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Abstract: If he were living today, Alexander von Humboldt would be using current technology to 
evaluate change in the Andes. Inspired by von Humboldt’s scientific legacy and the 2019 
celebrations of his influence, we utilize a Moderate Resolution Imaging Spectroradiometer 
(MODIS)time-series vegetation index to ask questions of landscape change. Specifically, we use an 
18-year record of Normalized Difference Vegetation Index (NDVI) data as a proxy to evaluate 
landscape change in Peru, which is well known for its high biological and ecological diversity. 
Continent-level evaluations of Latin America have shown sites with a positive trend in NDVI, or 
“greening” and “browning”, a negative trend in NDVI that suggests biophysical or human-caused 
reductions in vegetation. Our overall hypothesis was that the major biomes in Peru would show 
similar NDVI change patterns. To test our expectations, we analyzed the NDVI time-series with 
Thiel-Sen regression and evaluated Peru overall, by protected area status, by biome, and by biome 
and elevation. Across Peru overall, there was a general greening trend. By protected area status, 
surprisingly, the majority of greening occurred outside protected areas. The trends were different 
by biome, but there were hotspots of greening in the Amazon, Andean Highlands, and Drylands 
where greening dominated. In the Tropical Subtropical Dry Broadleaf Forest biome, greening and 
browning signals were mixed. Greening trends varied across the elevation gradient, switching from 
greening, to browning, and then back to greening as elevation increased. By biome and elevation, 
the results were variable. We further explored biome-specific drivers of greening and browning 
drawing on high-resolution imagery, the literature, and field expertise, much as we imagine von 
Humboldt might have approached similar questions of landscape dynamism. 

Keywords: NDVI time-series; Theil-Sen trend; Greening; Browning; Peru; Landscape change; Latin 
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1. Introduction 

Alexander von Humboldt explored the physical and human geography of the Americas from 
1799 to 1804 [1–3]. He was masterful at observation, description, measurement, and synthesis. His 
documentation of plant distributions in the Andes Mountains [4,5] inspired ongoing studies of the 
effects of biophysical controls on vegetation [6] and his data gathering has literally been replicated to 
show upward species migrations and downward expansion of human-modified landscapes [7,8]. If 
he were living today, the Prussian polymath would be using current technology to evaluate change 
in the Andes. Inspired by his examples and the celebrations in 2019 of the anniversary of his birth 
and his ongoing influence [9], we here utilize MODIS imagery to ask questions of landscape change 
occurring at a national scale in tropical South America. Humboldt famously evaluated change in 
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reference to both human and biophysical factors in present-day Peru, Ecuador, Colombia, and 
Venezuela and elsewhere in Latin America [1–3], which is similar to how land change researchers 
frame their evaluations currently [10,11]. 

Specifically, we use an 18-year record of Normalized Difference Vegetation Index (NDVI) data 
as a proxy to evaluate land-cover change across the country of Peru, which is well known for its high 
biological and ecological diversity [12,13]. Other recent continent-level evaluations of Latin America 
have shown many sites with a positive trend in long term NDVI, known as “greening” [14,15]. The 
drivers of positive trends in vegetation greenness are often hypothesized to be global in extent, and 
due to greenhouse gases causing carbon dioxide fertilization and warming trends (although note that 
Zhu et al. use Leaf Area Index) [16]. Nevertheless, there are also situations where direct human action 
has increased vegetation cover, for example in the vast area afforested in China that represents part 
of that country’s greening signal [17]. Thus, time-series vegetation indices such as NDVI offer means 
for assessing the relative contributions of atmospheric-mediated land-cover changes from those due 
to direct human actions in particular landscapes, typically at a more localized scale. 

A decrease in NDVI trends over time, characterized as “browning,” instead suggests biophysical 
or human-caused reductions in vegetation stature, biomass, or productivity. Such decreases have 
been detected in Australia, Africa, parts of South America, and in boreal forests [18,19]. In the 
Himalayas, Mishra and Mainali [20] showed that both greening and browning occurred, with the 
former often due to forest expansion, and the latter to its loss. They utilized a robust analysis of the 
NDVI time series with Thiel-Sen regression that we adapted for use here in our evaluation of change 
in Peru. 

