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Abstract: This article explores the application of Hölder exponent analysis for the identification and 
delineation of single tree crowns from very high-resolution (VHR) imagery captured by unmanned 
aerial vehicles (UAV). Most of the present individual tree crown detection (ITD) methods are based 
on canopy height models (CHM) and are very effective as far as an accurate digital terrain model 
(DTM) is available. This prerequisite is hard to accomplish in some environments, such as alpine 
forests, because of the high tree density and the irregular topography. Indeed, in such conditions, the 
photogrammetrically derived DTM can be inaccurate. A novel image processing method supports the 
segmentation of crowns based only on the parameter related to the multifractality description of the 
image. In particular, the multifractality is related to the deviation from a strict self-similarity and can 
be treated as the information about the level of inhomogeneity of considered data. The multifractals, 
even if well established in image processing and recognized by the scientific community, represent a 
relatively new application in VHR aerial imagery. In this work, the Hölder exponent (one of the 
parameters related to multifractal description) is applied to the study of a coniferous forest in the 
Western Alps. The infrared dataset with 10 cm pixels is captured by a UAV-mounted optical sensor. 
Then, the tree crowns are detected by a basic workflow. This consists of the thresholding of the image 
on the basis of the Hölder exponent. Then, the single crowns are segmented through a multiresolution 
segmentation approach. The ITD segmentation was validated through a two-level validation analysis 
that included a visual evaluation and the computing of quantitative measures based on 200 reference 
crowns. The results were checked against the ITD performed in the same area but using only spectral, 
textural, and elevation information. Specifically, the visual assessment included the estimation of the 
producer’s and user’s accuracies and the F1 score. The quantitative measures considered are the root 
mean square error (RMSE) (for the area, the perimeter, and the distance between centroids) and the 
over-segmentation and under-segmentation indices, the Jaccard index, and the completeness index. 
The F1 score indicates positive results (over 73%) as well as the completeness index that does not 
exceed 0.23 on a scale of 0 to 1, taking 0 as the best result possible. The RMSE of the extension of crowns 
is 3 m2, which represents only 14% of the average extension of reference crowns. The performance of 
the segmentation based on the Hölder exponent outclasses those based on spectral, textural, and 
elevation information. Despite the good results of the segmentation, the method tends to under-
segment rather than over-segment, especially in areas with sloping. This study lays the groundwork 
for future research into ITD from VHR optical imagery using multifractals.  

Keywords: individual tree detection (ITD); Hölder exponent; multifractals; unmanned aerial 
vehicles (UAV); VHR imagery; alpine arch; precision forestry; segmentation accuracy assessment 
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1. Introduction 

Unmanned aerial vehicle (UAV) systems have gained the approval of the scientific community 
for different applications related to the acquisition of information, becoming common in geospatial 
research and a wide range of applications [1]. The cost- and time-effectiveness of UAV systems, 
compared to traditional field surveys, is partially responsible for their increasing favor. An additional 
factor contributing to their popularity is that they can be equipped with several sensors, such as 
optical and hyperspectral cameras, light detection and ranging systems (LiDAR), synthetic aperture 
radars (SAR), inertial measurement units (IMU), and global positioning systems (GPS) [1–4]. 

Many disciplines benefit from these technologies, including forestry [5]. The application of UAV 
in forestry inventory and, more generally, in the extraction of the main forest parameters (e.g., forest 
stand density, crown widths, basal area, average diameter at breast height, height) is well established. 
The structural information of forest stands is vital for silviculture and forestry inventories. The 
accurate detection of tree crowns is necessary to estimate the dendrometric attributes of forest stands, 
such as the tree position, the stem diameter, the height, the crown extension, and the volume[6–8]. 
Besides, these forest parameters can be valuable ecological indicators, which determine, among 
others, the carbon sequestration, the shading, the risk of wind-breakage, and the tree growth [9]. The 
determination of these parameters is performed at the individual tree level and requires information 
about single trees. 

