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Abstract: Nowadays, object detection methods based on deep learning are applied more and more
to the interpretation of optical remote sensing images. However, the complex background and the
wide range of object sizes in remote sensing images increase the difficulty of object detection. In this
paper, we improve the detection performance by combining the attention information, and generate
adaptive anchor boxes based on the attention map. Specifically, the attention mechanism is introduced
into the proposed method to enhance the features of the object regions while reducing the influence
of the background. The generated attention map is then used to obtain diverse and adaptable anchor
boxes using the guided anchoring method. The generated anchor boxes can match better with
the scene and the objects, compared with the traditional proposal boxes. Finally, the modulated
feature adaptation module is applied to transform the feature maps to adapt to the diverse anchor
boxes. Comprehensive evaluations on the DIOR dataset demonstrate the superiority of the proposed
method over the state-of-the-art methods, such as RetinaNet, FCOS and CornerNet. The mean average
precision of the proposed method is 4.5% higher than the feature pyramid network. In addition,
the ablation experiments are also implemented to further analyze the respective influence of different
blocks on the performance improvement.
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1. Introduction

As an important tool of earth observation, remote sensing has been widely used in civil and military
fields, such as geological monitoring, climatic forecast, ecological environment monitoring, and battle
reconnaissance. With the continuous development of remote sensing technology, rapidly increasing
images make manual interpretation a tremendous task, and as a result, automatic interpretation
has drawn considerable research attention. Object detection plays an important role in image
interpretation, the purpose of which is to detect the locations of the objects of interest and identify their
corresponding categories. For optical remote sensing images, researchers have done a lot of work on
object detection [1–4]. With the advancement of computer vision and machine learning, especially deep
learning, object detection for natural images is more and more mature. Many researchers have drawn
on the successful experience of natural images, and applied deep-learning-based methods to remote
sensing images [5–8].
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The object detection methods based on deep learning can be divided into one-stage and two-stage
methods according to the detection process. One-stage methods, such as you only look once (YOLO) [9–11],
single shot multi-box detection (SSD) [12] and RetinaNet [13], sample dense boxes at different positions
of the images. Multiple scales and aspect ratios are used for sampling. The convolutional neural
network (CNN) is used to extract features, classify and locate the objects directly. The whole process
needs only one step, and therefore, the detection is efficient and fast. However, a considerable
disadvantage of one-stage methods is that sampling dense boxes makes the positive and negative
samples extremely imbalanced. Actually, most scenes of remote sensing images are large and
the distribution of the contained objects is sparse, which exacerbates the imbalance problem.
Therefore, in such a case, the performance of one-stage methods is usually unsatisfactory. The current
object detection methods for remote sensing images are mostly two-stage methods, which are proposed
on the basis of region CNN (RCNN) [14].

Regarding the RCNN-based methods, object detection includes two stages: the generation of
proposal boxes, and the regression and classification of the boxes. In the first stage, according to
the feature maps extracted from the backbone network, a series of class-agnostic proposal boxes are
generated for each image by the proposal generation algorithms, such as selective search algorithm [15]
and region proposal network (RPN) [16]. In the second stage, the feature maps are cropped according
to the proposal boxes and then resized into the same size. These feature maps are used not only to
predict the objects’ categories, but also to further fine-tune the proposal boxes to make the predicted
boxes more accurate.

The success of the RCNN-based methods is largely attributed to the generation of proposal
boxes. The proposal boxes make the positive and negative samples used for training more balanced,
and the double box regressions also make the predicted boxes more accurate. In addition, the cropped
regional feature maps also enable the network of the second stage to avoid the influence of the
background. For natural images, the methods based on RCNN have achieved satisfactory results.
However, compared with natural images, remote sensing images have more diverse objects with
different scales and aspect ratios, and more complex backgrounds. In this paper, in order to solve these
problems, we make a variety of improvements and the main contributions are as follows:

1. In general, remote sensing images contain large scenes and sparse objects. In the CNN for feature
extraction, the weights of different positional features are the same and the network pays uniform
attention to them. However, there are many background areas in the scene, which may interfere
with object detection and lead to false predictions. Therefore, we apply the attention mechanism
into the proposed method to adjust the weights of the features. The generated attention map can
be regarded as the spatial weights of different positions on feature maps. It can make the network
pay more attention to the object area rather than the background area. The weighted feature maps
are used to model the channel-wise dependencies, which can selectively enhance the informative
feature channels, thereby improving the feature maps.

2. In most RCNN-based methods, the anchor boxes used to generate proposal boxes are preset with
sliding windows and fixed shapes. However, the fixed shapes can not fit the diverse objects in
remote sensing images. In this paper, we think that the generated attention map can also reflect
the location of the object, and use the attention map to predict the positions of the anchor boxes.
The guided anchoring method is incorporated into the proposed detection framework to predict
the corresponding shapes of the anchor boxes.

