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Abstract: Temporal and spatial variability of soil moisture has an important impact on hydrological
processes in mountainous areas. Understanding such variability requires soil moisture datasets at
multiple temporal and spatial scales. Remote sensing is a very effective method to obtain surface
(~5 cm depth) soil moisture at the regional scale but cannot directly measure soil moisture at deep
soil layers (>5 cm depth) currently. This study chose the upstream of the Heihe River Watershed
in the Qilian Mountain Ranges in Northwest China as the study area to estimate the profile soil
moisture (0–70 cm depth) at the regional scale using satellite Vegetation Index (NDVI) and Land
Surface Temperature (LST) products. The study area was divided into 31 zones according to the
combination of altitude, vegetation and soil type. Long-term in situ soil moisture observation stations
were set up at each of the zones. Soil moisture probe, ECH2O, was used to collect soil moisture at five
layers (0–10, 10–20, 20–30, 30–50 and 50–70 cm) continuously. Multiple linear regression equations of
time series MODIS (Moderate-resolution Imaging Spectroradiometer) NDVI, LST and soil moisture
were developed for each of the five soil layers at the 31 zones to estimate the soil moisture (0–70 cm)
on a regional scale with a spatial resolution of 1 km2 and a temporal resolution of 16-d from October,
2013 to September, 2016. The correlation coefficient R of the regression equations was between 0.47
and 0.94, the RMSE was 0.03, indicating that the estimation method based on the MODIS NDVI and
LST data was suitable and could be applied to alpine mountainous areas with complex topography,
soil and vegetation types. The overall pattern of soil moisture spatial distribution indicated that soil
moisture was higher in the eastern region than in the western region, and the soil moisture content in
the whole study area was 14.5%. The algorithm and results provide novel applications of remote
sensing to support soil moisture data acquisition and hydrological research in mountainous areas.

Keywords: soil moisture estimation; in situ observations; MODIS NDVI and LST; soil moisture
variability; the Heihe River watershed

1. Introduction

Soil moisture is an essential component of the terrestrial water cycle, and serves as a
critical link between the precipitation, surface water, groundwater and vegetation water [1–6].
It plays an important role in hydrological processes and land surface–atmosphere interactions
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such as the Soil–Plant–Atmosphere Continuum (SPAC) [7]. Mountains are water towers of rivers,
and understanding the distribution of soil moisture over the mountainous areas, is essential for
hydrological modeling and water resources management, especially in arid areas, such as Northwest
China [8]. Since its strong temporal and spatial variability, soil moisture has an important effect on the
distribution of regional water resources, and ecosystem services [9–11]. Unfortunately, the impact of
soil moisture on both hydrological processes and ecosystem services over the regional scale has been
poorly understood due to the lack of long-term, large-scale soil moisture datasets, particularly in such
mountainous areas [12].

Over the past decades, acquisition of soil moisture data has evolved from traditional gravimetric
methods to the applications of semi-automatic and automatic monitoring of the neutron probe,
time-domain reflectometry (TDR), frequency domain reflectometry (FDR). At the regional scale,
remote sensing, particularly satellites, provides soil moisture estimates over large areas [13], which
is mainly based on the measurement of electromagnetic radiation energy reflected or emitted from
the land surface. Satellite soil moisture products mainly include AMSR (Advanced Microwave
Scanning Radiometer) [14], ERS (European Remote Sensing Satellite) [15], ASCAT (The Advanced
Scatterometer) [16,17], SMOS (Soil Moisture and Ocean Salinity) [18] and SMAP (Soil Moisture Active
Passive) [19]. In addition, soil moisture data at the regional scale can also be obtained through model
simulation and data assimilation [20]. Common weaknesses of these soil moisture products are that
the accuracy and resolution in heterogeneous mountainous areas are still too coarse to meet the study
requirements [21,22]. Temperature Vegetation Dryness Index (TVDI) [23] and Apparent Thermal Inertia
(ATI) [24,25] are two common methods to estimate soil moisture by using visible light and near-infrared
wavebands. However, both the TVDI and ATI methods mainly establish the correlation between
the measured soil moisture on the ground and the TVDI or ATI indices to estimate the soil moisture
distribution in the region. For alpine and heterogeneous areas, the complexity of the underlying
surface leads to a series of uncertainties, such as the inconsistent linear relationship between soil
moisture and ATI, resulting in large estimation errors. In addition to these deficiencies, current remote
sensing methods mainly concentrate on the relationship between the surface reflection value and the
in situ observations to estimate the surface soil moisture at the regional scale [23]. Few studies have
estimated the profile soil moisture, particularly in the alpine areas. Li et al. [26] used remotely sensed
surface soil moisture to calculate deep soil moisture by a flux model, and pointed out that remote
sensing surface soil moisture in wet areas was suitable for estimating profile soil moisture, while the
results in dry areas had large errors. Tobin et al. [27] downscaled AMSR-E and ERS-CCI (European
remote sensing satellite-climate change initiative) soil moisture data using an exponential filter (ExpF)
with soil moisture index derived from MODIS NDVI. Tian et al. [3] coupled the surface soil moisture
and profile soil moisture, applied ExpF, artificial neural networks (ANN) and cumulative distribution
function matching (CDF) methods in an alpine region to estimate the deep profile soil moisture at
the regional scale. Lu et al. [28] investigated a nonlinear autoregressive neural network method with
exogenous input (NARXnn) to estimate time series soil moisture by multiple remote sensing data.
Estimation of 0–100 cm soil moisture by the principle of maximum entropy achieved better results than
those obtained by the exponential decaying function in the Southeastern USA, a subtropical humid
area [29]. With the measurement of the spectral characteristics of soil profile, Balet et al. [30] inferred soil
moisture conditions based on the MARMIT (MultilAyer Radiative Transfer Model for soIl reflecTance)
model. Over the past decades, MODIS LST and NDVI products have been widely used in agriculture,
ecosystem and global change research [31,32]. The NDVI is an index that shows the difference between
vegetation reflectance in the visible and near-infrared bands and the soil background [33]. Land Surface
Temperature (LST) is a key parameter for agricultural drought monitoring, hydrological research and
urban thermal environment [34,35]. Both MODIS LST and NDVI data are widely used for soil moisture
estimation based on the TVDI and ATI methods (e.g., [21,36]). For example, Yang et al. [37] proposed a
trapezoidal space defined by remote sensed vegetation cover and LST to estimate surface soil moisture.
Compared with the aforementioned soil moisture products, both MODIS LST and NDVI have higher
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spatial resolutions in soil moisture monitoring. In addition, both MODIS LST and NDVI are usually
used for downscaling the satellite soil moisture products [22,38].