There are sharp environmental gradients in Peru, with climates on the coast that are hyper-arid 
and others in the Amazonian premontane forest that receive more than 6 m of annual rainfall [21,22]. 
Much biophysical change is due to elevation, with mountains frequently surpassing 5000 m and steep 
slopes forcing much turnover in species composition [23]. As a result, our null hypothesis was that 
the four major biomes in Peru would show similar NDVI change patterns, which would imply that 
atmospherically mediated global change was driving shifts across very different ecological 
conditions. Rejecting that overall hypothesis would instead suggest that biome-specific change 
processes are prevalent.  

Aide et al. [15] isolated increases and decreases in woody plant biomass by elevation; their data 
for Peru showed most woody plant loss below 1500 m and most gain above. Similarly, we expected 
to find that elevation would be a significant control, and hypothesized finding similar results for land 
cover in general. Since 17.5% of Peru is located within areas formally designated for nature 
conservation [24], we expected that the greening would be especially related to conservation status, 
with browning more likely to be found in sites outside the national protected area (PA) system where 
human disturbance is more prevalent. 

We present our findings here based on the trend analysis of 18 years of MODIS NDVI time-series 
imagery. We begin by clarifying how statistical significance was evaluated from the remotely sensed 
data. Next, we present NDVI trend results for Peru overall, by PA status, by biome, and by biome 
and elevation. In the discussion, we explore the biome-specific drivers of greening and browning by 
drawing on ancillary high-resolution imagery, the literature, and field expertise, much as we imagine 
von Humboldt might have approached similar country-scale questions. 

2. Materials and Methods  

2.1. Study Area 

Located on the west coast of tropical South America between 0° S and 18° S, Peru is a global 
hotspot of diversity in terms of mammals, birds, amphibians, and plants [25–27]. Its tropical position 
and diverse topography (elevation ranges from sea level to 6786 m, the second highest peak on the 
continent) explain the high biological diversity. With a total geographic area of 1,285,216 km2, 87.4% 
is vegetated. The country’s biodiversity can be organized into four biomes: Amazon, Andean 
Highlands, Drylands, and the Tropical Subtropical Dry Broadleaf Forest (TSDBF) (Figure 1). In the 
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eastern lowlands, the Amazon is dominated by moist evergreen forests. The Andean Highlands 
consist of high elevation (>3000 m) grasslands, shrublands, remnant forests, glaciers, and bare rock. 
On the low elevation plain adjacent to the Pacific Ocean and the cold Humboldt Current, the Dry 
Coast is a hyper-arid biome mostly devoid of vegetation with the exception of fog-dependent plant 
communities (lomas) and groundwater-dependent plant communities. The TSDBF biome is ecotonal 
and is a confluence of biomes in northern South America, the Amazon, and the Andean Highlands. 
It is a heterogeneous mix of broadleaf deciduous forests and páramo (high elevation moist grasslands 
and shrublands) across a broad elevation gradient. 

 

 
Figure 1. Peru and its four biomes. Inset map shows the location of Peru in South America. 
 
Peru’s climate is influenced by the Intertropical Convergence Zone (ITCZ), the El Niño Southern 

Oscillation (ENSO), prevailing easterlies, the orographic effect, and the Humboldt Current. The 
complex interactions among these features create wide variations in precipitation and temperatures. 
Precipitation patterns are especially variable seasonally and geographically, but broadly, 
precipitation ranges from essentially 0 mm/year along the central coast [28] up to 7000 mm/year at 
the Andean–Amazon interface [29]. Average temperatures are similarly variable spatiotemporally. 
For example, low temperatures in the high Andes can be below 0° C. In the Drylands and in the 
Amazon, temperatures can reach 35° C. Also relevant to greening, browning, and changing land 
use/land cover are economic activities. Peru’s economy is dependent on extractive activities, 
including mined metals (copper, gold, zinc), hydrocarbons, agriculture, and fish products which are 
primarily destined for foreign markets. 