Thus far, many approaches have been proposed for individual tree detection (ITD) via remote 
sensing. Generally, they are based on digital elevation models (DEM) that can be generated from 
LiDAR acquisitions [7,10–15] or structure from motion (SfM) [5,9,11,16,17]. SfM uses optical images 
acquired from multiple points of view to recreate the three—dimensional geometry of an object 
[18,19]. The 3D model generation is carried out by incremental steps. First, the key-points are 
extracted from the images based on contrast and texture-related rules. The key-points are identified 
in all input images and then matched between different images [19,20]. Then, the bundle adjustment 
is performed and the sparse point cloud is usually scaled and georeferenced [21,22]. The final step 
consists of the densification of the point cloud thorough specific algorithms [23]. 

Regardless of the data source, some 2D ITD methodologies include the computation of the 
canopy height model (CHM) for the detection and delineation of tree crowns [5,24]. First, the local 
maxima of the CHM are computed to detect treetops [5,24], and then, the crowns are delineated using 
image-processing and segmentation algorithms [10,13,15,25]. The most common technique for the 
delineation of crowns consists of watershed segmentation, using as input seeds the local maxima. 
Segmentation works on contiguous pixels that are grouped based on similar digital number (DN) 
values [4,13,15,26]; when the local maxima are identified, they are used as input seeds, or starting 
points, for the generation of the segments. Many other 2D ITD spectral information methodologies 
have been explored, but, unlike the others, these procedures mainly work on the segmentation based 
on brightness levels [7,9,10,24,27,28]. They consider the brightest pixel in a neighborhood as the tree 
crown apex and identify the tree crown perimeters using dark-pixel and valley-following approaches. 
Most of the ITD techniques depend on CHM generation methods that may affect the accuracy of tree 
crown delineation [13,29]. CHM is calculated as the difference between the digital surface model 
(DSM) and the digital terrain model (DTM). Thus, a good DTM is a fundamental prerequisite for the 
accurate characterization of CHM [11]. 

When the DTM of a forest stand is interpolated from LiDAR or photogrammetric point clouds, 
their accuracy is strongly influenced by the density of the forest stand, meaning the number of ground 
points identified by the sensor [11]. Indeed, CHM-based methods for ITD assume that local maxima 
analysis detects treetops. However, in structurally complex forest stands and steep slope areas, the 
results should be carefully interpreted [9]. In this framework, LiDAR data is much more accurate [5] 
than the SfM-based approaches, since LiDAR can penetrate tree crowns and obtain terrain 
information by reaching the ground [30]. As a result of this, and of the commercialization of light-
weighted sensors that can be mounted on UAVs, the most recent applications of ITD methodologies 
work on 3D datasets acquired with aerial laser scanners (ALS) [5,12,15]. Besides being able to generate 
more accurate point clouds, LiDAR technologies are more expensive than optical ones [24,30]. Even 
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if some countries, such as Norway, Sweden, and Canada, use LiDAR technology for national forest 
inventories, several annual acquisitions at local and regional scales are generally cost-prohibitive [30]. 
Therefore, many countries are not in the economical position to rely on LiDAR technologies. 
According to White et al. [29], generally, SfM-derived data for forestry inventories are more cost-
effective than LiDAR data and can cost about one-half to one-third of LiDAR data [29]. Moreover, 
LiDAR sensors are heavier than multispectral cameras and need to be mounded on UAVs with higher 
payload capacities. Besides being more expensive, larger UAVs with heavy payloads may require 
additional training and licensing (most UAV license national systems are based on maximum take-
off weight, MTOW, categories). Among others, LiDAR requires also high data storage structures [24] 
and powerful computational technology to obtain accurate results [5]. LiDAR data do not provide 
users with the spectral information, although some models have a camera integrated into the 
acquisition system. Table 1 provides an analysis of the advantages and disadvantages of the optical 
and LiDAR systems focused on UAV data acquisition for ITD. 