In recent years, many scale transformation studies for soil moisture retrieval have been done.
However, the accuracy of most of these works was poor in mountainous areas, and the temporal
and spatial resolutions of profile soil moisture estimation were still too coarse to meet the needs of
hydrological research in heterogeneous mountain areas. To improve the deficiency in estimating profile
soil moisture distribution over mountainous areas, this study proposed a novel approach to estimate
profile soil moisture by integrating remote sensing LST and NDVI products and in situ soil moisture
observations. The upstream of the Heihe River Watershed in the Qilian Mountain Ranges in Northwest
China was chosen as the study area to estimate the profile soil moisture (0–70 cm depth) at the regional
scale by remote sensing. The study area was divided into 31 zones based on the combination of altitude,
vegetation and soil type. In situ soil moisture observation stations were set up at each of the zones to
collect soil moisture at five layers (0–10, 10–20, 20–30, 30–50 and 50–70 cm) continuously for the period
of October, 2013 to September, 2016. Multiple time series MODIS NDVI, LST and soil moisture were
fitted for each of the five soil layers at the 31 zones to estimate the profile soil moisture distribution
on a regional scale. The study aims to provide a novel approach to estimate profile soil moisture
distribution by remote sensing to support hydrological research in mountainous areas.

2. Study Area

The in situ soil moisture data for this study were obtained from the Soil Hydrological Heterogeneity
Observation Network in the upstream of the Heihe River Watershed (97◦46′–101◦11′E, 38◦12′–39◦22′N)
Northwest, China (Figure 1a), a 2.75 × 104 km2 study area with 30 tributaries, elevation ranging from
2000 m to 5580 m (above sea level, a.s.l) on the northeast edge of the Qinghai–Tibet Plateau. The spatial
distribution of annual mean temperature ranges from –3.1 ◦C to 3.6 ◦C, and annual precipitation
ranges from 200 mm to 700 mm [39]. Perennial snow cover and glaciers are present above 4000 m
with permafrost extending down to 3700 m. Affected by mountain climate and terrain, there is a
remarkable vertical zonal distribution of vegetation and soils in the study area. In the upstream of the
Heihe River Watershed, the major vegetation types include coniferous forest (Picea crassifolia), shrub
(Potentilla fruticosa), steppe (Stipa purpurea Griseb), alpine meadow (Kobresia pygmaea Clarke), alpine
sparse vegetation (Saussurea medusa Maxim) and desert (Sympegma regelii Bunge) [22]. The main soil
types include aeolian sandy soil, cold desert soil, alpine meadow soil and mountain swamp chestnut
soil [8].
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Figure 1. The in situ observation stations in the upstream of the Heihe River Watershed, Northwest 
China. The number shows 31 land use/land cover (LULC) soil elevation types (details in Table 1). (a) 
the study area in China; (b) the elevation of the study area, black circles represent the in situ sites and 
crimson circles represent the three automatic meteorological station sites; (c) land use types 
distribution in the study area; (d) soil types. The locations of in situ monitoring sites and 
meteorological stations are also indicated in (b), (c) and (d). 

Table 1. Soil and vegetation types at the in situ observation sites and automatic meteorological 
stations. 

ID Elevation Range (m) Soil type Vegetation Type Percent (%) of Area 

No.1 2000–2500 Typical lime calcium soil Medium coverage grassland 1.53 

No.2 2000–2500 Chestnut soil Medium coverage grassland 0.91 

No.3 2000–2500 Sticky chestnut soil Medium coverage grassland 1.34 

No.4 2500–3000 Typical chestnut soil Medium coverage grassland 3.06 

No.5 2500–3000 Chestnut soil Medium coverage grassland 2.87 

No.6 3000–3500 Chestnut soil Medium coverage grassland 0.96 

No.7 3000–3500 Calcareous frozen calcium soil Medium coverage grassland 2.48 

No.8 3000–3500 Saturated cold felt soil Medium coverage grassland 3.79 

No.9 3500–4000 Saturated cold felt soil Medium coverage grassland 7.57 

No.10 3500–4000 Calcareous frozen calcium soil Medium coverage grassland 5.47 

No.11 2500–3000 Typical chestnut soil Forest land 3.22 

No.12 2500–3000 Typical gray cinnamon soil Forest land 1.34 

No.13 2500–3000 Peat type felt soil Forest land 0.97 

No.14 2500–3000 Chestnut soil Forest land 1.63 

Figure 1. The in situ observation stations in the upstream of the Heihe River Watershed, Northwest
China. The number shows 31 land use/land cover (LULC) soil elevation types (details in Table 1).
(a) the study area in China; (b) the elevation of the study area, black circles represent the in situ sites and
crimson circles represent the three automatic meteorological station sites; (c) land use types distribution
in the study area; (d) soil types. The locations of in situ monitoring sites and meteorological stations
are also indicated in (b), (c) and (d).
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Table 1. Soil and vegetation types at the in situ observation sites and automatic meteorological stations.

ID Elevation Range (m) Soil Type Vegetation Type Percent (%) of Area

No.1 2000–2500 Typical lime calcium soil Medium coverage grassland 1.53
No.2 2000–2500 Chestnut soil Medium coverage grassland 0.91
No.3 2000–2500 Sticky chestnut soil Medium coverage grassland 1.34
No.4 2500–3000 Typical chestnut soil Medium coverage grassland 3.06
No.5 2500–3000 Chestnut soil Medium coverage grassland 2.87
No.6 3000–3500 Chestnut soil Medium coverage grassland 0.96
No.7 3000–3500 Calcareous frozen calcium soil Medium coverage grassland 2.48
No.8 3000–3500 Saturated cold felt soil Medium coverage grassland 3.79
No.9 3500–4000 Saturated cold felt soil Medium coverage grassland 7.57