2.2. Remote Sensing Pre-Processing 

Methods are adapted from Mishra and Mainali [20], who evaluated greening trends across the 
Himalayas. After pre-processing was completed, the NDVI trend analysis was performed for several 
categories; the final phase was to explore causality (Figure 2). The remotely sensed data was the 
MODIS NDVI product (MOD13A3, Collection 6), a monthly 1-km spatial resolution dataset available 
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from the National Aeronautics and Space Administration (NASA) (www.reveb.echo.nasa.gov). 
Compared to coarser spatial resolution but temporally longer time-series product (e.g., ~8 km spatial 
resolution of NOAA-AVHRR), this MODIS product represents a meaningful compromise of 
temporal length and spatial/temporal resolution and was preferred to account for the high spatial 
heterogeneity and functional diversity of vegetation in Peru. Unlike its predecessor (i.e., collection 5) 
which used composited daily data, the collection 6 of MOD13A2 uses pre-composited data which is 
atmospherically corrected with a modified compositing algorithm that aims at reducing the aerosol 
issues (minimizing the blue band). It is, however, QA driven and tries to constrain the view angle to 
minimize bidirectional reflectance distribution function effects [30]. 

 
Figure 2. Workflow of the remote sensing pre-processing, trend analysis, and exploration of causality. 

The study area comprised four MODIS tiles (H9V9, H10V9, H10V10, H11V10) ranging from 1 
February 2000 to 31 January 2017 for a total of 203 monthly NDVI composites. To remove noise 
caused by atmospheric variability and clouds, we applied the Savitzky–Golay filtering procedure to 
the NDVI time series [31]. Because Peru is in the tropical latitudes where the growing season is year-
round, we used all 12 monthly NDVI composites for all years. Our analysis was conducted on only 
those pixels with vegetation cover. We identified only those pixels with vegetation cover by 
calculating the mean NDVI of the 18 years and applied a threshold of mean annual NDVI ≥ 0.2. Any 
pixel with a mean annual NDVI value <0.2 was removed from the dataset prior to the trend analysis. 
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Next, we calculated the annual maximum NDVI (NDVI-max) and annual mean NDVI (NDVI-mean) 
for each pixel for each of the 18 years. 

2.3. MODIS  Normalized Difference Vegetation Index Trend Analysis 

The identification of greening and browning trends was performed using the non-parametric 
Thiel-Sen (TS) regression on both the NDVI-mean and the NDVI-max time-series. The TS regression 
was calculated for each pixel by determining the slope between every pairwise combination of NDVI 
composites in the time series and then finding the median value [32]. The TS median trend with a 
breakdown bound of 29% of the length of time-series (i.e., number of wild values that can occur 
within a series before it can affect the median trend) improves upon the limitations of parametric 
methods (e.g., OLS regression) because it is less affected by outliers, particularly in the case of small 
sample data (n = 18 in this study). The significance of vegetation greenness and brownness trends 
was evaluated using the non-parametric Mann–Kendall test [33] by considering statistical 
significance at the 99% confidence level (p < 0.01). 

By combining two matrices, NDVI-mean and NDVI-max, we produced six statistically 
significant trend categories of change with three levels of confidence (Table 1). When a pixel had a 
significant trend in both NDVI-mean and NDVI-max, then it was considered to have the highest 
confidence of changing vegetation greenness (Both Positive and Highest Greening, Both Negative 
and Highest Browning). The second level of confidence was when a pixel trend was significant in 
only NDVI-mean (Positive Mean NDVI and Robust Greening, Negative Mean NDVI and Robust 
Browning). The third and lowest confidence level was when a pixel trend was significant in only 
NDVI-max (Positive Max NDVI and Strong Greening, Negative Max NDVI and Strong Browning). 

 
Table 1. The six statistically significant vegetation trend categories and corresponding confidence 

levels. NDVI refers to the Normalized Difference Vegetation Index. 
 

Trend Type  Confidence Level 
Both Positive Highest Greening 
Positive Mean NDVI Robust Greening 
Positive Max NDVI Strong Greening 
Negative Max NDVI Strong Browning 
Negative Mean NDVI Robust Browning 
Both Negative Highest Browning 

 
Finally, we evaluated the trend categories for the country overall, then by PA status, biome, 

elevation, and by biome and elevation. The four biomes are from the World Wildlife Fund terrestrial 
ecoregion map [34] and biome names were adapted from Antonelli et al. [35]. There are 94 protected 
areas in Peru’s national system and all were used in this analysis 
(http://geo.sernanp.gob.pe/geoserver/principal.php). The elevation source was ASTER GDEM V2 
(https://gdex.cr.usgs.gov/gdex/) and the elevation range was binned into thirty 200 m elevation 
classes. 