Table 1. Advantages and disadvantages of unmanned aerial vehicles (UAV) and light detection and 
ranging (LiDAR) systems for the acquisition of data in forested areas with UAV for individual tree 
crown detection (ITD) from the literature and authors’ personal experience. 

 Advantages Disadvantages 

Optical 

• Low cost [24,30]; 
• No advanced-trained personnel 

needed; 
• Provides multispectral 

information [31]; 
• Requires medium data storage 

structures; 

• Unable to penetrate tree crowns; 
• Inaccurate digital terrain model (DTM) in 

case of high-density stands [5]; 
• Sensitive to varying illumination 

conditions [19]; 
• Incapable of collecting data of trunks (2D-

nadiral information only) [11]; 
• Requires powerful computational 

technology; 

LiDAR 

• High accuracy [5]; 
• Penetrates tree crowns [11,30]; 
• Provides trunks and lower 

forest strata information [11]. 

• Expensive [11,24,30];  
• Requires UAV systems with high 

maximum take-off weight (MTOW) 
capability; 

• No multispectral information available 
[31] ; 

• Requires high data storage structures [24]; 
• Powerful computational technology 

needed [5]. 

The ITD approaches based on UAV aerial images promise to be a cost effective and valid 
alternative to LiDAR. They provide users with good accuracy data, with little usage of resources. 
Several studies have been carried out on the accuracy of ITD from UAV-derived information. Some 
methods identify the tree crowns from the brightness values of visible and infrared images [27,28], 
while some more recent ones work on multiscale filtering, segmentation of imagery, and math 
morphology algorithms [8] to define tree crowns [16,25,32]. These methods usually have complex 
segmentation workflows and require the application of image filters, such as Laplacian filters, 
Gaussian filters, and math morphology algorithms. Complex segmentation processes are necessary 
because UAV optical imagery of forested areas is frequently affected by shadows, slope-derived 
distortions, and low contrast [33,34]. These aspects, which are enhanced by the high spectral 
variability of very high resolution (VHR) imagery, make segmentation difficult. VHR images 
represent a challenge for segmentation and classification because, unlike in lower resolution images, 
single pixels no longer capture the characteristics of the classification targets [26]. Image-based 
methodologies for ITD, even if efficient, usually require several steps; therefore, high computational 
time is needed. This is one of the reasons why the image-based processes for ITD have been partially 
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overcome by CHM-based methods. Nevertheless, when CHM is not accurate enough or too 
expensive, such as structural complex stands, image processing methods that do not require CHM 
exist and they can be a valuable alternative to CHM-based methods. Indeed, image-based 
segmentation techniques can provide good accuracy results, especially when a textural analysis is 
applied [35,36]. A shared methodology of texture analysis for segmentation (and classification) is 
based on the gray level co-occurrence matrix (GLCM) according to the Haralick measures [37]. For 
the images of complex structures, some researchers proposed the use of segmentation algorithms 
based on fractal and multifractal analyses [38–40]. It is worthwhile to remember here that a fractal is 
a rough or fragmented geometrical object that can be subdivided into parts, each of which is (at least 
approximately) a reduced-size copy of the whole object [41]. Fractals are described by one 
quantitative number—a fractal dimension, for the computation of which various methods have been 
proposed (see, e.g., [42]), but, generally, it can be treated as information about the considered object’s 
measure of complexity and self-similarity. 

