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Abstract: Phytoplankton primary production (PP) in lakes play an important role in the global carbon
cycle. However, monitoring the PP in lakes with traditional complicated and costly in situ sampling
methods are impossible due to the large number of lakes worldwide (estimated to be 117 million
lakes). In this study, bio-optical modelling and remote sensing data (Sentinel-3 Ocean and Land
Colour Instrument) was combined to investigate the spatial and temporal variation of PP in four
Baltic lakes during 2018. The model used has three input parameters: concentration of chlorophyll-a,
the diffuse attenuation coefficient, and incident downwelling irradiance. The largest of our studied
lakes, Võrtsjärv (270 km2), had the highest total yearly estimated production (61 Gg C y−1) compared
to the smaller lakes Lubans (18 Gg C y−1) and Razna (7 Gg C y−1). However, the most productive was
the smallest studied, Lake Burtnieks (40.2 km2); although the total yearly production was 13 Gg C y−1,
the daily average areal production was 910 mg C m−2 d−1 in 2018. Even if lake size plays a significant
role in the total PP of the lake, the abundance of small and medium-sized lakes would sum up to a
significant contribution of carbon fixation. Our method is applicable to larger regions to monitor the
spatial and temporal variability of lake PP.

Keywords: primary production; productivity; bio-optical modeling; lakes; optically complex waters;
remote sensing; Sentinel-3; OLCI; optical water types

1. Introduction

Lakes and reservoirs play a key role in global carbon cycling, either as carbon sinks [1] or
sources [2–4]. According to Verpoorter et al. [5], there are about 117 million lakes larger than 0.002 km2,
covering 3.7% of the Earth’s non-glaciated land surface. Despite their relatively small surface area,
compared to the open ocean, lakes make a significant contribution to the global carbon budget, being
extremely active sites for terrestrial carbon transport, transformation, and storage [6]. Understanding
the drivers of carbon cycling and the ways climate change affects them are important goals of ecology
and biogeochemistry in the present day [7].

Phytoplankton primary production (PP) is the process through which algae and bacteria fix
inorganic carbon and transform it into organic matter; it is one of the ways in which inorganic carbon
enters the aquatic ecosystem. This forms the basis of aquatic food webs, generates food sources for
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higher trophic levels, and links biogeochemical and ecological processes [8]. PP depends on light
intensity and spectral quality, the availability of macro- and micronutrients, temperature, mixing
regime, flushing rate [9–15], and is strongly influenced by lake size, latitude, and insolation [6].

For meaningful PP results over a longer time period (days, months, and years), a large number
of direct consecutive contact measurements of photosynthesis rate (e.g., using the 14C [16], 13C [17],
or dissolved oxygen method [18,19]) are needed. However, these methods are costly, time-consuming,
in some cases need the manipulation of radioactive material, and are difficult to apply for large-scale
routine monitoring [20]. Therefore, a complementary modelling approach is necessary. Bio-optical
modelling attempts to improve PP estimation via depth-integrated empirical relationships by including
variables that account for the attenuation of photosynthetically active radiation, phytoplankton-specific
absorption properties, and photosynthesis parameters [21–23].

Chlorophyll-a concentration (Chl a) is used in the majority of PP models as the central metric of
phytoplankton biomass, despite the fact that the amount of Chl a in a cell may vary depending on the
species from 0.1–9.7% in wet weight [24], which makes it an imprecise measure of algal biomass [25].
The C:Chl a ratio is a commonly used metric due to its close relation to the phytoplankton growth rate
and its photosynthetic efficiency [26,27]; it is preferred by the oceanographic community to explore
photo-acclimation responses to variable light levels but is relatively rare in freshwater studies [28].

Besides capturing changes in Chl a, a wide range of phytoplankton physiology and biomass
metrics can now be retrieved from space [29]. However, standard products for Chl a estimation might
not give the best results for specific lakes [30–32], whereas regionally tuned models tend to lead
to more accurate results [33]. Regional assessment of the input parameters (e.g., Chl a, maximum
photosynthetic rate [33,34]) or classification of lake water by optical water type (OWT) [35,36] increases
the accuracy of the results. Classification of optically complex lake water also improves the retrieval
of other optically significant constituents (OSCs) besides Chl a, such as the total suspended matter
(TSM) and colored dissolved organic matter (CDOM) [37]. TSM and CDOM are the major reducers of
transparency and, moreover, CDOM is often used as a proxy for lake organic carbon content [37–40].

Thus, combining bio-optical modeling and remote sensing would be a great solution for estimating
productivity in lakes worldwide. Earth observation methods give a lake-wide perspective, which is
essential for large and variable water-bodies [33], where single-point contact measurements give only
a glimpse of the actual spatial variation present in a lake [41,42].

Relatively recently, the European Space Agency launched, under the Copernicus program,
a constellation of two satellites: Sentinel-3A and -3B (launched 2016 and 2018, respectively). There is
a medium resolution (pixel size 300 × 300 m) Ocean and Land Color Instrument (OLCI) specially
designed for marine research onboard both satellites. OLCI provides an opportunity to monitor inland
and coastal waters with high spectral (21 bands) and temporal (global coverage every two days)
resolution [43].