No.10 3500–4000 Calcareous frozen calcium soil Medium coverage grassland 5.47
No.11 2500–3000 Typical chestnut soil Forest land 3.22
No.12 2500–3000 Typical gray cinnamon soil Forest land 1.34
No.13 2500–3000 Peat type felt soil Forest land 0.97
No.14 2500–3000 Chestnut soil Forest land 1.63
No.15 3000–3500 Peat type felt soil Forest land 2.77
No.16 3000–3500 Saturated cold felt soil Forest land 2.62
No.17 3500–4000 Peat type felt soil Forest land 1.02
No.18 2500–3000 Typical calcareous soil Farm land 2.05
No.19 2500–3000 Dryland calcareous soil Farm land 1.66
No.20 2500–3000 Calcareous cold calcareous soil Bare land 1.31
No.21 3000–3500 Calcareous cold calcareous soil Bare land 1.74
No.22 3000–3500 Saturated cold felt soil Bare land 1.04
No.23 3500–4000 Typical frozen calcium soil Bare land 1.48
No.24 4000–4500 Typical cold desert soil Bare land 9.33
No.25 4000–4500 Saturated cold felt soil Bare land 3.54
No.26 2500–3000 Typical chestnut soil High coverage grassland 1.24
No.27 2500–3000 Chestnut soil High coverage grassland 1.01
No.28 3000–3500 Typical chestnut soil High coverage grassland 2.40
No.29 3000–3500 Peat type felt soil High coverage grassland 1.54
No.30 3000–3500 Saturated cold felt soil High coverage grassland 3.73
No.31 3500–4000 Saturated cold felt soil High coverage grassland 7.02

Biandukou 3000–3500 Peat type felt soil High coverage grassland
Kangle 2000–2500 Chestnut soil Medium coverage grassland

Dayekou 2500–3000 Chestnut soil Forest land

3. Data Sets

3.1. In Situ Soil Moisture Monitoring Network

3.1.1. Soil Moisture Observation Network

We established a Soil Hydrological Heterogeneity Observation Network comprising 31 stations
(Figure 1) in the upstream of the Heihe River Watershed based on the combination of land use/land
cover (LULC), soil type and elevation [39,40]. The distribution of soil and vegetation types is shown
in Table 1. We used GPS (Garmin Oregon 550) to record latitude, longitude and altitude information
for each station, the positional errors were within ±1 m and altitude error was in ±3–5 m. We also
recorded soil profile characteristics, vegetation status, root depth, aspect and slope using a geological
compass, and took pictures of the sites every summer since June, 2014.

3.1.2. Soil Moisture Measurement

ECH2O 5TE soil moisture probes (DECAGON Devices, USA) and EM50 datalogger were installed
at each in situ observation site. The 5TE probe measures the soil volumetric water content by the
dielectric constant of the soil, with a precision of ±3% and accuracy of ±1–2% [3,41]. The 5TE probes
with a sensing depth of 2.5 cm were vertically centered in each of the sampled layers (0–10 cm, 10–20 cm,
20–30 cm, 30–50 cm and 50–70 cm) [42]. There is one probe in each layer for a total of five at each
station. Datalogger EM50 was placed into a waterproof box sealed with high-strength glass glue and
wrapped in a thick waterproof bag buried at a distance of at least 50 cm away from the 5TE probes.
The system collected soil moisture content data at 30 min intervals. Regular site maintenance took
place twice a year at the beginning of June and at the end of October [3].
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However, the mountainous study area is topographically complex and hard to reach, and it is a
real challenge to maintain the soil moisture in situ observation network in the study area. Wireless
data transmission is not possible because there is no mobile communication network coverage in the
study area. As a result, there are some gaps in the measurement datasets due to severe weather and
unstable batteries or sensors and the sensor damage by livestock and rats [3].

3.2. Time Series Data of NDVI and LST

NDVI was used as the vegetation index for the upscaling of the in situ soil moisture in this
study. Specifically, we acquired the 16-day composite NDVI dataset MOD13A2 V6 (https://e4ftl01.
cr.usgs.gov/MOLT/MOD13A2.006/) of the sixth edition of terrestrial Level 3 standard data products
for the period of October, 2013 to September, 2016, with a total of 69 scenes at a spatial resolution
of 1 km2 [43]. We used the 8-d composite Land Surface Temperature (LST) data MOD11A2 V6
(https://e4ftl01.cr.usgs.gov/MOLT/MOD11A2.006/) for the same period of October, 2013 to September,
2016, for a total of 138 scenes with a resolution of 1 km2 [44]. Since the LST data were of 8-d composite,
we used Maximum Value Composites (MVC) to process the LST dataset into a 16-d temporal resolution
to match the temporal frequency of the NDVI dataset [45].

4. Methodology

The remote sensing vegetation index products contain a lot of noise caused by precipitation,
cloud cover, human influence and the sensor itself in the data acquisition and process stages [46,47],
and these factors can be collectively called random factors or residual parts.

The MOD13A2 V5 NDVI product was divided into the NDVI seasonal part and the NDVI residual
part by using the Asymmetric Gaussian fitting method (AG) [48]. The multivariate linear regression
fitting was used to establish multiple linear regression equations between the time series soil moisture
data and the MODIS LST and NDVI. Subsequently, soil moisture upscaling equations were developed
for every profile in the 31 vegetation–soil–elevation zones.

We installed only three automatic weather stations in the study region due to resource constraints.
The limited number of precipitation observation stations cannot match the number of in situ soil
moisture observations. Our in situ observations covered the three-year period (October, 2013 to
September, 2016), and were able to represent the mean precipitation amount in the study region.
Therefore, we only used MODIS LST and NDVI remote sensing data to estimate the spatial distribution
of soil moisture in the study region.

4.1. Asymmetric Gaussian Function Fitting

Based on the noise information, NDVI data products can be divided into seasonal part, NDVIAG,
and residual part, NDVIRES as shown in Equation (1). It needs to be reconstructed to remove the
residual part [48].

NDVI = NDVIAG+NDVIRES (1)

The time series NDVI data curve reconstructed by the AG algorithm, can well express the
interannual variation characteristics of the vegetation, and identify all the abnormal values [31].
The AG algorithm is a nonlinear least-squares fitting algorithm based on the Asymmetric Gaussian
function. The original NDVI data and NDVIAG were used to obtain the residual part of the time
series Vegetation Index (NDVIRES). The shallow soil moisture was greatly affected by the residual part
which was likely to be related to short-term weather. The deep soil moisture was mainly subject to the
seasonal changes in weather conditions and plant growth and environmental factors.

https://e4ftl01.cr.usgs.gov/MOLT/MOD13A2.006/
https://e4ftl01.cr.usgs.gov/MOLT/MOD13A2.006/
https://e4ftl01.cr.usgs.gov/MOLT/MOD11A2.006/
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4.2. Multiple Linear Regression Fittings

In this study, a multiple linear regression method was used to estimate the soil moisture using the
in situ soil moisture observations, Vegetation Index (NDVI) and Land Surface Temperature (LST) data.
The specific equation is as follows:

SMC = a0+a1∗LST + a2∗NDVIRES+a3∗NDVIAG (2)

In Equation (2), SMC is soil volumetric water content (m3 m −3), LST is the Land Surface
Temperature (K), NDVIRES and NDVIAG are the residual part and seasonal part of the vegetation index,
respectively, a0, a1, a2 and a3 are the coefficients to be determined, a1 is in m3 m −3 K –1, while a2 and
a3 are dimensionless.