Fractal dimension has been used together with other features for image texture description and 
segmentation, e.g., Keller et al. [43]. The fractal dimension has been also utilized in the forestry field. 
For instance, an interesting description of fractals in forest science can be found in Lorimer et al. [44]. 
Zeide and Pfeifer showed that the fractal dimension of tree crowns can be useful in crown 
classification and foliage distribution within a single tree crown analysis [45]. Similarly, Mandelbrot 
suggested applying fractals to modeling trees and analyzing their structure [41]. A comprehensive 
review of the application of fractal description in forest science can be found in Lorimer et al. [44]. 
Multifractal analysis is an extension of fractal theory and it is based on the assumption that the 
multifractal is a set of nontrivially intertwined fractals. Hence, the description of multifractal inner 
structure demands a set of parameters which permit a more detailed characterization both locally 
and globally. 

At the beginning of the multifractal image analysis, a measure is assigned to the image and, in 
the next steps, the measure regularity of this measure is analyzed as the information on the image’s 
complexity/inhomogeneity. It is worthwhile to underline the fact that various measures defined 
based on pixel intensities can be applied [38,40,46]. The local (pointwise) degree of regularity of a 
given measure is described by so-called Hölder exponent values, which strongly depend on the actual 
position on the image and allow researchers to identify points that differ from the background [40]. 
On the other hand, the distribution of Hölder exponents on the image is summarized in the form of 
the so-called multifractal spectrum, treated as the global characteristic of a measure’s regularity 
(image complexity/inhomogeneity) [38,40]. Global multifractal characteristics have already been 
applied to VHR optical data [47,48], mostly to distinguish between different land cover types. One 
can find also their application in the context of the study of forest cover, such as in Danila et al.’s 
work [49], or to perform the segmentation of plants’ disease images [50]. On the other hand, local 
multifractal description by using Hölder exponents has rarely been used, mainly to perform 
segmentation of medical data [38,40] or in the change detection aspects of satellite images [38,51]. 
Nevertheless, the results obtained in papers [38,40,51] suggest the usefulness of the Hölder exponent 
in the context of image content description. In particular, the authors of these studies underlined the 
fuller description of complex shapes, heterogeneous measures, and structures typical for satellite 
remote sensing. It is worth mentioning that, to the best of our knowledge, the Hölder exponent 
parameter has not been determined for VHR UAV-derived imagery yet or in the context of forest 
analysis. Therefore, in this study, we focus on the determination of the local Hölder exponent 
connected with multifractal theory and use it for the segmentation of single tree crowns from VHR 
UAV-derived imagery. More precisely, we propose to apply this quantitative descriptor as the unique 
input for the efficient identification of single tree crowns using only a cycle of multiresolution 
segmentation algorithms. 

Study Site 

This study was conducted in the North-Western Alps in a forest stand located in Cesana Torinese 
(TO) (44°56′46.1′′ N 6°46′29.5′′ E). The test study is a coniferous forest (Figure 1) dominated by silver 
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fir (Abies alba Mill.), Norway spruce (Picea abies (L.) H. Karsten), and European larch (Larix decidua 
Mill.). Scots pines (Pinus sylvestris L.) and Swiss pines (Pinus cembra L.) are sporadically present. The 
study area extends to approximately 38 hectares. The forest stand is in a high-sloped mountainous 
area with north-facing exposure. The steep mountainsides make the area particularly prone to 
rockfall and avalanches. 

 
Figure 1. The study area in Cesana Torinese. The light blue circles are the check points (CPs) and the 
orange squares are the ground control points (GCPs). 

2. Methods 

2.1. UAV Flight and Photogrammetric Data Acquisition 

UAV technology was used in this research in order to generate photogrammetric products to be 
used as input data for the segmentation of single tree crowns using multifractal analysis. The UAV 
system used was chosen to take into account the characteristics of the study area, regarding the 
topography, and the environmental conditions that could affect the execution of flights, the 
resolution of the products to be generated, and the sensors to be integrated. Besides the radiometric 
information regarding the visible part of the electromagnetic spectrum (red, green, blue), the near 
infrared (NIR) part was necessary. Indeed, NIR information can enhance the presence of vegetation 
in the image-processing phase, and, generally, NIR information helps distinguish shadows from dark 
objects, which have higher reflectance in the NIR. Due to the large area involved in this application 
and the steep terrain, with an elevation difference of about 400 m, we used a commercial fixed-wings 
solution, an eBee Plus made by senseFly. The eBee has a payload of up to 0.3 kg, a flight autonomy 
of 59 min, and it can reach a cruise speed of 40–110 km/h. Moreover, it does not require expert users, 
because take-off and landing are completely automatic, thanks to the built-in global navigation 
satellite system (GNSS) receiver. 