2.4. Exploring Causality 

To investigate the potential causes of change in vegetation greenness across Peru, we compared 
pixels representing the highest confidence levels of change (Highest Greening and Highest 
Browning) with co-located higher spatial resolution data (≤ 30 m) on Google Earth Pro for 2000 and 
2016 (2017 imagery was not available on Google Earth Pro at the time of analysis). In each of the four 
biomes, pixel trajectories representing Highest Greening and Highest Browning were generated 
through the time series. We then qualitatively compared the pixel trajectories to the observed changes 
in the finer grain imagery and we drew on peer-reviewed literature and field expertise for causality 
factors. 
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3. Results 

3.1. Peru Overall 

During the 18-year period under study, there was a general greening trend across Peru. An area 
of 34,398 km2 showed a statistically significant trend of changing vegetation greenness overall, 
representing 3.06% of the total geographic area of Peru. Of that, 9152.70 km2 showed browning versus 
25,244.68 km2 that showed greening (Table 2). 

Table 2. Total area and relative proportion of vegetation change from 2000 to 2017. By trend type (p < 0.01). 

Trend Type Area (km2) % of pixels with 
significant trend 

Both Positive 6448.3 18.7 
Positive Mean NDVI 7257.1 21.1 
Positive Max NDVI 11,539.1 33.5 
Negative Max NDVI 3005.9 8.7 
Negative Mean NDVI 2766.0 8.0 
Both Negative 3380.7 9.8 
Total 34,398 100 

3.2. By Protected Area Status 

The general greening signal is also evident when analyzing by PA status. In Peru, the majority 
of greening occurred outside the national system of PAs (Figure 3). The total area of changing 
vegetation outside PAs that was statistically significant was 31,880 km2, or 92% of the statistically 
significant total area of vegetation change. In comparison, the area inside PAs that greened or 
browned was only 2520 km2, or 7.3%. Inside PAs, 2028 km2 greened between 2000 and 2017 whereas 
492 km2 browned. Outside PAs, 23,217 km2 greened and 8663 km2 browned. 

 
Figure 3. Greening and browning by protected area status represented as a fraction of the statistically 
significant area of changing vegetation for Peru. More greening occurred outside protected areas than 
inside. 
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3.3. By Biome 

The trends of vegetation change were different by biome, but there were greening hotspots in 
the Amazon, Andean Highlands, and Drylands where strong greening trends outpaced browning 
(Figure 4). The largest difference between greening and browning was in the Drylands biome. We 
calculated that 31.0% of the total area in the Drylands showed Highest Greening (both mean-NDVI 
and max-NDVI positive), whereas 4.8% was Highest Browning (both mean-NDVI and max-NDVI 
negative). In the Andean Highlands, 15.1% of the total area in the biome was categorized as Highest 
Greening and 4.1% was Highest Browning. The Amazon reported similar contrasts between greening 
and browning: 17.0% was Highest Greening and 12.4% was Highest Browning. In the TSDBF, the 
greening and browning signals were mixed. In the highest confidence categories, 12.6% were Highest 
Greening and 3.9% was Highest Browning. The largest changes were in 30.9% in Robust Browning 
and 29.9% in Strong Greening. 

  

Figure 4. Greening and browning trends by biome. Greening outpaces browning in the Amazon, 
Andean Highlands, and Dry Coast. Refer to Table 1 for greening and browning confidence levels. 

3.4. By Elevation 

Greening trends varied across the elevation gradient, switching from greening, to browning, and 
then back to greening as elevation increases (Figure 5). Most greening occurred between sea level and 
1000 m. At elevations >1000 m and <5000 m, browning was dominant. Above 5000 m, there was more 
greening than browning. The highest number of significant pixels was between sea level and 1000 m, 
as shown in the top panel of Figure 5, corresponding with the greening signal outpacing browning. 
A second large cluster of pixels is between 3800 m and 5000 m, where browning is greater than 
greening. 
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Figure 5. Greening and browning trends by elevation classes for all Peru. The top panel represents 
the total number of pixels (red line) and the number of statistically significant pixels (blue bars). The 
middle panel displays all six trend types (see Table 1 for confidence levels). The bottom panel displays 
all size trend types aggregated. Across the elevation gradient, greening and browning varies: 
greening dominated at elevations <1000 m, then switching to browning >1000 m and <5000 m, and 
greening at the highest elevations over 5000 m. 

