large spatio-temporal variability. The pineapple was the most overestimated
class, and pastures and sugarcane (summer planting in 2018 and ratoon) were often misclassified as
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pineapple (Table 2). Pasture and ratoon misclassification may have been caused by the presence of
vegetation throughout the year in unharvested areas of agricultural fields. The confusion may have
also been caused by the overlap between summer planting of sugarcane and pineapple growth season;
pineapples are harvested in July and August, plowed between August and October, and then replanted.
Classification may be improved by extending the time series period from 3 to 5 years.

Only pure pixels, not mixed pixels with non-agricultural areas, were classified in this study.
Hence, mixed pixels can be complemented by the neighboring pure pixels, and the coverage ratio of
pure pixels within an agricultural field at the spatial resolution of Planet Dove imagery (99.8%) is very
important in the classification of small-scale agricultural areas.

4.4. Assessment of the Optimal Dates and Required Observation Periods for Classification

The classification accuracy using 14 peak days (OA = 0.90, Kappa = 0.87) (Figure 9) was lower
than that using all variables (OA = 0.93, Kappa = 0.92); yet good classification accuracy continues to be
obtained. The number of peak days (14) almost coincided with the most frequent value (mtry = 15)
of the number of variables determined by tuning during classification.

On a single date, Kappa showed fair (0.20–0.40), making good classification impossible (Figure 9).
Therefore, multi-date images are required for mapping subtropical agricultural areas. The most
efficient approach for classification is to use five images in a two-year observation period (Figure 9):
Two images of the spring and summer sugarcane plantings in each year, and one image just before the
harvesting in the second year. The first four images may contribute to the identification of sugarcane
and other classes, and of sugarcane cropping practices. We infer that the last image would contribute
mainly to distinguish sugarcane (in particular, ratoon and spring planting) from purple yam, which are
all harvested mainly at this time of the year and have little vegetation cover. Using these images,
excellent classification performance (Kappa >0.80; Figure 9) was obtained.

The images of the harvest season did not contribute to achieve high classification accuracy
(Figures 7 and 8). This is supported by the poor classification accuracy for the similar crops based on
images taken in the harvest season [37]. The classification accuracy in the study of Ishihara et al. [37],
who used combined images from various medium spatial-resolution satellites (8–20 m) for an area similar
to ours, was lower than in our study (OA = 0.64 < 0.93, Kappa = 0.47 < 0.92). This difference may be
because they used only images taken in harvesting (January to March) and summer (July to September),
but not in the spring planting season. Furthermore, these authors intentionally used images with low
cloud cover, and may have missed the appropriate timing for classification because of the observation
frequency. The greatest advantage of creating a time series by high-frequency earth observation
using a satellite constellation is the improved probability of obtaining NDVI values at a time suitable
for classification.

5. Conclusions

Using a time series of Planet Dove images with high spatio-temporal resolution, we investigated
the performance of crop type and practice classification in subtropical small-scale agricultural areas
with a focus on sugarcane crop practices, which have large spatio-temporal variations. These images,
taken by nanosatellites, showed a mismatch in band-to-band registration, and it was necessary to
re-register the NIR band. Cloud contamination remained in the vegetation index time series created
from Planet Dove images, so it was necessary to reduce its effect by using a noise removal algorithm such
as the integrated BISE and MVI algorithm. The number of classes was set to eight, including sugarcane
subclassifications, and classification was implemented by a supervised RF algorithm. Although high
classification performance was achieved for all vegetation index time series, we recommend using
the commonly used NDVI, which includes the more effective NIR band. The NDVI showed high
classification accuracy (OA = 0.93, Kappa = 0.92) in discriminating between crop types and practices
across small fields in Japan, thus confirming the utility of high spatio-temporal resolution satellites
like Planet Dove. Analysis of the importance of variables obtained by the RF algorithm revealed that
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the best dates for classification were the dates of planting and cropping. The most efficient way to
classify crop types and practices is to use five image sets taken during a two-year observation period:
Two image sets of the spring and summer sugarcane plantings in each year of a two-year observation
period and one just before harvesting in the second year. These findings are applicable to other regions
and land use and land cover classes, and would allow a high level of classification performance and
effective use of images according to the subject.
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