Two different camera devices were employed for the collection of the RGB and NIR 
electromagnetic spectra. To perform the RGB flight, the eBee Plus was equipped with the RGB 
senseFly S.O.D.A. digital camera, with a sensor of 20 MP (5472 × 3648), a focal length of 10.6 mm, and 
a sensor size of 13.2 × 8.8 mm. A fixed number of frames per second equal to 0.25 fps was 
automatically acquired by the camera using a shutter cable. The flight with the eBee was planned 
using the eMotion software, considering a photogrammetric overlap between images of 80% in the 
lateral and longitudinal direction, an altitude of 220 m, a speed of 9 m/s, and an average ground 
resolution of 5 cm. Due to the extension of the area and the significant difference in height of the 
terrain, which could have adversely affected the autonomy of the battery by not allowing the flight 
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to end, it was decided to survey the area through two distinct flights (Table 2). The flights were 
planned using as a base a digital surface model (DSM) of the area, from which the flight height was 
fixed. Given the steep terrain, the flight plan was created so that the survey lines of the flight path 
would be roughly parallel to the contour lines of similar elevation and then at constant height. In 
order to acquire NIR images, we used a commercial camera, the Canon S110 NIR. The main feature 
of the camera is that it has a modified filter that acquired the near infrared 850 nm, along with the 
red 625 nm and green 500 nm, light. The Canon S110 has a resolution of 12.1MP (4000 × 3000) and a 
focal length of 5.2 mm. Taking into account the characteristics of the camera sensor, the flight was 
performed with the eBee at a height of 220 m and a speed of 11 m/s, in order to guarantee an image 
overlap of 80% in both directions and an average ground sample distance (GSD) of about 6 cm. Table 
2 shows the characteristics of the photogrammetric flights. The data acquisition is a key step of the 
photogrammetric process since the quality of the final result depends on it. 

Table 2. Characteristics of the three flight plans (Avg. = average; Num. = number). 

 S.O.D.A. _ 1st Flight S.O.D.A. _ 2nd Flight Canon S110 NIR 
Avg. Height (m) 220 220 220 

Avg. GSD (m) 5.47 5.47 6.29 
Duration (min) 18 12 19 

Area (ha) 60 40 76.4 
Num. of images 221 137 176 

Camera orientation Nadir Nadir Nadir 
The data acquisition phase includes not only flights but, if necessary, the measurement of 

ground control points (GCPs) for the point cloud georeferencing and of check points (CPs) for the 
evaluation of the accuracy of the final results. To this purpose, before performing flights, 20 colored 
markers of 40 × 40 cm size were placed within the study area. A total of 14 of them were used as GCPs 
during the data processing phase, while 6 markers were employed as CPs for the validation of the 
model (Figure 1). 

The position of the GCPs and CPs was acquired through a GNSS (global navigation satellite 
system) receiver using a real-time kinematic (RTK) (with a Global System for Mobile 
Communications GSM connection for real-time correction) approach, considering a session length of 
about 10 s for each point. The points’ coordinates were estimated with fixed-phase ambiguities. The 
centimeter-level accuracy (≅3 cm) ensured a high level of precision for the georeferencing process. 