3.5. By Biome and Elevation 

In the Amazon, the majority of greening was in the lowlands at elevations <1000 m (Figure 6). 
The highest reaches of the Amazon forest occur on the eastern slopes of the Andes and in these areas, 
browning was found at elevations from 3800 to 4600 m. The Andean Highlands as defined in Figure 
1 combine both dry and humid puna (tropical alpine ecosystem types). Most of the statistically 
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significant pixels are between 4200 and 5200 m and are browning (Figure 7). Above 5200 m, greening 
outpaces browning where ecological succession is occurring in post-glacial landscapes. 

 

 

Figure 6. Greening and browning trends in the Amazon by elevation. The majority of greening, as 
measured by the number of significant pixels, was in the lowlands at elevations <1000 m. Refer to the 
caption in Figure 5 for panel descriptions. 
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Figure 7. Greening and browning trends in the Andean Highlands by elevation. Most pixels are 
between 4200 and 5200 m and are browning. Above 5200 m, ecological succession in post-glacial 
landscapes is a greening process. Refer to the caption in Figure 5 for panel descriptions. 

In the Drylands, there is a strong greening signal from sea level to 2000 m (Figure 8) related to 
agricultural expansion on the coastal plain. Above 2000 m and below 4200 m, browning dominates, 
although the number of statistically significant pixels is relatively small. Above 4000 m, greening 
leads browning. 
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Figure 8. Greening and browning trends in the Drylands by elevation. There is a strong greening 
signal from sea level to 2000 m, an elevation range where most significant pixels are located. Refer to 
the caption in Figure 5 for panel descriptions. 

In the TSDBF, the vast majority of change was at elevations below 200 m (Figure 9), where 
browning strongly overshadows greening. There is a small area between 200 and 800 m that shows 
greening and, over 800 m, the trend is browning. 
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Figure 9. Greening and browning trends in the Tropical Subtropical Dry Broadleaf Forest (TSDBF) by 
elevation. The vast majority of change was <200 m, where browning overshadows greening. Refer to 
the caption in Figure 5 for panel descriptions. 

4. Discussion 

Over an 18-year period across Peru, greening trends outpaced browning. The vast majority of 
Peru’s vegetation (97%) showed no change in greenness over the study period, similar to stable trends 
evaluated in China from 2000 to 2010 [36]. By protected area status, we found that the majority, or 
92%, of greening occurred outside PAs. Further analysis by biome and elevation showed that 
greening and browning trends were variable. By Peru’s four major biomes, we found that greening 
was dominant in the Andean Highlands, Amazon and in the Drylands, whereas the signal was mixed 
in the TSDBF. Across the elevation gradient, greening outpaced browning at the lower and higher 
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elevation classes, but browning overrode greening in the mid-elevation classes. When evaluated by 
biome and elevation, the trends were variable and imply that different drivers must be at work. 

4.1. Drivers of Greening and Browning Inside Protected Areas 

Given active management and restoration efforts inside PAs, we expected that greening would 
be related to conservation status. That is, greening would be more likely to occur inside Peru’s 
national system of PAs and browning would be higher outside PAs where human disturbance is 
more prevalent. In China, greening has been associated with PA status, although greening trends 
vary depending on the PA category [36]. In and around Colombia’s Picachos National Park there was 
net greening within in the park and net browning outside the park, but both were temporally variable 
[37]. At the scale of Europe, Buitenwerf et al. [38] used MODIS LAI to compare greening and 
browning inside vs. outside PAs; they found no difference and concluded that conservation efforts 
are not a factor in greening. Our findings are in contrast with examples from China, Colombia, and 
Europe because there is more greening outside PAs than inside. We believe that the drivers of 
greening outside PAs would likely be anthropogenic. If PAs determined that greening is a desired 
process, land management practices could be designed and implemented for such goals and where 
they are ecologically and socially appropriate. The PAs may serve as a type of experimental control, 
in that they show that global forcers are less of a factor in explaining Peru’s dynamism than human 
land use. Peru has ten national PA categories plus private conservation areas and regional 
conservation areas; future work could explore the effect of the category on greening/browning in 
order to examine in more detail links between land management policies and changes in vegetation 
cover. 