Models for calculating PP from satellite data have grown from the simplest productivity models,
which estimated time- and depth-integrated PP as a function of surface Chl a [44] into more complicated
regional models [22,45–47] and various algorithms using satellite images for global estimations of the
PP [48–51]. In the current work, we used a PP model developed initially by Arst et al. [52] for optically
complex waters. This model allows calculating the net PP profiles (PP(z), in mg C m−3 h−1) based
on three input parameters: incoming solar radiation in the photosynthetically active region (PAR,
400–700 nm) (qPAR, mol photons m−2 h−1), Chl a in mg m−3, and the diffuse attenuation coefficient in
the PAR of the water (Kd,PAR, m−1).

Our main aims were to estimate the carbon fixation rates (daily, monthly, and yearly) in different
Baltic lakes by combining bio-optical modelling and remote sensing data from 2018 and to study
the temporal and spatial variability of PP in lakes using open-access medium-resolution Sentinel-3
OLCI images.
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2. Materials and Methods

2.1. Study Sites

The study area included three Latvian and one Estonian lake, all of which are located in the
northern boreal zone. The locations of the lakes are shown in Figure 1, and their geographical
characteristics are shown in Table 1.
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Figure 1. The locations of the study lakes.

Table 1. Characteristics of the lakes under investigation.

Lake Location Area,
km2

Altitude,
m

Mean
Depth, m

Catchment
Area, km2 Trophic State

Razna 56◦19′N 27◦28′E 57.6 164 7.0 229 mesotrophic
Lubans 56◦46′N 26◦52′E 80.7 90.0 1.6 2040 eutrophic

Võrtsjärv 58◦16′N 26◦02′E 270 33.7 2.8 3374 eutrophic
Burtnieks 57◦44′N 25◦14′E 40.2 47.0 2.4 2215 eutrophic
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Lake Razna is located in the Latgale highlands in Latvia and has a surface area of 57.6 km2 and
catchment area of 229 km2. It is the country’s second-largest lake by surface area and the largest by
water volume (0.46 km3). According to the national monitoring database, Lake Razna is classified as a
shallow lake with clear water [53], although the maximum depth reaches 17 m (mean depth of 7.0 m).
The lake is mesotrophic; the Secchi depth (SD) was measured from 3.2 to 6.6 m (median 5.5 m) and
Chl a from 1.4 to 10.9 mg m−3 (median of 6.4 mg m−3) during April to October 2018 [37].

Lake Lubans is situated in the center of the Eastern Latvian Lowland. The catchment area of the
lake is 2040 km2. At a water level of 90 m above sea level, the surface area of the lake is 80.7 km2.
However, the surface area of the lake can fluctuate from 25 to 100 km2 due to an artificially regulated
water level [54]. Lake Lubans is classified as a very shallow lake [53], where the maximum depth is
3.5 m and a the mean depth is 1.6 m. The lake is eutrophic and macrophyte-dominated; the SD was
measured at 0.4–1.2 m (median of 0.9 m) and Chl a at 8.6–63.1 mg m−3 (median of 16.8 mg m−3) during
April to October 2018 [37].

The large Lake Võrtsjärv (surface area of 270 km2) is in the central part of Estonia. It is the
country′s second-largest lake, with a catchment area of 3374 km2. Lake Võrtsjärv is also a shallow lake,
with a maximum depth of 6.0 m (mean depth of 2.8 m). The unregulated water level can fluctuate
annually up to 3.2 m (mean 1.4 m) [55]. In this eutrophic lake, the SD varied between 0.5 and 1.0 m
(median of 0.6 m) and Chl a varied between 22.2 and 63.8 mg m−3 (median 33.1 mg m−3) during April
to October 2018 [37].

Lake Burtnieks is situated in the northern part of Latvia. It is the fourth-largest lake in Latvia,
with a surface area of 40.2 km2 and a catchment area of 2215 km2. Lake Burtnieks is a shallow eutrophic
lake with a maximum depth of 4.3 m (mean depth of 2.4 m). The lake has brown water, where the
SD was measured 0.4–1.2 m (median of 1 m) and Chl a at 6.7–117.1 mg m−3 (median of 19.1 mg m−3)
during April to October 2018 [37].

2.2. Satellite Data

Cloud-free or partially cloud-free OLCI Level-1 full resolution images from onboard the Sentinel-3A
and -3B satellites in 2018 were used in this study. Images were downloaded from the Copernicus
Online Data Access platform [56] and processed with the atmospheric correction processor Case 2
Regional Coast Color (C2RCC) (v1) [57] using Sentinel Application Platform (SNAP) (v6) software
developed by Brockmann Consult, SkyWatch, and C-S [58].