2.2. Photogrammetric Data Processing 

The aerial image acquisitions aimed to produce the RGB and RGN (red, green, NIR) 
orthomosaics. All the UAV data were post-processed through the structure from motion (SfM) 
approach [52]. These algorithms, which now are implemented in several commercial software, allow 
us to rapidly and accurately align the images, compute a three-dimensional dense point cloud and, 
then, to reconstruct a textured mesh of the object of study. In this case study, the photogrammetric 
process was carried out using the commercial solution AMP (Agisoft Metashape Professional). 

The RGB datasets, acquired in two different flights, were processed together in the same project. 
A specific project was then dedicated to the processing of the RGN images. Nadiral images, in both 
projects, were aligned together, setting up the “high” level of accuracy of AMP, removing any limit 
on the key and tie points number. Subsequently, the measured GCPs and CPs were collimated in all 
the images, obtaining a 3D georeferenced model of known accuracy, as shown in Table 3. The 3D 
dense point clouds was produced using a “high” level of detail to obtain products suitable for 
medium/large-scale representations (1:500) and an “aggressive” depth filtering in order to remove 
the noise due to the presence of dense vegetation. The next step involved the generation of a “high” 
quality mesh, from which we were able to generate the DSM of the study area. The results of the UAV 
image data processing were two orthomosaics in the RGB (Figure 1) and RGN (Figure 2) channels of 
the area of interest, in the WGS84—UTM 32N coordinates system. According to the accuracy of the 
model, the orthomosaics were produced with a resolution of 10 cm, setting the “mosaic” blending 
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option in AMP. The borders of the orthomosaics were cut out from the study area to avoid distortion 
of the images and to obtain a regular shape. 

Table 3. Estimated residuals on the GCPs and CPs and characteristics of the obtained dense point 
clouds (where N. = number and RMSE = root mean square error). 

Input 
Dataset 

Data 
Resolution 

(pixel) 

N. of 
Images 

RMSE on GCPs (m) RMSE on CPs (m) 
N. of Points 

(Dense Cloud) x y z x y z 

RGB 5472 × 3648 358 0.026 0.050 0.048 0.052 0.039 0.029 35,144,184 
RGN 4048 × 3048 176 0.045 0.061 0.053 0.018 0.051 0.080 27,624,422 

Comparing the two orthomosaics obtained, it can be observed that the product in the RGN 
channels is incomplete with regard to the central part of the study area. In fact, it was not possible to 
align the RGN images related to this portion of the area, probably due to the considerable difference 
in altitude of the terrain, due to an almost vertical rock wall. However, the vegetation present in this 
area was rather low and sparse and, therefore, this does not affect the application of the algorithms 
described below. Finally, in addition to the two products already described, it was possible to 
generate the DTM of the area, using the dense point cloud as input data. Due to the complex terrain 
orography and the presence of dense vegetation, a semi-automatic approach was chosen. In the first 
step, the points belonging to the ground were classified with a specific algorithm in AMP by setting 
the maximum angle equal to 45 (i.e., the maximum angle between the terrain model and the line to 
connect a point with a point from a ground class). Subsequently, the classification was optimized 
manually in order to replace the points not correctly classified by the software. Exploiting the 
identified points of the ground, it was therefore possible to generate the DTM with a resolution of 10 
cm. 

 
Figure 2. Resulting RGN orthomosaic. 