4.2. Drivers of Greening and Browning by Biome and Elevation 

We expected that there would be similar NDVI patterns in the four major biomes, but instead 
found that each biome’s NDVI trends are different, especially when elevation gradients are taken 
into account. These differences are likely due to processes and drivers of change specific to each 
biome and elevation range. To explore the potential causalities of both greening and browning within 
biomes and by elevation, we compared high-resolution imagery from 2000 to 2016 (2017 was not 
available at the time of analysis) with a single pixel NDVI value through the same 17-year trajectory. 
This was performed for greening and browning at representative sites in the four biomes that were 
selected by our extensive knowledge and field experience in each of the biomes (Figures 10-15). 

In the Amazon, greening is likely affected by two different drivers. Our research revealed 
distinct patterns of greening and browning around rivers indicating that the lateral migration of river 
channels plays an important role in causing ecological change (Figure 10). Deposition of sediment 
creates substrates on which forest succession can occur. Erosion removes substrates and vegetation, 
but our data show that the deposition-forest succession process is more spatially dominant. Outside 
fluvial settings, greening could be the result of forest regrowth following abandonment. Declines in 
agricultural productivity due to soil fertility losses often lead to abandonment and allow for forest 
recovery. Post-agricultural tropical forest recovery varies depending on land use features, related 
disturbance characteristics, and the state of the matrix [39], but could appear as greening. Browning 
in the Amazon is connected to the effects of mining when vegetation is removed to facilitate 
extraction. The Madre de Dios region is emblematic of this deforestation and fragmentation process 
and the trend line is a stair-step representing a rapid transition from a vegetated state to a de-
vegetated state (Figure 11).  
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Figure 10. In the upper panels, high spatial resolution imagery from Google Earth Pro shows Amazon 
greening downriver from Pucallpa between 2000 and 2016. Deposition of sediment creates substrates 
on which forest succession can occur and appears as a positive NDVI trend. The accompanying graph 
shows the entire time-series of the NDVI data and fitted Thiel-Sen trends for NDVI-mean (blue) and 
NDVI-maximum (orange) for a pixel located at S 7.874447°, W 74.916197°. 

 

Figure 11. In the upper panels, high spatial resolution imagery from Google Earth Pro shows Amazon 
browning near Madre de Dios between 2000 and 2016. Removal of vegetation for mining results in a 
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distinct stair-step NDVI trend. The accompanying graph shows the entire time-series of the NDVI 
data and fitted Thiel-Sen trends for NDVI-mean (blue) and NDVI-maximum (orange) for a pixel 
located at S 12.921817°, W 70.007838°. 

The greening we document in the Peruvian Andean Highlands corroborates previously 
published research. Vegetation dynamism is characteristic of Andean treelines and in post-glacial 
landscapes [40,41]. After glaciers retreat, new substrates are revealed and primary succession can 
occur. Pine and eucalyptus plantations are expanding to meet increasing timber demand from mining 
operations and urban growth, greening that is identifiable on high spatialresolution images (Figure 
12). Treelines are expanding upslope as tree seedlings and woody plants encroach into neighboring 
grasslands [14,42–44]. Another greening effect is the expansion of high-altitude wetlands (bofedales) 
in some sites as shown by increasing NDVI [45]. The geographic boundary of Andean Highlands we 
used includes both humid and dry puna, which are two distinct ecosystems in northern and southern 
Peru. A possible driver of browning in the Andean Highlands could be shrubby elements of the dry 
puna expanding into the humid puna. On the other hand, shrublands are increasing into high 
elevation zones, a process that could result in greening [15]. Emigration from remote mountain areas 
to urban centers can lead to abandonment of farming plots that then convert to shrublands or forests 
[46]. Rural-to-urban migration can be also linked to browning because urban zones expand to 
accommodate immigration. Mining is another driver of browning in the highlands. High metal 
commodity prices put pressure on extractive activities that result in expanded mine footprints and 
large drops in NDVI (Figure 13). 