The retrieval of the water-leaving reflectance from OLCI Level-1 images involved three-step processing:
(1) subsetting the case study lake from the entire scene using shape files of each lake; (2) applying
the multisensor pixel identification tool (IdePix) and using in further analysis only the cloud-free
inland water pixels by excluding pixels flagged as IDEPIX_CLOUD, IDEPIX_CLOUD_AMBIGUOUS,
IDEPIX_CLOUD_SURE, IDEPIX_CLOUD_BUFFER, or IDEPIX_CLOUD_SHADOW; and (3) applying a
C2RCC atmospheric correction processor using default parameters (except for temperature, which was
set as 15 ◦C, and for salinity, which was set as 0.001 PSU) and excluding from further analysis pixels
that were flagged as Kd489_OOR (Kd,489 product is out of range) or Cloud_risk. Only the images with
≥50% of the valid lake pixels were included in the further analysis.

Since standard remote sensing Chl a and Kd products often fail [59–62] in these optically complex
inland waters, an alternative solution suggested for this region was used (detailed explanation are in
Sections 2.4.1 and 2.4.2).

2.3. The Primary Production (PP) Model

The PP model, originally developed by Arst et al. [20,52] and further adapted for remote sensing
data by Kauer et al. [41] and Soomets et al. [42] was used in this study. The main principle of this
model is that the PP is a function of photosynthetically absorbed radiation and the quantum yield of
carbon fixation [63]:
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PP(z) = Ψ ·Q∗PAR(z)·FPAR(z) (1)

where PP(z) is production in mg C m−3 h−1 at depth z, Ψ is the factor 12 000 for converting moles of
carbon to milligrams of carbon, Q*

PAR(z) is photosynthetically absorbed radiation at depth z determined
on the basis of scalar quantum irradiance (in mol photons m−3 h−1), and FPAR(z) is the quantum yield
of carbon fixation (mol C (mol photons)−1) in the PAR at depth z. The PP model has three input
parameters: (1) Chl a in mg m−3, (2) Kd,PAR in m−1, and (3) qPAR in mol photons m−2 h−1. In this
study, we followed the calculation scheme of the PP model modified for remote sensing data by
Soomets et al. [42], and we used the integrated values of primary production (PPint, mg C m−2 h−1) by
integrating PP(z) over the mean depth of the lake for all valid pixels.

Based on the PPint of the model, the following further calculations were made:

• The total lake PPint (PPlake, mg C h−1) for the entire lake. As all available images with ≥50% of the
valid lake pixels were used in the study, PPlake was calculated by summarizing the available pixel
values of PPint, and then the average of the available pixels of a given day was taken to substitute
all of the missing surface-area pixels.

• The average areal PPint of the lake (PPaver, mg C m−2 h−1) was taken as the average of the PPlake

over the surface area of the lake. For this parameter we also calculated the standard deviation (±)
over the study period (April–October).

• The daily PPlake (PPlake,day, mg C d−1) was calculated by multiplying PPlake, the photoperiod (in h)
of a given day, and the coefficient of 0.75 to take into account a daily light curve.

• The average daily areal PPint for the entire lake (PPday, mg C m−2 d−1) was taken as the average of
the PPlake,day over the surface area of the lake.

• The monthly average PPday (PPday,aver, mg C m−2 d−1) was taken as the average of the PPday

during one month.
• The monthly productivity estimates of the entire lake (PPmonth, Gg C month−1) were taken as the

sums of PPlake,day for each month during the study period. If the PPlake,day value was missing
due to the absence of overpass of the satellite or cloudy conditions, then inter- or extrapolation
was used to calculate missing the PPlake,day value.

• The annual productivity estimates of the entire lake (PPyear, Gg C year−1) were taken as the sums
of PPmonth during April–October 2018. We assumed that the PP during the rest of the months
during 2018 is zero or close to zero due to ice and snow cover and not significant for the annual
estimation of PP. Besides, there were no cloud-, ice-, or snow-free images available for the studied
area from January to March, and November to December 2018.

• The annual average daily areal productivity (PPyear,aver, mg C m−2 d−1) was calculated by dividing
PPyear by the number of days in a year and the surface area of the lake.

2.4. Input Parameters of the PP Model

The PP model has three input parameters: Chl a, Kd,PAR, and qPAR. To study the seasonal and
spatial variatios of PP in lakes, we used OLCI data for Chl a and Kd,PAR and in situ data for qPAR for
the PP model. The details of each input are described below.

2.4.1. Chlorophyll-a Concentration (Chl a)

For Chl a, the OWT guided approach by Soomets et al. [37] was used to retrieve Chl a values
from OLCI water-leaving reflectance spectra. Classification of OWTs by Uudeberg et al. [64] divides
boreal region inland and coastal water into five OWTs: (1) Clear OWT corresponds to waters with low
OSC concentrations and high water transparency; (2) Moderate OWT corresponds to slightly higher
OSC concentrations, but none of them dominate; (3) Turbid OWT corresponds to waters where TSM
dominates; (4) Very Turbid OWT corresponds to waters where Chl a dominates, and it is associated
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with phytoplankton blooms; and (5) Brown OWT corresponds to waters where the CDOM dominates.
The pixel was marked as “Unclassified” and excluded from further analyses if the reflectance spectrum
of the pixel was “abnormal” in the blue part due to strong influence from sources other than water.