Following Zhang et al. [22], the regression equations were evaluated by complex correlation
coefficient (R), the F-test value, the confidence level P and the root mean square error (RMSE). R describes
the linear correlation of the dependent variable (soil moisture) and multiple explanatory variables in
multivariate linear regression. The F-test was used to test whether the established regression equation
is statistically significant. The larger the F-value, the better the fitted regression equation. Confidence
level P indicated the significance level of the regression equation. The smaller the p-value, the more
significant the equation. RMSE was used to measure the deviation between the predicted value and
the true value. The smaller the RMSE value, the closer the simulated value to the observed value,
the higher the accuracy of the regression equation. R and RMSE calculation formulas are as follows:

R =

∑n
i=1

(
SMCobs,i − SMCobs

)(
SMCmod,i − SMCmod

)
√∑n

i=1

(
SMCobs,i − SMCobs

)2
√∑n

i=1

(
SMCmod,i − SMCmod

)2
(3)

RMSE =

√∑n
i=1(SMCobs,i−SMCmod,i)

2

n
(4)

where, SMCobs,i is the measured soil moisture value, SMCmod,i is the multiple linear regression fitted
soil moisture value, n is the number of observations [22].

5. Results and Discussions

5.1. Time Series NDVI and LST

The NDVI dataset was the MOD13A2 product from 16 October 2013 to 29 September 2016.
The product was the 16-day composite with a total of 69 images. NDVIAG (Figure 2b) was obtained by
reconstructing the NDVI time series data with the AG algorithm, and then the NDVIAG and the original
NDVI data (Figure 2a) were used to derive the residual NDVIRES (Figure 2c). The reconstructed NDVI
time series data (NDVIAG) based on the AG algorithm and the trend of the original NDVI time series
data were basically the same (Figure 2d), and the reconstructed results were used to detect abnormally
high and low values in the time series data, to correct the low values, and to reflect seasonal changes in
the vegetation index [49]. The seasonal NDVIAG and the residual NDVIRES were consistent with the
growth pattern of the vegetation [48].

The selected LST dataset was the MOD11A2 product from 16 October 2013 to 29 September 2016,
which was an eight-day composite product with a total of 138 images. The eight-day LST dataset was
converted to a 16-day LST images (Figure 3b) to match the NDVI temporal resolution by the MVC
method [45].
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Figure 3. Land Surface Temperature (LST) data in the study area. (a) the LST distribution and the
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5.2. Upscaling of In Situ Soil Moisture

The soil moisture time series data in the 31 in situ observation sites were processed to 16-day
mean values corresponding to the NDVI and LST’s temporal resolution. Subsequently, multiple linear
regressions were established between the in situ soil moisture observations and the NDVI and LST time
series data. The five-layer soil moisture upscaling equation coefficients of the 31 in situ observation
sites were shown in Tables 2 and A1, Tables A2–A4. For the 0–10 cm layer of the site D8, the soil
moisture upscaling equation was significant at a 95% confidence level, and all the other models at the
rest 31 in situ observation sites were significant at a 99% level. Among them, the correlation coefficient
R of the 0–10 cm layer was 0.36–0.93, the RMSE was 0.03 (Table 2); the R and RMSE of 10–20 cm layer
were 0.65–0.90, and 0.03 (Table A1), respectively; The R and RMSE of 20–30 cm layer were 0.51–0.95 and
0.03 (Table A2), respectively; the R and RMSE of 30–50 cm layer were 0.47–0.93, and 0.03 (Table A3),
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respectively; and the R and RMSE of 50–70 cm layer were 0.54–0.94, and 0.02, respectively (Table A4).
The accuracy of scaling results was higher than that of Xu et al. [21]. In general, the five-layer RMSE
mean values were close to the ECH2O data accuracy (0.03 cm3 cm−3), indicating that the accuracy of
the in situ soil moisture estimation models was reasonable.

Table 2. Layer soil moisture estimation model (0–10 cm).

Site Intercept-a0 LST-a1 NDVIRES-a2 NDVIAG-a3 F-Value R RMSE

D1 −0.1428 0.0006 0.4888 0.3638 27.1860 ** 0.7564 0.0230
D2 0.1053 −0.0003 0.1883 0.1883 42.9037 ** 0.8151 0.0156
D3 −0.0943 0.0004 0.5355 0.2924 9.1448 ** 0.5448 0.0264
D4 −0.1903 0.0008 0.3047 0.0796 21.4239 ** 0.7051 0.0184
D5 −0.3828 0.0017 0.0371 0.1482 24.7216 ** 0.7300 0.0402
D6 −0.2111 0.0009 −0.0079 0.1728 13.7290 ** 0.6721 0.0374
D7 −0.1888 0.0007 0.1290 0.2629 41.9671 ** 0.8121 0.0224
D8 −0.1269 0.0006 0.1196 0.0833 3.2826 * 0.3627 0.0348
D9 −0.2464 0.0012 −0.1120 0.1672 28.5156 ** 0.7538 0.0384