3. In order to make the feature maps match better with the generated anchor boxes, as well as get
more effective regional features, we adopt a modulated feature adaptation module (MFAM) to
transform the feature maps. The module first calculates the offset and modulation scalar according
to the predicted shape maps of anchor boxes. The modulated deformable convolutional layer [17]
is used to produce the transformed feature maps, which are more matched with the anchor boxes.
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2. Related Work

The task of object detection in remote sensing images has been extensively studied since the
1980s [18]. Object detection methods based on machine learning are usually divided into three stages:
region proposal generation, feature extraction and classification. Region proposals are the regions
that may contain the objects, and they are usually obtained by certain algorithms such as sliding
window. Feature extraction is used to transform the image pixels to discriminative and representative
features. The widely used features for object detection mainly include: histogram of oriented gradients
feature [4], Bag-of-words feature [3] and texture features [19]. After obtaining the features of each
region proposal, a classifier is needed to classify the features to determine whether the region is object
or background. The commonly used classifiers include support vector machine [2], AdaBoost [1],
k-nearest-neighbor [20], etc. Besides the optical and infrared sensors, synthetic aperture radar (SAR) is
also widely used in remote sensing applications due to its capability of producing all-weather, all-time
and high-resolution images. There are also many segmentation and object detection methods for SAR
images [21–24]. These methods have achieved certain results in their respective fields, but they still
need to manually select feature extraction methods and classifiers.

With the development of object detection technology based on deep learning, its applications in
the field of remote sensing are increasing. Researchers have tried to improve the deep-learning-based
methods from many aspects in recent years. In [5], Gong Cheng et al. proposed rotation-invariant
CNN, which imposes a rotation-invariant regularizer and a Fisher discrimination regularizer on the
CNN features. R2-CNN [25] was proposed to tackle the object detection in large-scale remote sensing
images, and it designs a lightweight residual structure called Tiny-Net to improve the speed of feature
extraction. In order to detect the rotated objects, Jian Ding et al. [7] proposed an RoI Transformer to
transform the horizontal boxes into rotated boxes. In this section, we mainly review common methods
about the attention mechanism and the generation of proposal boxes.

2.1. Attention Mechanism

Humans usually pay more attention to some specific parts of the visual scene according to their
needs, while ignoring the other parts. The above phenomenon is often referred to as the attention
mechanism. For machine learning, by applying the attention mechanism, we can learn the importance
of each element in the feature, and obtain its corresponding weight coefficient.

Wang et al. [26] proposed the non-local operation to model the pixel-level pairwise relations and
computed the response at a position as a weighted sum of the features at all positions. The attention
weight means the captured long-range dependency that is not constrained by the distance. However,
the generation of an attention map has a high computation complexity. Therefore, Huang et al. [27]
proposed a criss-cross network (CCNet) to model the pixel-level pairwise relations in a resource-saving
way. For each position, CCNet obtains the contextual information of the surrounding points on the
criss-cross path through a criss-cross attention module. The pixel-level pairwise relations between
other points can be obtained after a recurrent operation. Thus, each position in the final output
feature maps can capture the long-range dependencies from all points. In order to further reduce the
amount of computation, Cao et al. [28] tried to use the query-independent attention map instead of the
query-specific attention map used in non-local block, to aggregate the features of all positions together.
They used a convolutional layer with 1× 1 convolutional kernel and softmax function to calculate the
global attention map and share it with all query positions. The query-independent attention map not
only has a lower computation cost, but also maintains the accuracy.

The above methods are mainly used to calculate the attention weight in the spatial dimension.
In addition, the correlation between different channels of feature maps is also important to be explored.
To better build the dependencies between the channels, squeeze-excitation (SE) network [29] obtains
the global distribution of channel-wise responses through the squeeze operation, and produces the
weight value of each feature channel through excitation operation. The weight values are used to
selectively emphasize informative features and suppress useless ones.
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2.2. Generation Methods of Proposal Box

In the RCNN-based approaches, the first stage produces the proposal boxes that may contain
objects. The most straightforward way to generate proposal boxes is the sliding window [30].
The sliding window method uses the boxes of different scales and aspect ratios to search all possible
objects over the entire image, then the classifier is used to identify all the boxes and leave the boxes
with high scores. Obviously, this approach produces too many redundant boxes and it is complex
and unfeasible. Therefore, researchers have proposed a variety of region proposal algorithms to
promote efficiency.

Selective search [15] is a region proposal algorithm used in R-CNN [14]. Selective search uses a
graph-based segmentation method [31] to initialize the segmentation regions. Then, the similarities
between all regions are measured, and the corresponding regions with the greatest similarity are
merged as a proposal box. The similarity measures used in selective search include color, texture,
size and shape compatibility. Selective search does not require training, but it has a large amount of
calculation and the speed of generating region proposal is slow. Therefore, it is difficult to meet the
needs of real-time detection.