The OWT guided approach to retrieve Chl a values means that firstly, OWT is assigned to every
valid OLCI image water pixel using a method by Uudeberg et al. [64]; and secondly, the most suitable
algorithm developed by Soomets et al. [65] for each OWT is applied according to the pixel’s OWT.
The Chl a algorithm used for each OWT is shown in Equation (2):

Chl a =



44.75 ∗ (RTOA,709/RTOA,674) − 32.78, OWT = Clear

−21601 ∗ ( (RTOA,665 −RTOA,709) ∗RTOA,754) + 23.78, OWT = Moderate

1552.3 ∗ (RTOA,709 − (RTOA,665 + RTOA,754)/2) + 21.03, OWT = Turbid

−246.33 ∗ (RTOA,665/RTOA,709) + 291.75, OWT = Very Turbid

−316.56 ∗ (RTOA,665/RTOA,709) + 365.88, OWT = Brown

, (2)

where RTOA,x is the OLCI top-of-atmosphere reflectance at the specific band that is labeled with its
central wavelength.

2.4.2. The Underwater Light Diffuse Attenuation Coefficient (Kd,PAR)

For Kd,PAR, the calculations from OLCI image data consisted of two main steps. Firstly, the underwater
light diffuse attenuation coefficient at 490 nm (Kd,490) was calculated from water-leaving reflectance
spectra using weighted band ratio algorithms by Alikas et al. [66]:

Kd,490 = (1−W)·Kd,490,( 490
709 )

+ W·Kd,490,( 560
709 )

, (3)

where W is a calculated weight that is used to combine the two separate Kd,490 algorithms. It is
calculated according to Equation (4):

W = 5.098− 2.2099·
R560

R709
f or 1.519 ≤

R560

R709
≤ 1.796, (4)

where R560 and R709 are the OLCI water-leaving reflectance values on specific bands.
The two Kd,490 algorithms from Equation (3) are calculated using Equation (5):

K
d,490,(

Rλ1
Rλ2

)
= Kw,490 + A·

(
Rλ1

Rλ2

)B

, (5)

where Rλ1 and Rλ2 mark the water-leaving reflectance values on specific OLCI bands (490, 560,
or 709 nm). Kw,490 is the pure water light attenuation coefficient at 490 nm and is 0.016 m−1; A and B
are coefficients derived by linear regression analysis for the band ratio algorithms: −0.9461 and 0.4305
for Kd,490,( 490

709 )
, and −1.1198 and 1.4141 for Kd,490,( 560

709 )
.

Secondly, we converted Kd,490 to Kd,PAR using Equation (6):

Kd,PAR = 0.4349·Kd,490 + 0.3291. (6)

2.4.3. Incident Planar Downwelling Irradiance (qPAR)

The hourly average diffused sky irradiance for PAR (in µmol m−2 s−1) was measured in situ with
the SkySpec spectroradiometer [67] at the Station for Measuring Ecosystem–Atmosphere Relations,
SMEAR-Estonia, a research station in Järvselja, Estonia (58◦16′40.60′′N, 27◦18′30.84′′E), during 2018.
For the PP model qPAR input, we used the measured daily maximum values converted to mol
photons m−2 h−1 for each day we had OLCI data. We used the same maximum daily qPAR values for
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all of the studied lakes because they are located close enough to each other (the maximum distance
from the station to the lake was about 220 km).

3. Results

3.1. Spatial Variability of PP

The spatial variability of PPint during 2018 was studied via derived PPint spatial variability maps
from OLCI cloud-free or partially cloud-free images; altogether (for all four lakes), we generated
161 PPint spatial maps (approximately 40 for each studied lake). The used PP model has three input
parameters, of which two were spatiality variables: Chl a and Kd,PAR. Since Chl a was determined
using the OWT guided approach, the examples of the resulting PPint (mg C m−2 h−1) together with the
derived inputs of the PP model, Kd,PAR, Chl a, and OWT, are shown in Figures 2–5.

3.1.1. Lake Razna

The clear water Lake Razna showed little spatial variability in its PPint. In spring and summer,
the likelihood of higher PPint was at the northern shoreline of the lake (Figure 2). However, slightly
higher productivity in the southern part was often present in autumn. The Clear OWT was very
dominant in Lake Razna, and a majority of the pixels had low Chl a (mean 11.1 ± 17.3 mg m−3) and
Kd,PAR (mean 0.62 ± 0.57 m−1) values; therefore, the productivity of the lake was also low. The PPaver

over the study period was 51.2 ± 14.9 mg C m−2 h−1.
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Figure 2. Three examples of the modelled integral primary production (PPint, mg C m−2 h−1) (first row),
attenuation coefficient in the photosynthetically active region (Kd,PAR, m−1) (second row), chlorophyll-a
(Chl a, mg m−3) (third row), and optical water type (OWT) (fourth row) of Lake Razna derived from
Ocean and Land Color Instrument (OLCI) data.
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3.1.2. Lake Lubans