D10 −0.2147 0.0006 0.3632 0.6959 44.2519 ** 0.8193 0.0278
D11 −0.1179 0.0003 0.2781 0.2624 44.5027 ** 0.8201 0.0316
D12 −0.5345 0.0021 0.1640 0.1196 24.0405 ** 0.8130 0.0284
D13 −1.3622 0.0055 −0.1438 0.0452 26.5764 ** 0.7422 0.0693
D14 −0.7388 0.0028 −0.2080 0.0848 30.9407** 0.8456 0.0284
D15 −3.7797 0.0144 −0.4288 −0.1371 34.2043 ** 0.7824 0.0986
D16 −0.4971 0.0021 0.0441 0.0946 40.0270 ** 0.8055 0.0294
D17 −0.8997 0.0035 0.0051 0.3303 49.3673 ** 0.8780 0.0464
D18 −0.8674 0.0032 −0.1961 0.0720 20.9669 ** 0.7243 0.0426
D19 −0.4460 0.0020 −0.0038 0.0830 37.9425 ** 0.7978 0.0313
D20 −0.0336 0.0002 0.0248 0.2648 14.7577 ** 0.6579 0.0326
D21 −0.0005 −0.0001 0.4719 0.8539 18.8724 ** 0.7122 0.0208
D22 −0.0523 0.0003 0.1973 0.2839 13.0625 ** 0.6133 0.0183
D23 −0.9314 0.0034 0.0434 0.2500 69.0881 ** 0.8725 0.0308
D24 −0.1344 0.0005 0.1318 0.2409 91.0531 ** 0.9325 0.0194
D25 −0.3850 0.0016 0.3814 0.2454 46.1557 ** 0.8249 0.0271
D26 −0.3739 0.0017 0.5105 0.1177 31.1755 ** 0.7681 0.0319
D27 −0.4618 0.0019 0.1124 0.0800 18.9346 ** 0.6829 0.0352
D28 −0.4352 0.0021 0.1503 0.1258 118.7521 ** 0.9229 0.0175
D29 −0.9221 0.0038 −0.0596 0.1164 55.6932 ** 0.8713 0.0366
D30 −0.6680 0.0028 0.1740 0.1285 44.6734 ** 0.8269 0.0290
D31 −0.9122 0.0033 0.0739 0.3898 56.3416 ** 0.8517 0.0589

* and ** represent F-test significance level of 95% and 99%, respectively. The table keeps 4 decimal places,
the calculation keeps 8 decimal places. Intercept-a0, LST-a1, NDVIRES-a2 and NDVIAG-a3 represent the coefficients
of upscaling Equation (2). F-value means the significance value in the F-test. R is the complex correlation coefficient.
RMSE is the root mean square error.

The soil moisture of each pixel (with spatial resolution of 1 km2) at the 31 zones from 16 October 2013
to 29 September 2016 was calculated by using the upscaling model to obtain the five-layer soil moisture
dataset in the study area for the same study period. The dataset covered an area of 2.75 × 104 km2,
with a temporal resolution of 16-day and a spatial resolution of 1 km2 (e.g., Figure 5).

5.3. Accuracy Evaluation of Upscaling Soil Moisture Models

To evaluate the accuracy of soil moisture upscaling models, the three sites—Biandukou, Dayekou
and Kangle, which were not used to establish the regression equations, were used as validation sites,
and their soil moisture data were used for correlation test and error analysis (Table 3). The results of
the soil moisture upscaling in the different soil layers showed that the correlation coefficients were
between 0.5410 and 0.8940, and the RMSE were between 0.0066 and 0.0549, all of which passed the
F-test at 99% significant level. The results showed that the correlation between the upscaled data and
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the measured data were significant, and the soil moisture upscaling models well expressed the dry and
wet conditions of the soil at the regional scale.

Table 3. Verification of the soil moisture upscaling equations at the three in situ observation sites.

Layer Site N R RMSE F-Value

0–10 cm
Biandukou 48 0.6645 0.0373 36.3749 **
Dayekou 54 0.7247 0.0417 57.5060 **
Kangle 54 0.6766 0.0247 43.9005 **
mean 0.6886 0.0346 45.9271 **

10–20 cm
Biandukou 55 0.7366 0.0255 62.8749 **
Dayekou 54 0.6310 0.0549 34.4064 **
Kangle 49 0.7981 0.0127 82.4391 **
mean 0.7219 0.0310 59.9068 **

20–30 cm
Biandukou 55 0.7172 0.0258 56.1386 **
Dayekou 54 0.7455 0.0275 65.0525 **
Kangle 54 0.8376 0.0106 122.2273 **
mean 0.7668 0.0213 81.1394 **

30–50 cm
Biandukou 55 0.5410 0.0339 21.9261 **
Dayekou 54 0.5908 0.0342 27.8885 **
Kangle 53 0.8940 0.0066 203.0996 **
mean 0.6753 0.0249 84.3048 **

50–70 cm
Biandukou 30 0.5254 0.0338 10.6759 **
Dayekou 54 0.6441 0.0247 36.8675 **
Kangle 54 0.8187 0.0094 105.6833 **
mean 0.6627 0.0226 51.0756 **

total
Biandukou 0.6369 0.0313 37.5981 **
Dayekou 0.6672 0.0366 44.3442 **
Kangle 0.8050 0.0128 111.4700 **

** means F-test at 99% significance. N is the observations.

Comparing the validation results of soil moisture models of the five layers, we found that the R’s
descending order was 20–30 cm > 10–20 cm > 0–10 cm > 30–50 cm > 50–70 cm, RMSE’s descending
order was 0–10 cm > 10–20 cm > 30–50 cm > 50–70 cm > 20–30 cm. The trends of the two indices were
not consistent, the main reason might be: 1) the variability of soil moisture with time decreased from
the top to the bottom soil layer, and the 0–10 cm layer had the largest soil water fluctuation and the
largest error, 2) the LST was mainly affected by the 0–10 cm layer of soil and overlying vegetation,
3) NDVI was mainly affected by the vegetation growth, and the root zone soil moisture was very
important for vegetation growth, the main vegetation types of the three verification sites were all
grassland, with their root system mainly distributed in the 20–30 cm. Therefore, the accuracy of the
20–30 cm soil moisture upscaling model was the highest, and the lowest was the 50–70 cm layer.