In order to speed up the generation of proposal box and further use the features extracted by CNN,
Faster R-CNN [16] directly uses RPN to obtain the proposal boxes. RPN slides a small network over the
feature maps output by the backbone network, and each location of the sliding window corresponds
to several anchor boxes of different scales and aspect ratios. Each sliding window is mapped to a
low-dimensional feature vector. The feature vector is used to predict the score of being an object and
regression values between the ground truth box and the anchor box. However, the application of the
anchor box introduces more hyperparameters and design choices, such as the sizes and aspect ratios
of anchor boxes.

In order to avoid setting anchor boxes, Hei Law et al. [32] used a single CNN detector named
CornetNet to detect an object bounding box as a pair of key points, namely the top-left corner and the
bottom-right corner. Transforming the detection of bounding box into the detection of key points can
eliminate the dependence on the design of the anchor boxes; therefore, the methods like CornetNet
are also known as anchor-free methods. Other anchor-free methods include CenterNet [33] and
ExtremeNet [34]. Anchor-free methods have achieved good results in natural images, and they are
also getting more and more attention from researchers.

In the proposed method, we used the attention mechanism to enhance the feature maps and make
the network pay more attention to the object areas. Then, we adopted the generated attention map and
guided anchoring method to obtain more adaptive anchor boxes. In addition, the modulated feature
adaptation module was used to make the feature maps better match with the anchor boxes.

3. Method

3.1. Overall Detection Framework

Firstly, we clarify the overall detection framework in this subsection. The proposed method takes
the whole image as input, and applies the backbone network to extract the feature maps. The attention
mechanism was adopted to enhance the feature maps according to the generated attention maps.
The attention maps were also used to represent the locations of the anchor boxes. The enhanced feature
maps were then utilized to generate the shape maps of the anchor boxes. The attention maps and shape
maps can obtain the anchor boxes based on the guided anchoring method. The modulated feature
adaptation module can obtain the offset and modulated scalar from the shape maps, and transform the
feature maps. The transformed feature maps and the generated anchors were finally used to predict
the categories and locations of the objects. The schematic of the proposed detection method is shown
in Figure 1.

In the following subsections, we will introduce the attention mechanism, anchor generation and
modulated feature adaptation module in detail.
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Figure 1. The schematic of the proposed detection framework.

3.2. Attention Mechanism

Generally, the scene of the remote sensing images is large, while the object areas occupy only
a small part of the whole scene. The information in the background area may interfere with object
detection. Therefore, it would be beneficial if suppressing the feature of background areas and making
the network more focused on the feature of the object areas. In order to achieve this end, the attention
mechanism is applied to the network.

The calculation of the values in the attention mechanism mainly involves queries and keys.
However, Xizhou Zhu [35], Cao [28] et al. find that the attention weights are uncorrelated with
the queries. They are only related to the keys. Therefore, the proposed method adopts the
query-independent attention mechanism. Referring to [35], the attention weight can be modeled as:

A(q, k, zq, xk) = softmax(uTVCxk), (1)

where zq denotes the content of the q-th query element, xk denotes the content of the k-th key element.
A(q, k, zq, xk) is the attention weight in the attention sub-network, and VC denotes the learnable
embedding matrix for the key content, and u is a learnable vector.

The final formula of attention weights is:

yq = W[ ∑
k∈Ωq

softmax(uTVCxk)⊗ xk]. (2)

where Ωq is the key region for the query, W is the learnable weight. yq is the output of the attention
mechanism. ⊗means element-wise multiplication.

As described in Section 2, the squeeze-excitation module is proposed to capture the interdependencies
between feature channels. It is worth noting that the final output yq is also used to model the
channel-wise dependencies in most attention mechanisms. Therefore, we introduce the SE module into
the attention mechanism. In specific, the learnable weight W in Equation (2) is replaced by SE module.
In [29], the squeeze operation is global pooling. However, the attention mechanism has multiplied
feature map xk by attention map A. Therefore, the squeeze operation can be regarded as the weighted
pooling in the proposed method. Moreover, we add the layer normalization [36] into the SE module to
make the network easier to optimize. Specifically, layer normalization directly calculates the statistics
from the hidden units of each layer without introducing any new dependencies between training cases.
The stochasticity from the statistics can serve as a regularizer during training, thus to enhance the
generalization of the network.

The final calculation flowchart of attention weights is shown in Figure 2.
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Figure 2. The flowchart of attention weight calculation in the proposed method. The numbers in
parentheses denote the shape of the feature map.