The eutrophic Lake Lubans showed high spatial variability in its bio-optical characteristics;
the waters were classified mostly Turbid and Very Turbid throughout the study period. A very
distinguishing pattern for Lake Lubans was the decrease of the open water area during vegetation
season due to the growing vegetation. This was clearly seen in late August and September, where the
open-water area was diminished markedly (Figure 3, 19 September 2018). The mean Chl a was
42.4 ± 40.0 mg m−3, with a much lower median value (29.4 mg m−3), and the mean Kd,PAR was
2.52 ± 1.08 m−1. The PPaver over the study period was 90.9 ± 53.9 mg C m−2 h−1.
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Figure 3. Three examples of the modelled integral primary production (PPint, mg C m−2 h−1) (first row),
attenuation coefficient in the photosynthetically active region (Kd,PAR, m−1) (second row), chlorophyll-a
(Chl a, mg m−3) (third row), and optical water type (OWT) (fourth row) of Lake Lubans derived from
Ocean and Land Color Instrument (OLCI) data.
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3.1.3. Lake Võrtsjärv

The largest of the studied Lake Võrtsjärv also showed a relatively high spatial variability of PPint.
The PPint was often higher in the southern part of the lake, and in some cases, the inflow of a river to
the lake was clearly visible in the southwestern part, where the PPint values are slightly lower than
in the surrounding waters (Figure 4, 19 September 2018). The dominant OWT was either Turbid or
Very Turbid. The mean Chl a was 33.4 ± 20.4 mg m−3 but was much higher in the bloom condition
(Figure 4), and the mean Kd,PAR was 2.15 ± 0.55 m−1. The PPaver over the study period was similar to
Lake Lubans: 100.0 ± 65.1 mg C m−2 h−1.
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Figure 4. Three examples of the modelled integral primary production (PPint, mg C m−2 h−1) (first row),
attenuation coefficient in the photosynthetically active region (Kd,PAR, m−1) (second row), chlorophyll-a
(Chl a, mg m−3) (third row), and optical water type (OWT) (fourth row) of Lake Võrtsjärv derived from
Ocean and Land Color Instrument (OLCI) data.
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3.1.4. Lake Burtnieks

The smallest and the brownest water lake of the current study showed the highest variability
in all of the bio-optical characteristics and PPint. Higher productivity of the entire lake was shown
especially in late summer. Often, there is a distinct shoreline of higher productivity around the lake
(Figure 5). The dominant OWT was either Turbid, Very Turbid, or Brown, but the Moderate OWT
was also frequently present. The mean Chl a was 43.5 ± 37.3 mg m−3, with a much lower median
value (27.7 mg m−3), and the mean Kd,PAR was 2.58 ± 1.02 m−1. The PPaver over the study period was
139.2 ± 108.6 mg C m−2 h−1.
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Figure 5. Three examples of the modelled integral primary production (PPint, mg C m−2 h−1) (first row),
attenuation coefficient in the photosynthetically active region (Kd,PAR, m−1) (second row), chlorophyll-a
(Chl a, mg m−3) (third row), and optical water type (OWT) (fourth row) of Lake Burtnieks derived from
Ocean and Land Color Instrument (OLCI) data.

3.2. Temporal Variability of the PP

We calculated the average daily areal production (PPday) and the total daily production of the
lake (PPlake,day) from the OLCI data for the entire lake. For the dates that we did not have OLCI data,
we interpolated (or extrapolated to April 1 and October 31 to get full months) the modelled PPlake,day

values. In the period of April to October, we had about 40 days of satellite data (Razna 38, Burtnieks
40, Lubans 42, Võrtsjärv 41), but the satellite data was not distributed equally. The highest number of
cloud-free images was acquired in May, whereas in September and October, we had only a few images
to use. From November to April, we either did not have any cloud-free images or the lakes were
ice-covered. The temporal variability of the PPday shows different patterns for each lake (Figure 6).
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Figure 6. Temporal variability of daily average areal primary production (PPday, mg C m−2 d−1) in
four studied lakes during 01 April 2018–31 October 2018. The modelled values from Ocean and Land
Color Instrument (OLCI) data are shown with black columns and interpolated values between them as
a gray area.

In Lake Võrtsjärv and Lake Burtnieks, the PPday showed a clear two-peak pattern over the
vegetation period. The first productivity peak was in late spring/early summer (first half of June),
and the second productivity rise was in late summer (end of August and September) (Figure 6).
The main difference in the seasonal pattern of those lakes was the duration of the second production
peak. In Lake Võrtsjärv, the late summer peak lasted longer (1.5 months) and was not as intense as the
spring one. In Lake Burtnieks, both productivity peaks lasted about 3 weeks and the second peak was
more intense (Figure 6).

The temporal variability of the PPday had rather similar patterns in Lake Razna and Lubans: both
of those lakes are missing the summer “clear” period between the two high productivity periods.
Although in Lake Razna, the maximum productivity occurred in early summer, while in Lake Lubans
it was in late summer (Figure 6).

Another very characteristic feature of Lake Burtnieks was the large range of PPday values. For example,
the range of PPday was over 4600 mg C m−2 d−1 for the study period, being 4817 mg C m−2 day−1 on
23/08/2018 and 156 mg C m−2 d−1 on 15/10/2018. Other lakes showed much smaller ranges of PPday,
with Lake Razna having the smallest range of 950 mg C m−2 d−1. Lake Razna also had the lowest
maximum PPday values (1177 mg C m−2 d−1), while in Lake Burtnieks it was 4 times higher.