Comparison of the soil moisture upscaling results of the three verification sites showed that the
RMSE values were getting smaller from the top to the deep soil layers, Kangle appeared to have the best
fit. Topographically, the Kangle site was located at a plateau within 1 km2 pixels. The vegetation type
was mainly grass (Stipa Steppe) with homogeneous distribution. The climate was dry, with smaller
rainfall (annual 338 mm for Kangle, 428 mm for Dayekou and 702 mm for Biandukou during the
2013–2016 period), the soil moisture was relatively low and stable. Under these climate, topography
and vegetation conditions, the LST and NDVI data were of relatively high quality, and the accuracy
of the upscaling was high. The Biandukou and Dayekou sites were located on the mountain slope.
The terrain was complex within 1 km2 pixels, and the vegetation types were diverse. In addition,
there was a reservoir near the Dayekou site. These factors were likely to have affected the LST and
NDVI quality of remote sensing products, and the accuracy of the upscaling model was not as good as
that of the Kangle site.
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5.4. Soil Moisture Variability at Different Temporal and Spatial Scales

5.4.1. Temporal Variability of Soil Moisture at the Regional Scale

Figure 4 shows the changes in soil moisture at different layers over time. As Figure 4a shows,
the soil moisture was the lowest in December and the highest in July. The descending soil moisture
order in all the layers in December were 20–30 cm > 50–70 cm> 10–20 cm > 30–50 cm > 0–10 cm.
The descending soil moisture order in all the layers in July were 20–30 cm >10–20 cm > 0–10 cm >

30–50 cm > 50–70 cm. Among them, the 20–30 cm were the highest among all the layers of the soil
profile. During the whole three years, the variation range of each layer was 0–10 cm (coefficient of
variation, CV. 12.44%), 10–20 cm (CV. 12.27%), 20–30 cm (CV. 11.86%), 30–50 cm (CV. 10.40%), 50–70 cm
(CV. 8.38%), respectively, which was closely related to the effects of precipitation and soil infiltration on
soil moisture. Figure 4b shows that the 20–30 cm and 30–50 cm had a relatively high and low but stable
variation. Among the four seasons, the precipitation and temperature were low in winter, leading to
the decrease of liquid water in the soil, thus the soil moisture was the lowest in the winter. Summer
rainfall was the highest and most frequent, therefore the soil moisture content was highest and most
variable in the summer.
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5.4.2. Spatial Distribution of Soil Moisture at the Regional Scale

The overall spatial distribution of soil moisture during the growing season from 2014 to 2016
are shown in Figure 5. The weighted mean soil moisture of the three years was 14.50% in the entire
study region. Soil moisture was higher in most of the eastern, central and northwestern parts of the
region. Overall, the soil moisture in the eastern area was generally higher than that in the central
and western areas, and the soil moisture was the lowest in the western area. The spatial patterns
were consistent with the precipitation distribution pattern shown in Figure 5d and Tian et al. [42].
The precipitation during the growth period of 2014 to 2016 was highest in the Biandukou, the second
highest in the Dayekou, and the lowest in the Kangle automatic weather station, showing a spatial
pattern of a declining trend from the eastern to the central and to the western parts of the region.
Since the limited number of automatic weather stations and coarse spatial coverage, the precipitation
was not incorporated into the regression analysis.
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growth period; (b) 2015 growth period; (c) 2016 growth period; (d) rainfall distribution pattern
by kriging interpolation based on data obtained from the three automatic weather stations during the
2014–2016 period.

5.4.3. Soil Profile Moisture Heterogeneity at the Regional Scale

As shown in Figure 6, soil moisture and its variability at different layers were shown by the
relationship between the mean and coefficient of variation (CV). The fitting curves indicated that the
variability of soil moisture at the shallow layers was larger than deeper layers. Mean and CV had
negative correlations in the 30–50 cm and 50–70 cm layers, indicating that the soil moisture variability
was the highest in dry conditions and the lowest in humid conditions (e.g., summer), and the fitting
curve between the 30–50 cm layers and the whole profile was close, indicating that the characteristics
of the soil moisture change in the 30–50 cm was similar to that of the whole profile. As described in the
above section, the most representative of the whole profile was 30–50 cm among the five layers.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 20 
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6. Conclusions

Estimating spatial and temporal distribution of soil moisture is a challenge in high-elevation,
data-scarce, and heterogeneous mountainous areas like the upstream of the Heihe River Watershed in
Northwest China. We proposed a regression model based on the MODIS NDVI and LST to estimate
profile soil moisture at the regional scale. Subsequently, we analyzed the spatial and temporal variability
of soil moisture at the regional scale. Results showed that the multivariate linear regression method
could be used to estimate high-resolution soil moisture products in alpine and cold mountainous
areas at both shallow and deep soil layers. The soil moisture in the east of the upstream of the Heihe
River Watershed was significantly higher than that in the west, and the average soil moisture in the
whole region was 14.5% in the 0–70 cm depth. The soil moisture at the 30–50 cm soil layer could
reasonably represent the 0–70 cm profile soil moisture. Soil moisture in the 0–10 cm layer had the
highest variability while the 20–30 cm layer showed the lowest soil moisture variability among all
the layers. The contribution of this study was to estimate profile soil moisture at the regional scale by
readily available remote sensing products of NDVI and LST.

However, the microterrain features such as slope and aspect were not considered in the
soil-vegetation-elevation sampling zone, which might affect the accuracy of soil moisture upscaling
models. Satellite products with high spatial-temporal resolutions need to be integrated with in situ
observations and other soil and vegetation datasets to improve the accuracy of estimating soil moisture
at the regional scale, especially in data-scarce and topographically complex mountainous regions.
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Appendix A

Table A1. Layer soil moisture estimation model (10–20 cm).

Site Intercept-a0 LST-a1 NDVIRES-a2 NDVIAG-a3 F-Value R RMSE

D1 −0.0448 0.0003 0.1239 0.1552 47.1598 ** 0.8359 0.0082
D2 0.0356 0.0000 0.1810 0.1748 38.1284 ** 0.7985 0.0170
D3 −0.2269 0.0008 0.4974 0.6081 45.2227 ** 0.8222 0.0224
D4 −0.1502 0.0007 0.0725 0.0469 62.7791 ** 0.8798 0.0079
D5 −0.4594 0.0020 −0.0527 0.0761 25.6997 ** 0.7366 0.0294
D6 −0.1641 0.0008 −0.0593 0.1495 12.7288 ** 0.6580 0.0351
D7 −0.0033 0.0000 0.2733 0.4083 44.2384 ** 0.8193 0.0271
D8 −0.3441 0.0015 0.2253 0.2215 37.5842 ** 0.7964 0.0256
D9 −0.3716 0.0016 0.0603 0.1356 41.7135 ** 0.8113 0.0313