2.3. Hölder Exponent Calculations 

In this analysis, we focused on the local description of VHR UAV-derived imagery, using 
parameters related to multifractal formalism. More precisely, we determined the singularity strength 
α (known as the Hölder exponent), which depends on the pixel’s actual position in the structure (i.e., 
the single-band image), and this makes it possible to describe the local degree of regularity in the 
pixel’s neighborhood [40,51]. The procedure used to calculate the Hölder exponent α is graphically 
presented in Figure 3 and briefly summarized below. The Hölder exponent was calculated in 
Matlab©. 
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For each pixel ሺ𝑚,𝑛ሻ of the NIR channel, we considered a square neighborhood of size 𝜀௜ =2𝑖 − 1, 𝑖 = 1,2, … , 𝑗, where 𝑗 denotes the total number of squares, while 𝜀௜  is the size of a region 
centered on the pixel ሺ𝑚,𝑛ሻ. In this notation, 𝜀ଵ = 1  denotes a square, which contains only a single 
pixel, 𝜀ଶ = 3 represents a square of size 3 × 3 containing the pixel’s neighbors, while 𝜀ଷ = 5 is a 
square of size 5 × 5, etc. It is worthwhile to stress that during the computation of 𝛼ሺ𝑚,𝑛ሻ, various 
sizes of pixel neighborhoods 𝑗 as well as shapes can be applied, allowing us to describe localized or 
more widespread singularities. Here, we consider cases where the maximum neighborhood 
(maximum square size) of a pixel is 5 × 5 (𝑗 = 3). The next important aspect of Hölder exponent 
determination stated the use of various capacity measures (μ), which allows the emphasis of various 
effects on the image [40,48]. In the frame of this work, based on the initial tests, we applied the 
following type of capacity measure: 𝜇௜୍ୗ୓ሺ𝑚,𝑛ሻ = cardሼሺ𝑘, 𝑙ሻ|𝑔ሺ𝑚,𝑛ሻ ≡ 𝑔ሺ𝑘, 𝑙ሻ, ሺ𝑘, 𝑙ሻ ∈ 𝛺௜ሽ (1) 

where 𝑚,𝑛 denotes the pixel position, 𝑔ሺ𝑘, 𝑙ሻ is a gray-scale intensity at point ሺ𝑘, 𝑙ሻ, and Ω௜ is the 
set of all pixels ሺ𝑘, 𝑙ሻ in the square. Capacity measure ISO (Equation (1)) gives the number of pixels 
in the considered neighborhood, which have the same values as the centered pixel ሺ𝑚,𝑛ሻ. ISO is the 
name of the capacity measure proposed by Véhel and Mignot (1994) [38] and Stojic et al., 2006 [40]. 
More precisely, the ISO measure, or ISO capacity measure, provides a presentation of a two-
dimensional isosurface in the considered neighborhood window and is equal to the number of pixels 
with the same intensity as the analyzed pixel. A more detailed discussion about the used measures 
can be found in Véhel and Mignot (1994), Stojić et al. (2006), and Turner et al. (1998) [38,40,46]. 

After the calculation of the capacity measure 𝜇௜୍ୗ୓, in the pixel neighborhood 𝜀௜, the discrete set 
of coarse Hölder exponents has been determined: 𝛼௜ሺ𝑚,𝑛ሻ = ୪୭୥ቀఓ೔౅౏ోሺ௠,௡ሻቁ୪୭୥ఌ೔ , (2) 

Finally, the limiting value of the Hölder exponent for each pixel from the NIR channel has been 
estimated using the formula: 

𝛼ሺ𝑚,𝑛ሻ = limఌ೔→ଵ log ቀ𝜇௜ூௌைሺ𝑚,𝑛ሻቁlog𝜀௜ , (3) 

as the slope of the linear regression through points on a log-log plot, where log 𝜀௜ is plotted on the x-
axis, and log 𝜇௜୍ୗ୓ሺ𝑚,𝑛ሻ on the y-axis, as shown in the middle section of Figure 3 [51]. In the final step 
of analysis, a two-dimensional “α-image”, which collects Hölder exponents, has been calculated. To 
compute Hölder exponents, we used the software Matlab. 

Additionally, as we underlined in the Introduction, next to the local Hölder exponent, the 
multifractal description enables us also to analyze the global distribution of the regularity in a whole 
scene and to summarize it in the form of the multifractal spectrum; see, e.g., Stojić et al. [40]. However, 
the usefulness of this function in the context of tree detection will be the topic of a separate analysis. 
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Figure 3. The procedure used to calculate the Hölder exponent 𝛼 , adapted from Figure 1b in 
Aleksandrowicz et al. [51]. Here, m and n denote the pixel position on the image; 𝜇௜ூௌை is the capacity 
measure calculated by using Equation (1) in the pixel neighborhood of 𝜀௜ size, where 𝑖 = 1,2,3. 