To compare the monthly productivity of the studied lakes, we calculated the monthly averages for
PPday (PPday,aver) (Figure 7a). Here, as before, Lake Burtnieks had the highest production rates, but only
for the three peak-productivity months (June and August–September). The temporal variability of the
PPday,aver in different lakes was demonstrated again, with Lake Lubans having the highest PPday,aver in
July, when Lake Võrtsjärv and Lake Burtnieks had a lower PPday,aver (Figure 7a).
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during 01 April 2018–31 October 2018.

Another estimate that we compared between the lakes was the total monthly productivity for the
entire lake (PPmonth). The PPmonth showed vast differences in lakes. It varied from 0.46 Gg C month−1

(Burtnieks, October) to 14.4 Gg C month−1 (Võrtsjärv, September) (Figure 7b). Here, the impact
of lake size on the overall productivity is clearly shown. For example, in August, even though
Lake Burtnieks showed twice the production rate per area unit compared with Lake Võrtsjärv
(3137 and 1411 mg C m−2 d−1, respectively), the total production of Lake Burtnieks for this month was
3.9 Gg C month−1 whilst for Lake Võrtsjärv, which is more than six times larger, it was three times
higher (11.8 Gg C month−1) (Figure 7).

Lake size plays an important role also in the yearly lake productivity. For the yearly production,
we added the monthly sums of lake production from April to October. We assumed that the production
from November to March was not significant [68]. The yearly production of 2018 for the entire lake
varied from 7 Gg C y−1 (Razna) to 61 Gg C y−1 (Võrtsjärv) (Figure 8).

As we assumed the productivity to be zero or close to that for 5 months of the year, the annual
average daily areal productivity (PPyear,aver) in Lake Razna would be 333.0 mg C m−2 d−1, in Lake
Burtnieks, 887.3 mg C m−2 d−1, in Lake Lubans, 610.2 mg C m−2 d−1, and in Lake Võrtsjärv,
622.4 mg C m−2 d−1. This shows that the most productive was the smallest of our studied lakes. Lake
Võrtsjärv and Lake Lubans show very similar PPyear,aver, although the total productivity of the lakes
was very different.
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4. Discussion

To estimate the spatial and temporal variability of PP, we used 161 cloud-free OLCI scenes over
four different Baltic lakes during 2018. The OLCI images were processed with a C2RCC atmospheric
processor, and to determine the PP model inputs Chl a and Kd,PAR from the reflectance spectra of
each pixel, the OWT guided approach for Chl a and the weighted band ratio algorithms method for
Kd,PAR was used. The PPday was calculated to estimate the temporal variability. Finally, daily, monthly,
and yearly PPint estimates for each lake were determined.

The spatial variability of PPint in Lake Razna showed the presence of phytoplankton blooms on
the northern shores of the lake (Figure 2) during spring; this pattern is also shown as the PPday peaks
in the temporal variability (Figure 6). In the autumn, the PPint had higher values in the southeastern
part compared to the rest of the lake on some days, likely because of the winds that would drive the
phytoplankton to the shoreline area. The PPday,aver values of this mesotrophic lake are quite similar to
the other studied (eutrophic) lakes in April (Figure 7a) because Lake Razna is significantly deeper than
the other lakes; therefore, the PPint values, which are calculated by integration over the mean depth of
the lake, are also higher.

Although Kauer et al. [69] demonstrated that the PPday values can significantly vary from day
to day due to the changing climate condition; the rapid fluctuations of PPday in the current work are
mostly caused by the different number of pixels used for a specific day. As we had the requirement
that at least 50% of the lake pixels should be valid, it sometimes resulted that the parts of the lake with
higher productivity were filtered out (due to the clouds) and the clear water pixels with low PP values
were used to estimate PPday. This phenomenon was more pronounced in Lake Razna and Lake Lubans,
where flagging out part of the pixels had larger impact on the PPday estimates due to the PPint spatial
variation. In addition to the missing pixels, there were errors in the atmospheric correction when thin
cirrus clouds or other fine atmospheric particles were not correctly flagged out by used processors.

In this study, the assumption was made that the lake-bottom influence is negligible in our PP
estimations, and no additional corrections were applied to remove the bottom influence from the
remote sensing signal due to the lakes water mainly being optically deep waters. In Lake Lubans,
Burtnieks, and Võrtsjärv, the water transparency (SD ≤ 1.2 m) is lower than the average depth (1.6 m,
2.4 m, and 2.8 m, respectively; Table 1); therefore, lake bottoms were not visible from the water surface
and were not influencing the reflectance spectra. A lake’s bottom can be visible up to few meters from
the shore; however, the OLCI pixel size is 300 m. In the clear water Lake Razna, the situation was
handled more carefully. Since water transparency in Lake Razna was high (SD was up to 6.6 m) and
the sandy bottom was visible in the east side of the lake (depth up to 6 m), we investigated the bottom’s
influence before making this assumption. The reflectance spectra retrieved in lake areas where the
bottom was visible acted similarly to that described by Vahtmäe et al. [70]. Nevertheless, in our case,
the bottom influence was not strong enough to change the optical water type or the retrieval of Chl a.
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However, the bottom influence was slightly shown in the retrieved Kd product. But since the PP model
used in this study is more sensitive to Chl a than Kd in clear water cases, the bottom influence is not
detectable in the PPint results.