D10 −0.3128 0.0012 0.2242 0.4499 61.1032 ** 0.8592 0.0204
D11 −0.0782 0.0003 0.2959 0.2660 60.4343 ** 0.8580 0.0276
D12 −0.5718 0.0022 0.1828 0.0993 26.5246 ** 0.8262 0.0266
D13 −0.6246 0.0028 −0.2230 0.1037 25.5179 ** 0.7354 0.0561
D14 −0.7640 0.0030 −0.3891 0.0782 21.1450 ** 0.7947 0.0345
D15 −3.1465 0.0121 −0.3682 −0.1379 49.6064 ** 0.8343 0.0655
D16 −0.5756 0.0025 −0.0085 0.1084 31.9732 ** 0.7721 0.0388
D17 −0.6236 0.0024 −0.0017 0.4309 38.3976 ** 0.8507 0.0587
D18 −0.6764 0.0027 −0.1042 0.0408 22.3538 ** 0.7126 0.0330
D19 −0.4705 0.0020 −0.0212 0.0813 36.9206 ** 0.7938 0.0313
D20 0.0072 0.0001 0.0309 0.2423 18.7568 ** 0.7017 0.0256
D21 0.0465 −0.0003 0.2537 0.9154 19.9186 ** 0.7216 0.0205
D22 −0.0461 0.0002 0.1433 0.4214 33.0572 ** 0.7772 0.0153
D23 −0.8592 0.0032 0.0515 0.2168 68.1222 ** 0.8710 0.0283
D24 0.0002 0.0000 0.0661 0.1138 18.7331 ** 0.7604 0.0185
D25 −0.4217 0.0018 0.3830 0.1929 49.7008 ** 0.8345 0.0243
D26 −0.4072 0.0017 0.5010 0.1211 37.0421 ** 0.7943 0.0300
D27 −0.4132 0.0016 0.0655 0.0041 15.6931 ** 0.6481 0.0243
D28 −0.3328 0.0016 0.2332 0.1694 66.8502 ** 0.8740 0.0250
D29 −1.4304 0.0057 −0.1453 0.0258 37.4054 ** 0.8241 0.0436
D30 −0.7721 0.0031 0.1355 0.0902 50.5135 ** 0.8366 0.0265
D31 −0.8850 0.0034 0.0180 0.1557 95.4179 ** 0.9040 0.0253

** represents F-test significance level of 99%. The table keeps 4 decimal places, the calculation keeps 8 decimal
places Intercept-a0, LST-a1, NDVIRES-a2 and NDVIAG-a3 represents the coefficients of upscaling Equation (2).
F-value means the significance value in the F-test. R is the complex correlation coefficient. RMSE is the root mean
square error.
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Table A2. Layer soil moisture estimation model (20–30 cm).

Site Intercept-a0 LST-a1 NDVIRES-a2 NDVIAG-a3 F-Value R RMSE

D1 −0.0083 0.0002 0.0743 0.2354 41.1005 ** 0.8224 0.0111
D2 −0.1153 0.0007 0.0931 0.1193 34.1421 ** 0.7822 0.0172
D3 −0.0706 0.0004 0.0280 0.1362 106.4698 ** 0.9115 0.0045
D4 −0.1461 0.0007 0.0442 0.0442 81.4475 ** 0.9158 0.0058
D5 −0.4863 0.0021 −0.0769 0.0640 42.4492 ** 0.8137 0.0223
D6 −0.1669 0.0008 −0.0583 0.1072 10.6971 ** 0.6252 0.0315
D7 −0.1960 0.0009 0.1118 0.2254 68.0018 ** 0.8791 0.0164
D8 −0.2864 0.0013 0.2385 0.2561 73.0847 ** 0.8783 0.0181
D9 −0.3968 0.0018 0.0137 0.0914 35.6686 ** 0.7887 0.0300

D10 −0.1977 0.0009 0.1481 0.4672 97.0527 ** 0.9042 0.0148
D11 −0.2159 0.0009 0.2404 0.2235 76.6659 ** 0.8830 0.0230
D12 −0.4539 0.0019 0.1899 0.0817 30.0917 ** 0.8422 0.0211
D13 −0.6281 0.0028 −0.2828 0.1395 20.4940 ** 0.6972 0.0736
D14 −1.2032 0.0047 −0.5466 0.1281 28.3354 ** 0.8347 0.0474
D15 −2.9820 0.0116 −0.3259 −0.1956 28.7933 ** 0.7554 0.0724
D16 −0.5306 0.0023 −0.0735 0.0654 15.8860 ** 0.6504 0.0431
D17 −0.4574 0.0019 0.1621 0.3431 36.6091 ** 0.8450 0.0467
D18 −0.4233 0.0018 −0.1834 0.0218 7.6475 ** 0.5108 0.0373
D19 −0.4601 0.0019 −0.0253 0.0735 40.5132 ** 0.8072 0.0280
D20 0.0795 −0.0001 0.1087 0.2177 25.5517 ** 0.7545 0.0182
D21 0.0384 −0.0002 0.1139 0.8839 25.9263 ** 0.7654 0.0180
D22 −0.0273 0.0002 0.1510 0.3218 15.9146 ** 0.6596 0.0162
D23 −0.8016 0.0032 0.0669 0.1044 77.8980 ** 0.8845 0.0212
D24 −0.2004 0.0007 0.0031 0.0648 137.3034 ** 0.9537 0.0058
D25 −0.4723 0.0019 0.4172 0.1751 47.0887 ** 0.8462 0.0224
D26 −0.4483 0.0020 0.4454 0.0871 35.3780 ** 0.7875 0.0288
D27 −0.2725 0.0011 0.0413 0.0380 23.8688 ** 0.7240 0.0174
D28 −0.3072 0.0015 0.1535 0.1483 78.3862 ** 0.8896 0.0207
D29 −1.7187 0.0068 −0.2184 0.0185 30.9722 ** 0.7980 0.0554
D30 −0.7217 0.0029 0.1286 0.0932 48.8410 ** 0.8323 0.0261
D31 −0.9337 0.0034 −0.0136 0.1848 51.1559 ** 0.8401 0.0385

** represents F-test significance level of 99%. The table keeps 4 decimal places, the calculation keeps 8 decimal places.



Remote Sens. 2020, 12, 2414 16 of 20

Table A3. Layer soil moisture estimation model (30–50 cm).