According to Figure 2, the input feature maps xk can generate the feature maps x̂k by convolution.
x̂k can be weighted and summed up to get x̂′k by multiplying with the learnable vector u. x̂′k is
normalized by the softmax function and obtains the final attention weights x̂′′k. According to the
learned attention map x̂′′k, the input feature maps xk are element-wise weighted and summed up
to obtain the channel-level dependencies. This operation corresponds to the squeeze in the original
SE module. The dependencies then generate the final output yq through the excitation operation
consisting of two convolutions. Subsequently, yq is broadcast in each spatial dimension to match the
input features. The enhanced feature maps are generated by element-wise adding the input feature
maps and the broadcast channel-level dependencies together.

The attention map represents the area that the network should pay attention to in the global scene.
For the task of object detection, we think that the most noteworthy areas are the regions where the
objects are located. In practice, the query-independent attention maps of the images are visualized in
Figure 3. It also confirms our view that the values of the object area in the attention map are usually
higher than that of the background area. Therefore we try to use the attention map to predict the
positions of objects. Specifically, attention maps are incorporated into the guided anchoring method to
obtain more adaptive anchor boxes. The procedures will be described in the next section.

Figure 3. Cont.
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Figure 3. An example of query-independent attention map. Top row is the remote sensing images,
and bottom row is the corresponding attention map.

3.3. Anchor Generation

As is well known, the anchor box prediction is a preliminary work for the proposal box. One task
of the proposal box is to find the location of the potential object; therefore, the positions of the anchor
boxes only need to be concentrated on the regions where the objects are located. In [28], the guided
anchoring method predicts the probability of the object at each position through an independent
subnetwork and obtains a probability map. Since the predicted position map reflects the potential
object locations throughout the scene, it is similar to the attention map. We reuse the attention map in
the guided anchoring method to predict the anchor boxes. A threshold for the attention map is used
to determine whether the region contains the objects. The regions above the threshold are where the
generated anchor boxes should be located.

Besides the location, the generation of the anchor box also needs to predict its corresponding
shape. However, different from the bounding box, the anchor box does not have a proposal box to
provide prior information, which is also the reason why the conventional methods need to slide the
window and preset the shape of the anchor box. To solve the problem, we adopt a guided anchoring
method to directly predict the shapes of the anchor boxes according to the feature maps. In specific,
the width and height of the anchor boxes are predicted by an independent subnetwork. The adopted
subnetwork is a simple single-layer convolutional layer. Its output channel number is 2, representing
the predictions of width and height, respectively. The value of each location in the output feature map
is the predicted width and height of the anchor box in the corresponding position.

As with the proposed box, the shape prediction of the anchor box also depends on the regression.
The most straightforward idea is to directly predict the width and height of the anchor box through
the network. However, the scales and aspect ratios of the objects have a large variation range, but the
value ranges of different locations are close due to the shared parameters in the convolutional layer.
Therefore, it is hard to directly regress the original widths and heights of the anchor boxes. It should be
noted that the proposed method is based on feature pyramid network (FPN), which produces multiple
feature levels. The lower-level feature map has higher resolution and can be used to detect small
objects, while the coarser-resolution feature map is used to detect large objects. To avoid the direct
regression, different regression ranges can be set for different feature levels. Specifically, the guided
anchoring method adopts a nonlinear mapping function to transform the width and height into a
narrower range. The nonlinear function is:

dw = ln(
w
σs

),

dh = ln(
h
σs

),
(3)
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where s is the stride of the feature map relative to the original image, σ is the preset scale factor, w and
h are the original width and height of the ground truth box. The diagram of the function is shown in
Figure 4, where the scale factor is 8 and the strides are 4, 8, 16, 32 and 64.

���� ���� ��� ��� ���
�����

�

���

���

���

���

����

����

����

����

�
��

���
�	�
���
�	�
���
�	��
���
�	��
���
�	��

Figure 4. The illustration of the nonlinear function mapping.

As shown in Figure 4, by selecting the appropriate scale factor and stride, dw and dh in the range
of [−1, 1] can be converted to any value in the range of [12, 1391]. dw and dh as the regression target
can significantly reduce the difficulty of regression. The guided anchoring method uses a subnetwork
to predict dw and dh, which are then converted to w and h according to the inverse transformation of
Equation (3).

3.4. Modulated Feature Adaptation Module

Due to the adoption of guided anchoring, the shapes of the anchors are different for each position.
The different shapes result in that the receptive field of the convolutional layer in subsequent steps does
not match well with the anchors in different locations. In order to solve this problem, Wang et al. [37]
tried to use a feature adaptation module to transform the feature maps extracted from the backbone
network based on the shapes of the predicted anchors. The feature adaptation module enhances the
perception capability of the convolutional kernel in different spatial positions by adjusting offsets in
perceiving input features. To further strengthen this capability, we propose to use a modulated feature
adaptation module to regulate the amplitudes of different spatial locations in the input feature map.