Overall, the PPday results were quite high for Lake Lubans throughout the summer, without having
clear PPday peaks as in Lake Burtnieks (Figure 6). Due to extremely high PPday peaks in Lake Burtnieks,
the PPaver was also about 30% higher than in Lake Võrtsjärv and Lake Lubans. The higher PPint values
in the shore areas are quite usual in all of the lakes, but the most prominent is in Lake Burtnieks, caused
by the shallower, more nutrient-rich waters. Another possible reason for higher values in the shore
area is an adjacency effect—bias in the spectral signal due to perturbations by the radiance reflected by
the land, which are propagated by the atmosphere into the satellite sensor [71].

In the case of Lake Burtnieks and Lake Lubans, Clear OWT is shown along the shorelines of
the lakes, which is likely the result of the atmospheric correction issues due to processing with
C2RCC [64,72]. For example, the atmospheric correction has been proven to be complicated in the case
of dark water (Brown OWT), with the blue part of the spectrum being strongly overestimated. This can
cause false classification to the Clear OWT [64,73]. Another cause could be the effect of the in-water
vegetation on the reflectance spectra that leads to misclassification of the pixel. The insufficient quality
flagging of the C2RCC and/or poor clear water pixel masking by the IdePix tool can also cause a
situation where these pixels are falsely classified as clear water pixels [3]. However, the added extra
quality flag (Kd489_OOR) seems to exclude most of the pixels affected by the in-water vegetation for
Lake Lubans. Thus, the two lakes have a different source for the OWT misclassification: for Lake
Lubans, the cause is the in-water vegetation, and for Lake Burtnieks, the brown water. Despite the
issues addressed above, our OWT classification results for 2018 generally agree with the previous
study for 2017 [72].

Lake Võrtsjärv typically had higher PPint in the southern part of the lake (Figure 4), which is
narrower and has different optical properties than the open northern part. Nõges et al. [68] used
modeling to reconstruct a long time-series of the areal productivity in Lake Võrtsjärv. They obtained
10% lower PPyear,aver results than the current study: 558 mg C m−2 d−1. One of the probable causes
of this difference could be the different lengths of the study periods: the current study was focused
only on the year 2018, but the result of Nõges et al. [68] is the mean productivity value over 27 years.
Also, our results regarding the PPday,aver (Figure 7a) largely agree with Nõges et al. [68]. Their Figure 4
shows similar monthly values, except for September, where the PPday,aver is almost three times lower.
This difference might be explained by the yearly differences in weather conditions. Although the
September PPday,aver values were mostly around 600–1000 mg C m−2 d−1 for the years 1982–2009,
it was approximately 2000 mg C m−2 d−1 in 2006 (Nõges et al. [68] Figure 6), which is a bit higher than
the our estimation for September 2018 (1780 mg C m−2 d−1, Figure 7a).

There have been large discrepancies in the PP results obtained in different studies using different
methods. The long-term study (1982–2009) by Nõges et al. [68] estimated the average PP from June to
October to be 880 mg C m−2 d−1, based on 14C methods, while another study [19] estimated the PP
from oxygen measurements to be 1632 mg C m−2 d−1 (June to October 2011–2012). Our results would
be placed in the middle of those two past studies, with the PP estimated to be 1188 mg C m−2 d−1 from
June to October 2018. Our calculations are based on the mean of the entire lake, while the two past
studies made their estimations based on measurements from a single point.

PP studies in lakes using remote sensing data have not been very abundant so far. The Great Lakes
Primary Productivity Model (inputs are Chl a, Kd,490, qPAR, and also the photosynthesis-irradiance
index) to study PP in the Great Lakes (Superior, Huron, and Michigan) using satellite data has been
applied in multiple studies [33,74,75]. These already showed promising results of spatiotemporal PP
studies and stated the advantages of PP modeling with satellite data. A similar model was applied to
remote sensing data by Bergamino et al. [76] to study Lake Tanganyika and Deng et al. [23] to study
Lake Taihu. Lake Geneva has been also investigated with remote sensing data using the same model
as in the current study [42].
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Fahnenstiel et al. [33] estimated the PPyear in the Great Lakes to be 5300–8100 Gg C y−1 (Table 2) [75].
Although the sizes of lakes Superior, Huron, or Michigan are not comparable to the smaller lakes
targeted in the current study, the PPyear,aver showed, for example, that Lake Burtnieks can have more
than threefold higher production per m2 (Table 2). The lake size plays an important role in the total
lake productivity. It is clear that lakes with otherwise similar areal productivity (Lubans, Võrtsjärv,
and Tanganyika) have very different PPyear, ranging from 18 to 7651 Gg C y−1 (Table 2).

Table 2. The comparison of different lakes by their surface area (S, km2), yearly total primary production
(PPyear, Gg C y−1), and annual average daily areal productivity (PPyear,aver, mg C m−2 d−1).