Site Intercept-a0 LST-a1 NDVIRES-a2 NDVIAG-a3 F-Value R RMSE

D1 −0.0014 0.0003 −0.0091 0.0181 4.6020 ** 0.4652 0.0095
D2 −0.0332 0.0003 0.0570 0.0953 26.3842 ** 0.7410 0.0140
D3 −0.0842 0.0005 0.0172 0.0802 147.0702 ** 0.9336 0.0036
D4 −0.1455 0.0007 0.0316 0.0330 95.5330 ** 0.9028 0.0058
D5 −0.4512 0.0020 −0.1234 0.0728 48.8376 ** 0.8323 0.0213
D6 −0.2033 0.0010 −0.0737 0.0705 10.6289 ** 0.6240 0.0277
D7 −0.3535 0.0014 0.1489 0.2710 100.0371 ** 0.9066 0.0188
D8 −0.2611 0.0013 0.0147 0.1866 107.5899 ** 0.9123 0.0132
D9 −0.3237 0.0013 0.1924 0.0761 6.2735 ** 0.4826 0.0567

D10 −0.1469 0.0007 0.0054 0.3318 103.2531 ** 0.9092 0.0108
D11 −0.0180 0.0002 0.1437 0.2159 22.7155 ** 0.7154 0.0353
D12 −0.1346 0.0008 0.0908 0.0537 14.4754 ** 0.7348 0.0149
D13 −0.3398 0.0016 −0.1759 0.1285 19.0697 ** 0.7047 0.0547
D14 −0.7170 0.0030 −0.3272 0.0878 18.6426 ** 0.7758 0.0381
D15 −1.7513 0.0071 −0.2116 0.0450 35.0906 ** 0.7863 0.0667
D16 −0.3874 0.0017 −0.1079 0.0567 6.9133 ** 0.4918 0.0526
D17 −0.4576 0.0019 0.1425 0.4975 39.1722 ** 0.8530 0.0618
D18 −0.3296 0.0016 −0.0880 0.0489 12.7872 ** 0.6092 0.0322
D19 −0.3036 0.0013 −0.0353 0.0737 34.1784 ** 0.7823 0.0263
D20 −0.0590 0.0004 0.0769 0.1023 25.2061 ** 0.7523 0.0131
D21 0.0503 −0.0002 0.0502 0.6640 20.0755 ** 0.7230 0.0153
D22 −0.0449 0.0002 −0.0200 0.7046 31.0264 ** 0.7673 0.0259
D23 −0.5755 0.0022 0.0430 0.1652 70.6508 ** 0.8748 0.0202
D24 −0.2131 0.0008 0.0179 0.1207 70.9558 ** 0.9157 0.0128
D25 −0.4455 0.0019 0.2208 0.1388 54.0855 ** 0.8450 0.0211
D26 −0.4102 0.0019 0.4669 0.1138 30.2195 ** 0.7632 0.0331
D27 −0.3371 0.0014 0.0287 0.0524 21.2821 ** 0.7039 0.0233
D28 −0.0846 0.0007 0.1239 0.1617 60.3166 ** 0.8757 0.0202
D29 −1.6336 0.0064 −0.2181 0.0271 34.8192 ** 0.8145 0.0503
D30 −0.6545 0.0026 0.0989 0.0839 42.3720 ** 0.8134 0.0249
D31 −0.5294 0.0022 0.0122 0.2322 46.7052 ** 0.8285 0.0399

** represents F-test significance level of 99%. The table keeps 4 decimal places, the calculation keeps 8 decimal places.
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Table A4. The 50–70 cm layer soil moisture estimation model.

Site Intercept-a0 LST-a1 NDVIRES-a2 NDVIAG-a3 F-Value R RMSE

D1 0.0253 0.0001 −0.0361 0.1726 19.3090 ** 0.6979 0.0123
D2 −0.1375 0.0007 0.0425 0.1023 38.1098 ** 0.7985 0.0152
D3 −0.0882 0.0005 0.0236 0.0765 155.1495 ** 0.9367 0.0036
D4 −0.1493 0.0007 0.0231 0.0354 120.8715 ** 0.9209 0.0054
D5 −0.3495 0.0016 −0.1239 0.0601 33.9899 ** 0.7815 0.0208
D6 −0.3934 0.0018 −0.0707 −0.0019 20.0979 ** 0.7394 0.0219
D7 −0.1164 0.0006 0.0633 0.0714 112.0099 ** 0.9154 0.0060
D8 −0.0750 0.0008 −0.0578 0.1556 126.9255 ** 0.9242 0.0090
D9 −0.2302 0.0012 −0.1346 0.0672 20.0882 ** 0.6964 0.0278

D10 −0.0524 0.0003 −0.2237 0.3529 90.7162 ** 0.8998 0.0113
D11 0.0185 0.0002 0.1235 0.1380 19.0389 ** 0.6839 0.0255
D12 −0.1324 0.0008 0.0654 0.0170 20.7468 ** 0.7919 0.0089
D13 −0.3579 0.0017 −0.0768 0.1460 23.4037 ** 0.7206 0.0563
D14 −0.4018 0.0017 −0.2710 0.0489 9.4123 ** 0.6579 0.0295
D15 −0.5082 0.0024 −0.0496 0.2065 27.0967 ** 0.7480 0.0667
D16 −0.0781 0.0007 −0.1116 0.1095 8.8637 ** 0.5388 0.0458
D17 −0.2471 0.0010 0.1567 0.2524 24.4479 ** 0.7906 0.0395
D18 −0.0561 0.0007 0.0170 0.0606 12.1061 ** 0.5987 0.0263
D19 −0.2337 0.0011 −0.0544 0.0720 32.4551 ** 0.7744 0.0250
D20 −0.1091 0.0005 0.0369 0.1078 22.2550 ** 0.7315 0.0150
D21 0.0981 −0.0004 −0.1776 0.9557 12.3260 ** 0.6341 0.0281
D22 0.0150 0.0001 −0.0915 0.5681 21.8802 ** 0.7088 0.0245
D23 −0.5426 0.0021 0.0358 0.1850 51.7100 ** 0.8395 0.0238
D24 −0.0146 0.0000 0.0540 0.0580 4.5765 ** 0.5540 0.0159
D25 −0.2784 0.0012 0.0099 0.1675 40.9908 ** 0.8088 0.0210
D26 −0.0808 0.0003 0.1109 0.0342 13.1810 ** 0.6150 0.0117
D27 −0.1480 0.0007 0.0198 0.0610 26.5345 ** 0.7420 0.0142
D28 −0.2307 0.0012 0.1268 0.1033 34.8308 ** 0.7922 0.0229
D29 −0.4168 0.0020 −0.0756 0.0395 20.0238 ** 0.7289 0.0274
D30 −0.6083 0.0025 0.0864 0.0694 48.0417 ** 0.8302 0.0212
D31 −0.4414 0.0019 0.0115 0.1648 43.6817 ** 0.8218 0.0308

** represents F-test significance level of 99%. The table keeps 4 decimal places, the calculation keeps 8 decimal places.
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