The core of the proposed MFAM is modulated deformable convolutional layer [17] of 3× 3 kernel
size, and the calculation formula of modulated deformable convolution is:

y(p0) = ∑
pn∈R

k(pn) · x(p0 + pn + ∆pn) · ∆mn, (4)

where x is the input feature map, y is the output feature map, k is the convolutional kernel, and p0

demotes the position to be calculated in the output feature map, pn means the n-th position of
the convolutional kernel, R denotes the set of the positions in the convolutional kernel. Take the
convolutional kernel of 3× 3 as an example, R = {(−1,−1), (−1, 0), · · · , (0, 1), (1, 1)}. (p0 + pn) is
the position of the input feature map corresponding to the n-th position of the convolutional kernel in
the conventional convolutional layer.

As shown in Equation (4), the deformable convolution adds ∆pn and ∆mn, which denotes the
offset and the modulation scalar of the n-th position in the convolutional kernel. Compared with
the conventional convolution, the offset of the modulated deformable convolution can adjust the
perceivable positions in input feature maps, and the modulation is applied to change the amplitudes
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of different spatial locations. Therefore, modulated deformable convolution has the capability to
manipulate spatial support regions.

In [37], the offset is obtained by convolutional layer C1, the input of which is the predicted width
and height. In this way, the feature adaptation module transforms the feature map using the generated
offset to better match the shape of the anchor. Similar to the offset, the modulation scalar in the
proposed method is also obtained through the other convolutional layer C2. In general, the input of C2

is the original feature map extracted from the backbone network. In the proposed method, the purpose
of using the MFAM is to make the transformed feature maps more suitable for the various shapes of
the anchor boxes. Therefore, it is a better choice to use the shape maps to predict the modulation scalar.
Therefore, we also consider to directly use the shape maps as the input of C2. In addition, because the
required weight has a value range of [0, 1], the generated modulation scalar needs to be transformed
by a sigmoid function.

It is worth noting that the subnetwork to predict the shape map is not trained by the loss from the
MFAM. That is, loss only adjusts the modulated deformable convolutional layer and two convolutional
layers C1 and C2 in the backward propagation. The diagram of the MFAM is shown in Figure 5.

Figure 5. The diagram of modulated feature adaptation in the proposed method.

4. Experiments and Results

In order to verify the effectiveness of the proposed method, we conducted several experiments
on the DIOR dataset [38]. The experimental results show that the proposed method has a significant
improvement in the object detection task for remote sensing images compared with the conventional
methods. All the experiments are conducted on a computer with a central processing unit (CPU) of Intel
6700K, a graphics processing unit (GPU) of NVIDIA GTX 1080Ti, and random access memory (RAM)
of 32 GB. All experiments are implemented based on the open source code base mmdetection [39].

4.1. Data Preparation

The DIOR dataset consists of a large number of remote sensing images. The dataset includes 20
classes of objects, which are airplane, airport, baseball field, basketball court, bridge, chimney, dam,



Remote Sens. 2020, 12, 2416 10 of 18

expressway service area, expressway toll station, golf course, ground track field, harbor, overpass,
ship, stadium, storage tank, tennis court, train station, vehicle and windmill. There are 23,463 optical
remote sensing images in total, and their sizes are all 800× 800 pixels. The spatial resolutions of the
images are from 0.5 to 30 m.

The DIOR dataset is randomly divided into two subsets, namely training set and testing set,
to achieve more consistent distribution between two subsets. In which, the training and testing sets
contain 11,725 and 11,738 images, respectively. The labeled bounding boxes in the training set are used
to train the whole network. In the inference, the test set is used to evaluate the effectiveness of the
trained network.

4.2. Evaluation Metrics

In order to evaluate the performance of the detectors, precision-recall (PR) curve and average
precision (AP) are adopted as the evaluation metric.

In general, there are three types of detection results, including true positive (TP), false positive
(FP) and false negative (FN). The IoU threshold is used to determine the specific type of the detected
bounding box. TP usually refers to the result that the IoU between the predicted box and the ground
truth box is greater than the preset threshold. FP is just the opposite. FN means the missed objects that
are predicted as background. The IoU threshold is set as 0.5 in our experiments.

According to these three types of detection results, we can further obtain the precision and recall
metrics. The former metric is used to measure the proportion of correct predictions in all predicted
results, while the latter one can evaluate the proportion of detected objects in all positives. The precision
P and recallR are defined as:

P =
TP

(TP + FP)
,

R =
TP

(TP + FN)
.

(5)

The PR curve reflects the corresponding relationship between precision and recall, namely the
precisions under different recalls. High precision means a low FP, and high recall means a low FN.
A better method should have a higher precision under the same recall than the other methods.