Lake S (km2) PPyear (Gg C y−1) PPyear,aver (mg C m−2 d−1) Reference

Superior 82,103 8100 274 [4]
Huron 59,590 5300 247 [4]

Michigan 58,030 6300 301 [4]
Tanganyika 32,900 7651 1 646 [76]

Taihu 2338 890 1094 [23]
Geneva 580 180 828 [42]

Võrtsjärv 270 61 622 Current study
Lubans 80.7 18 610 Current study

Burtnieks 40.2 13 887 Current study
Razna 57.6 7 333 Current study

1 Units are converted by the authors of current study.

The oligo-mesotrophic Lake Geneva shows a higher PPyear,aver than eutrophic lakes Võrtsjärv and
Lubans, but two factors should be kept in mind. Firstly, the PPyear,aver values are derived from the
PP(z) values over the depth of the euphotic zone, where photosynthesis can occur. In Lake Geneva,
the euphotic mixed layer zone can reach up to 30 m (according to Luhtala et al.’s [77] algorithm from
the maximum measured SD [78]), while in shallow lakes like Lubans and Võrtsjärv, the euphotic zone
cannot exceed the maximum depths of 3.5 m and 6 m, accordingly. Secondly, the lakes are exposed to
different climate conditions: Lake Geneva does not have any ice cover. This allows higher production
during the entire year, leading to a higher PPyear,aver. This might also be one of the reasons, besides the
high amount of available nutrients, why Lake Taihu is seemingly the most productive lake, with the
highest mean PPyear,aver (Table 2). Actually, in the highest productivity month, August, the PPday,aver

was 1675.5 ± 710.4 mg C m−2 d−1 [23] in Lake Taihu, whereas in Lake Burtnieks the PPday,aver was
3137.6 ± 1105 mg C m−2 d−1 in August 2018 (Figure 7a).

Although initially it might seem from the Table 2 that smaller lakes would not contribute
significantly to the carbon cycle, lakes with surface areas of 1–1000 km2 cover about 36%
(~1.9 million km2) of the total area of all lakes in the world [5]. Fee et al. [79] stated that the areal
production is generally higher for medium-sized lakes, which have a combined offset of temperature
and turbulence supporting increased phytoplankton growth, but larger lakes have higher yearly
production due to a prolonged growing season. And yet, still a relatively small portion of smaller
lakes are monitored regularly or not monitored at all, hence a large portion of the global freshwater
productivity is not considered.

The method used in the current work could be easily applicable to larger regions to cover more
lakes with different optical properties. The medium-resolution OLCI data where one pixel covers
approximately 0.09 km2 is only suitable for monitoring lakes with a diameter of more than 1 km,
leaving the most abundant lake group out of its capability. In addition, although even OLCI data show
some spatial patterns, data from high-resolution Sentinel-2 (pixel size from 10 × 10 m to 60 × 60 m,
depending on the spectral band) might be even more useful for PP studies of smaller lakes and their
spatial variability. This is an especially strong advantage in vegetation-rich lakes like Lubans, allowing
the distinguishing of patches of vegetation with higher accuracy, whilst Sentinel-3 pixels are affected by
vegetation and thus invalid. Also, Sentinel-2 is proven to have higher quality flagging than Sentinel-3
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OLCI [37,72], hence the PP results can be improved. In addition, the PP estimation scheme developed
in the current work could be applied to even larger regions and on a longer time scale for interannual
comparisons. Even smaller lakes could be included with higher resolution remote sensing data, but in
this case, the PP results of the shoreline pixels must be handled with some caution due to the possible
influence of the bottom and the adjacency effect; therefore, some additional masks or methods might
need to be applied.

5. Conclusions

The aim of this study was to estimate spatial and temporal PP variability in four lakes by using a
PP model based on Sentinel-3 OLCI data. From our studied lakes, only one lake had previous records
of PP (Lake Võrtsjärv). Soomets et al. [42] demonstrated that the model gives good results also in deep
lakes with a mixed euphotic zone. Consequently, we can also apply the model to the mesotrophic and
relatively deep Lake Razna similarly to three other shallow and eutrophic lakes, despite the model
being designed for lakes with a well-mixed water column where Kd,PAR and Chl a do not change
(or only change slightly) with depth [52]. The annual average daily areal productivity, PPyear,aver,
in 2018 was 333 mg C m−2 d−1 in Lake Razna, 610.2 mg C m−2 d−1 in Lake Lubans, 622.4 mg C m−2 d−1

in Lake Võrtsjärv, and 887.3 mg C m−2 d−1 in Lake Burtnieks. This shows that the most productive
lake is the smallest of the studied lakes. The yearly total production of 2018 for the entire lake was
7 Gg C y−1 (Lake Razna), 13 Gg C y−1 (Lake Burtnieks), 18 Gg C y−1 (Lake Lubans), and 61 Gg C y−1

(Lake Võrtsjärv). Even if lake size plays a significant role in the total PP of the lake, the abundance of
small and medium-sized lakes would sum up to significant carbon fixation. Hopefully, the free access
to Sentinel-2 high-resolution remote sensing data and improved methods will bring the freshwater PP
more into the focus of the carbon cycle studies.
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