 

Figure 12. In the upper panels, high spatial resolution imagery from Google Earth Pro shows Andean 
Highlands greening east of Cusco between 2000 and 2016. Expanding pine and eucalyptus plantations 
are likely drivers of gradual greening in this region. The accompanying graph shows the entire time-
series of the NDVI data and fitted Thiel-Sen trends for NDVI-mean (blue) and NDVI-maximum 
(orange) for a pixel located at S 13.662586°, W 71.522592°. 
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Figure 13. In the upper panels, high spatial resolution imagery from Google Earth Pro shows 
browning in the Andean Highlands near La Libertad between 2000 and 2016. Expanding mine 
footprints result in rapid decreases in NDVI. The accompanying graph shows the entire time-series 
of the NDVI data and fitted Thiel-Sen trends for NDVI-mean (blue) and NDVI-maximum (orange) 
for a pixel located at –S 7.977320°, W 78.086017°. 

In the arid and hyper-arid Drylands, greening outpaced browning in low and high elevations. 
One likely driver of greening along the coastal plain is the expansion of agriculture meant for exports. 
For example, the Chavimochic and Chinecas irrigation projects south of Trujillo divert glacier 
meltwater from the Santa river basin to large agricultural areas that have steadily grown in extent 
over the last 50 years [47,48]. The sudden increase in NDVI values shown in Figure 14 illustrate the 
expansion of this kind of agriculture. The Majes Siguas Special Project in southern Peru exhibits the 
same NDVI trajectories. Note that browning in the Drylands at low elevations might also be related 
to the transition of crop types over time. In some cases, the extent of cropland does not change, but 
the NDVI trend is negative, so we surmised that crop types within the zones may change due to 
decreasing water availability, soil degradation, and changes in consumer preferences (increasing 
demand for blueberries and asparagus, for example). Coastal browning is also observed where urban 
centers expand into agricultural zones resulting in a loss of vascular plant material (Figure 15). The 
expansion of urban areas and mines would account for browning in mid to high elevations as well. 
At the highest elevation in the Drylands biome, the processes would be similar to the Andean 
Highlands, related to increases in shrublands and ecological succession after glacier retreat. 
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Figure 14. In the upper panels, high spatial resolution imagery from Google Earth Pro shows Dry 
Coast greening south of Trujillo between 2000 and 2016. Agricultural land use is expanding on the 
Dry Coast and converts desert to agriculture that produces greening signals in the data. The 
accompanying graph shows the entire time-series of the NDVI data and fitted Thiel-Sen trends for 
NDVI-mean (blue) and NDVI-maximum (orange) for a pixel located at S 8.312944°, W 78.914959°. 

 

Figure 15. In the upper panels, high spatial resolution imagery from Google Earth Pro shows Dry 
Coast browning near Lambayeque between 2000 and 2016. Where urban centers expand into 
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agricultural zones, a loss of vascular plant material results in browning trends. The accompanying 
graph shows the entire time-series of the NDVI data and fitted Thiel-Sen trends for NDVI-mean (blue) 
and NDVI-maximum (orange) for a pixel located at S 6.762088°, W 79.727939°. 

Other contributions to greening in Peru are the potential interactions with El Niño events. 
Undisturbed areas of Drylands are mostly devoid of vegetation except for fog-dependent plant 
communities, or lomas. Following El Niño events, lomas respond to the increase in precipitation by 
increasing abundance, changing species composition, and increasing cover and extent. These are 
responses that should be apparent in NDVI values, although van Leeuwen et al. [49] note that an 
anomaly in NDVI time series data could influence the relationship between NDVI and El Niño, at 
least as derived from AVHRR. Biocrusts and lomas are admixed and this combined with low 
vegetation cover presents remote sensing challenges, but recent work offers potential solutions. 
Panigada et al. [50] reported using high temporal, spatial, and spectral data from Sentinel-2 to 
monitor dryland biocrusts in the Negev Desert along a precipitation gradient. This type of approach 
could be applied in Peru’s biomes with El Niño indices used and MODIS data to parse out the 
relationship between NDVI and cyclical rainfall. 