The AP computes the average value of P over the interval fromR = 0 toR = 1. Therefore, it can
be regarded as the area under the PR curve, and an ideal detector should have a high area and
vice versa. Compared with the PR curve, AP more directly reflects the overall performance of the
detector, and it is commonly used for the evaluation of object detection results. In addition, because the
objects have multiple classes in the experiments, the mean AP (mAP), which averages the APs of
different classes, is generally used to evaluate the detection performance on multiple classes.

4.3. Implementation Details

ResNet [40] has been proved to be an effective backbone network in many tasks of object detection.
ResNet uses the residual learning framework to address the degradation problem of the deep network,
thereby easing the training of the network. In order to reduce the computation required by the
backbone network, we adopt ResNet-50 as the backbone network in our experiments.

The overall framework is based on the classic FPN [41]. FPN uses the bottom-up pathway to
calculate the feature hierarchy, which is composed of feature maps of multiple scales. Then the
top-down pathway is used to obtain high-resolution feature maps with stronger semantic information.
The feature maps of the same size, which are from the bottom-up pathway and the top-down pathway,
respectively, are merged by lateral connection. Finally, the merged feature maps pass through a
convolutional layer with a convolutional kernel of 3 × 3 to obtain the final feature maps. In our
experiments, the final feature maps have five scales, and the strides of the scales are 4, 8, 16, 32, and 64,
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respectively. The feature maps are used for subsequent steps, such as the generation of proposal boxes,
the classification and localization of RoIs.

In the guided anchoring method, it is impossible to calculate the IoUs between the anchor boxes
and the ground truth boxes since there are no preset shapes. Therefore, a total of nine predetermined
shapes of anchor boxes are taken to calculate the IoUs to obtain the suitable ground truth boxes in
the experiments. The scales of the predetermined shapes are {20, 21/3, 22/3} and the aspect ratios are
{0.5, 1.0, 2.0}. The shapes are the combinations of all the scales and aspect ratios. RoI pooling uses
the RoIAlign [42] with an output size of 7× 7. The whole network adopts the stochastic gradient
descent algorithm with momentum, with the learning rate of 0.002 and the momentum of 0.9. Due to
the fact that the generated proposal boxes are usually redundant, one object may correspond to
multiple predicted neighborhood boxes in the testing. Therefore, we adopt the classic non-maximum
suppression (NMS) algorithm to filter the similar predicted boxes.

4.4. Comparison with the State-of-the-Art

To evaluate the detection performance of the proposed method quantitatively, we compared
the experimental results to several representative deep-learning-based methods that are widely used
for object detection in natural images and remote sensing images. The selected methods include
one-stage and two-stage methods. Specifically, the compared methods include FPN, RetinaNet [13],
fully convolutional one-stage detector (FCOS) [43], FoveaBox [44], modulated deformable convolutional
network (MDCN) [17], CornerNet [32], SSD and YOLOv3. In which, the results of CornerNet, SSD and
YOLOv3 are coming from [38]. Since their relevant data of PR curves are not provided in [38],
our experimental results only list their AP values. Their detailed descriptions are as follows.

1. FPN. As the foundation of the proposed method, FPN is the baseline for comparison.
Therefore, except for the improved parts, all the settings of FPN are the same as the proposed
method. As for the generation of the proposal boxes, RPN is adopted in FPN.

2. RetinaNet. RetinaNet is a one-stage method based on FPN, and the backbone network is
ResNet-50. The backbone network attaches two subnetworks, which are used to classify and
regress anchor boxes, respectively. The anchor scales are {20, 21/3, 22/3} and the aspect ratios
are {0.5, 1.0, 2.0}. The main contribution of RetinaNet is that focal loss is proposed to ease the
imbalance between positive and negative samples.

3. FCOS. FCOS is an anchor-free method, which directly regresses the target bounding box for each
location. FCOS detects different sizes of objects on different levels of feature maps following FPN.
In addition, it also adds a single-layer branch to predict the center-ness of the location to suppress
the low-quality detected bounding boxes. The backbone network is ResNet-50.

4. FoveaBox. FoveaBox is also an anchor-free method. It directly learns the objects by
predicting category-sensitive semantic maps for the object existing possibility and producing a
category-agnostic bounding box for each position that potentially contains an object. FoveaBox
divides the scales of objects into several bins according to the number of feature pyramid levels,
and every feature pyramid learns to be responsive to objects of particular scales.

5. MDCN. Modulated deformable convolutional layer is an important component of the proposed
method, and plays a key role in the transformation of the feature map. For this reason,
we use MDCN [17], which proposes a modulated deformable convolutional layer as one of
the comparison methods. It is worth noting that although modulated deformable convolutional
layers are used in both the proposed method and MDCN, their locations and purposes are
different. MDCN mainly applies the deformable convolution in the backbone network to make
the extracted feature focus on pertinent image regions. However, the proposed method adopts
the deformable convolution in the guided anchoring block to make the feature match better with
the generated anchor boxes.

6. SSD. SSD is a one-stage method, which extracts the feature maps of different scales from the
images for detection. The proposal boxes are obtained by densely sampling on the feature map.
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There are multiple anchor boxes of different scales and aspect ratios in each sampled position.
The features of the anchor boxes are classified and regressed by CNN. In this experiment, SSD uses
VGG-16 [45] as the backbone network.

7. YOLOv3. YOLOv3 is an improved version of YOLO and it has a higher mAP than the original
one. It predicts the width and height of the box as offsets from cluster centroids, and then predicts
the center coordinates of the box relative to the location of filter application using a sigmoid
function. After obtaining the predicted boxes, YOLOv3 also predicts the corresponding classes for
the bounding boxes by a softmax classifier. YOLOv3 uses Darknet-53 as the backbone network.

8. CornerNet. CornerNet detects an object bounding box as a pair of key points, namely the top-left
corner and the bottom-right corner. This method does not need to design anchor boxes commonly
used in deep-learning-based object detection methods, but it is required to group the corners
based on the predicted embedding vectors.

Table 1 lists the APs of all methods on different categories, and Figure 6 shows the PR curves
of different categories. As we can see from Table 1 and Figure 6, the proposed method is obviously
better than the other methods and has the highest mAP of 73.6%. In terms of specific categories,
the AP values of the proposed method are the highest in 9 of the 20 categories, the second highest in
seven categories and the third highest in three categories. In other words, except for the category of the
chimney, the proposed method has achieved the top three results compared with the other methods.

Table 1. The mean average precisions (mAPs) of different methods, where BC means the Basketball Court,
ESA denotes expressway service area, ETS denotes expressway toll station and GTF is ground track
field. The red, orange and yellow numbers indicate that the AP values of the corresponding methods
are the highest, the second highest and the third highest in this category.

Categories FPN RetinaNet FCOS FoveaBox MDCN CornerNet SSD YOLOv3 Ours

Airplane 60.7 66.1 61.1 66.9 61.1 58.8 59.5 72.2 70.5
Airport 77.0 78.4 82.6 79.6 81.2 84.2 72.7 29.2 81.9
Baseball Field 74.9 74.4 76.6 76.7 75.3 72.0 72.4 74 76.5
BC 87.9 87.8 87.6 87.6 88.6 80.8 75.7 78.6 89.3
Bridge 46.4 37.2 42.8 42.7 48.5 46.4 29.7 31.2 49.0
Chimney 80.2 80.2 80.6 79.8 79.6 75.3 65.8 69.7 79.5
Dam 60.0 63.1 64.1 60.6 70.1 64.3 56.6 26.9 66.0
ESA 76.7 76.7 79.1 81.1 81.1 81.6 63.5 48.6 85.2
ETS 70.6 58.8 67.2 66.4 74.4 76.3 53.1 54.4 71.9
Golf Course 77.3 79.9 82.0 74.5 77.4 79.5 65.3 31.1 81.2
GTF 83.2 76.4 79.6 80.3 84.0 79.5 68.6 61.1 83.3
Harbor 46.0 36.6 46.4 50.0 51.0 26.1 49.4 44.9 52.8
Overpass 60.0 56.6 57.8 57.6 62.7 60.6 48.1 49.7 62.2
Ship 75.1 68.7 72.1 73.1 75.1 37.6 59.2 87.4 77.1
Stadium 67.4 69.0 64.8 71.5 67.0 70.7 61.0 70.6 76.0
Storage Tank 61.1 43.1 63.4 60.0 63.5 45.2 46.6 68.7 72.4
Tennis Court 87.3 85.7 85.2 86.9 86.8 84.0 76.3 87.3 87.7
Train Station 58.8 58.4 62.8 54.5 65.2 57.1 55.1 29.4 64.1
Vehicle 45.0 40.7 43.8 42.7 46.1 43.0 27.4 48.3 55.0
Windmill 87.9 85.1 87.5 88.3 88.7 75.9 65.7 78.7 90.3

mAP 69.2 66.1 69.4 69.0 71.4 64.9 58.6 57.1 73.6
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Figure 6. The precision-recall (PR) curves of different methods.

Several samples of the detection results obtained by the proposed methods are shown in Figure 7.
The green rectangles denote the predicted results.
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(a)Ship and harbor (b)Storage tank (c)Bridge

(d)Vehicle (e)Basketball, baseball and tennis court (f)Airplane

Figure 7. The samples of detection results of the proposed methods.