In the TSDBF biome, the greening and browning signals are less clear as multiple ecosystem 
types exist in a smaller area. The El Niño signal impacts TSDBF on western and northern slopes and 
this is the part of Peru most altered by ENSO-related changes. But the pervasiveness of middle 
elevation browning instead suggests that the deforestation front reported for that area supplies much 
of the change [15]. The NDVI trends for deciduous trees in South America reported by Fensholt et al. 
[51], were positive from 1982–2011, which would fit with lower elevation greening where tropical 
dry forests can be found, but would also include the new agricultural areas in lowland north Peru. 

4.3. Caveats and Additional Considerations 

This study fitted a linear model to characterize statistically significant changes in an NDVI time-
series. We recognize, however, that drivers of change and vegetation responses can be non-linear. 
For example, mining in the Andes and Amazon produces a stair-step change from a vegetated to 
non-vegetated state. Coastal landscapes green following El Niño-induced precipitation events that 
are pulses over a 3 to 7-year cycle; TSDBF is also affected by El Niño events. Deforestation for 
agricultural land use, subsequent abandonment, and recovery could produce a U-shaped NDVI trend 
line that a linear model might report as a slow decrease or increase. By using NDVI-max and NDVI-
mean in the trend analysis, our approach also removed the influence of seasonality that influences 
vegetation greenness annually. In the past decade, several different time-series analysis methods 
have been developed that are able to explicitly include and model seasonality [52], as well as both 
gradual and abrupt changes in vegetation greenness over time [53]. Our future research will focus on 
testing these improved modeling techniques on the MODIS NDVI time-series data. Also, given the 
high spatial heterogeneity and fine scale diversity in vegetation types and land use in Peru, 1 km 
pixel resolution is not optimal. Higher spatial resolution time-series would enable more accurate 
representation of spatial vegetation greenness patterns and their drivers, which would be directly 
relevant to land-management interventions. Besides spatial resolution, a longer time-series of 
vegetation indices is also desirable since inter-annual vegetation dynamics are impacted by longer 
climatic cycles. 

Lagged effects have also been noted for Andean vegetation and precipitation [54] and primary 
succession lags after glacier recession [55]. Future work on similar questions could employ non-linear 
techniques such as the Breaks For Additive Seasonal and Trend (BFAST) method that decomposes 
the observed trends into linear multi-year trends and seasonality in which non-trivial and significant 
jumps and breaks reflecting important ecological events or shifts are detected; this would allow for 
disentangling vegetation responses at a finer temporal resolution [53]. Future work can also include 
more formal models of causality that go beyond correlation and lagged regression and provide a 
robust estimate of true causation where multiple variables and multiple lags are tested 
simultaneously thus avoiding spurious and indirect causation [56,57]. Furthermore, we are aware of 
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the literature documenting uncertainties and challenges of measuring greening in the Amazon using 
MODIS data as well as the complexities and sensitivities of Amazon vegetation dynamics to rainfall, 
seasonality, drought, and atmospheric conditions, among others, and future work would account for 
these variables. 

5. Conclusions 

The Earth is greening [16] and our results show that landscape change in Peru fits within global 
trends. Peru is greening overall, but with its high biological, ecological, and topographic diversity, 
general greening trends mask finer-scale changes. Using the finest level of detail (smallest pixel size) 
available with the longest temporal extent, we combine that with co-located higher spatial resolution 
data to explore likely drivers of change that differ from biome to biome, across elevations, and by 
protected area status. Our explorations of drivers of greening and browning are probable, but merit 
additional research. They serve as hypotheses for future research that would expand on the Earth 
science fundamentals elucidated by Alexander von Humboldt, but acknowledging that his attention 
to the human dimensions of change is all the more relevant for understanding land-cover changes. 
As a result, we conclude by confirming the opportunities described by Schrodt et al. [9] to celebrate 
Humboldt’s contributions by using new technologies but applying them to describe processes driven 
by global economic and biophysical changes, but as mediated through landscape-level processes 
acting through human–environment dynamics. 
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