5. Discussion

In the proposed method, our contributions mainly include the following aspects. First, we adopt
the attention mechanism in the proposed method to make the network pay more attention to the
object areas rather than the background areas. Then, the generated attention map is used to predict
the positions of the objects. Specifically, it is incorporated into the guided anchoring method to
produce the anchor boxes, which are the preliminary boxes for object detection. Finally, we replace the
deformable convolutional layer used in the guided anchoring method with the modulated deformable
convolutional layer. Compared with the former, the latter adds a modulation scalar to adjust the
amplitudes of different spatial locations in the input feature map.

In order to better analyze the impact of different aspects in the proposed method on the final
detection performance. We progressively study the proposed method. In specific, the method will
be studied from three parts: attention mechanism, guided anchoring and deformable convolution.
The detailed results are shown in Table 2.

Table 2. The influence of different aspects on the detection results, where DC means deformable
convolution, MDC denotes modulated deformable convolution.

Method Attention The Prediction Way Deformable mAP (%)Mechanism for Anchor Position Convolution

FPN - Sliding Window - 69.1 (baseline)
FPN with Attention

√
Sliding Window - 71.9 (+2.8)

Guided Anchoring - Independent Subnetwork DC 72.1 (+3.0)
Ours without MDC

√
Attention Map DC 73.3 (+4.2)

Ours
√

Attention Map MDC 73.6 (+4.5)
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In Table 2, the first method is the basic FPN, which is the baseline. FPN with Attention adds an
attention mechanism compared to basic FPN. It can be seen that the addition of the attention mechanism
increases the mAP of the network by 2.8%. This indicates that the attention mechanism, as the way
to enhance the feature maps, can improve the performance of object detection. The third method is
the guided anchoring method in [37], and the 3.0% improvement shows that the adaptive anchor
boxes can generate better predicted boxes to improve the detection performance, thus improving the
detection quality. In the fourth one, we directly use the attention map generated by the attention
mechanism to replace the position map in the guided anchoring method to produce the locations of
anchor boxes, but modulated deformable convolution is not used in this method. Compared with the
guided anchoring method, the fourth method shows a 1.2% improvement in terms of the mAP value.
This result means that the attention map can better represent the object location, so as to improve
the final detection results. The final method is the proposed method, and it replaces the deformable
convolution in the fourth method with modulated deformable convolution, which brings an mAP
increase of about 0.3%. This shows that the modulation scalar of modulation deformable convolution
plays a certain role in improving the detection performance.

The mAP of the proposed method finally increases to 73.6%, and it is increased by 4.5% compared
with the baseline FPN. It can be seen from Table 1 that the accuracy of the proposed method is higher
than that of the baseline method in almost every category, which fully indicates the superiority of the
proposed method.

As can be seen from Figure 7, the proposed method can detect the vast majority of objects.
It also has a good performance on the objects with large size differences in Figure 7a,c. In Figure 7e,
the background is complex, but the proposed method can still detect the vehicles on the side of the
house very well, which shows that the proposed method is robust to a certain extent.

However, we also find that there are still missed objects and repeated bounding boxes in the
detection results. We guess the reason is that the proposed method predicts the positions of anchor
boxes through the attention map instead of the sliding window. It cannot ensure that all object regions
are completely covered, and causes the undetected objects. In future research, we will try to take
measures to alleviate the problem. To be specific, the following aspects of work can be continued.
Firstly, the attention mechanism includes many forms. The proposed method mainly focuses on the
query-independent attention mechanism. Whether the other attention mechanism can predict more
accurate positions is worthy of study. Secondly, a fixed threshold is applied to determine whether the
position is the object in the proposed method, and missed or duplicated boxes may occur. A better
way to determine the position should be researched.

6. Conclusions

In this paper, we propose an object detection method that incorporates the attention mechanism,
which is used not only to enhance the features, but also to generate adaptive anchor boxes. First of
all, we apply the attention mechanism to make the network pay more attention to the object regions
and reduce the influence of the background on detection. Secondly, we regard the attention map
as the distribution probability map of the anchor box positions. The adaptive anchor boxes are
obtained by combining the predicted positions and the shapes generated by the guided anchoring
method. The obtained anchor boxes are diverse and conform to the positions and shapes of the objects.
Finally, we use the MFAM to transform the feature map. By adjusting the calculation position and
amplitude of the convolutional kernel, the transformed feature maps are more suitable for anchor
boxes. The quantitative comparison results on the public DIOR dataset demonstrate the superiority
of the proposed method over several state-of-the-art methods. On the one hand, this superiority
comes from the fact that the attention mechanism can enhance the extracted features and make it more
focused on the object regions. On the other hand, the attention map can reflect the positions of objects,
thereby generating more suitable anchor boxes by combining with the guided anchoring method.



Remote Sens. 2020, 12, 2416 16 of 18

In our future work, the global attention map will be further investigated to detect and generate more
deformable bounding boxes such as rotated boxes and polygons.
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