2.4. Segmentation Process 

In the further steps of analysis, the Hölder exponent layer (α-image) determined by using the 
ISO capacity measure was used as the base feature for the ITD through the segmentation process. 
First, it was smoothed with a simple average filter to remove small variations on the crown surface. 
The degree of smoothness was defined by the size of the filter (3 × 3). The segmentation was realized 
with eCognition Developer software. Two segmentation steps accomplished the crown extraction. In 
the first step, the high-fractality pixels were separated from the low-fractality ones using the contrast 
split algorithm applied to the Hölder exponent layer, calculated on the infrared band. It was 
necessary to find the threshold value that represented the breakpoint between tree crowns and other 
elements. Table 4 shows the adopted parameters. The threshold parameters were selected to satisfy 
the spectral difference between crowns and other elements. The second step consisted of the 
extraction of the single crowns by applying the multiresolution segmentation algorithm (Table 4). 
Since the segmentation visually resulted in objects slightly smaller than the crowns’ RGB 
orthomosaics, they were up-sized to ensure the best match for the majority of the crowns. The objects 
were redefined by increasing the borders by 3 pixels and then removing those that measured less 
than 8 pixels. The growing phase interested only the tree pixels neighboring non-trees (class others) 
ones. The other pixels were segmented in objects of 3 × 3 pixel size, using chessboard segmentation 
algorithms. The crown objects were grown into the neighboring chessboard objects (Table 4). Finally, 
the segmentation was exported in the Quantum GIS (version 3.4.8) environment, where the jagged 
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borders of the segments were smoothed (GDAL smoothing algorithm, set as three iterations with 0.5 
offset) and validated. 

Table 4. Algorithms and parameters used for the segmentation. The input band is the Hölder 
exponent image. 

Algorithm Parameters Values Notes 

Contrast split segmentation 

Minimum threshold 0.4  
Maximum threshold 1  

Step size 5  
Stepping type Add  

Class for bright objects Other  
Class for dark objects Trees  

Multiresolution segmentation 
Scale parameter 11 

Only trees class Shape 0.05 
Compactness 0.5 

Chessboard segmentation Object size 3 Only other class 

Assign class 
Use class Temporary class 

Only other class 
condition Border to trees > 0 px 

Grow region Candidate classes Temporary class Only trees class 
Remove object Condition  Area < 80 px  

2.5. Validation 

Specific attention is given to the validation of the segmentation goodness methodology. Indeed, 
even if the literature is rich in methodologies for the evaluation of the goodness of segmentation and 
extraction of specific objects from imagery [53], a shared and accepted methodology for the accuracy 
assessment does not exist [54]. Besides this, the methods applied are quite similar to each other and, 
generally, they are based on the comparison between manually digitalized reference objects and the 
segmented objects [25,53–57]. We opted for a two-level validation, which takes into consideration 
qualitative and quantitative accuracy measures. The first level was based on the work of Ke at al. [25] 
and it consisted of a simple visual evaluation, while the second level assessment was a single tree 
quantitative method that compares several variables and it assessed the under-segmentation and 
over-segmentation. Both levels will be described in detail in the following sections. The accuracy 
assessments used as reference 200 crowns that were randomly selected but manually delineated 
(Figure 4). 

 
Figure 4. Yellow points indicate the location of the reference crowns within the study area. 
To minimize the subjectivity, 200 random points were spread within the study area, and the 

crown on which the points fall was defined by manual segmentation, using as a background layer 
the RGN and RGB orthomosaics. 
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2.5.1. Visual Evaluation 

The accuracy was evaluated in terms of correspondence between the reference crowns and the 
segmented ones. The evaluation methodology considers typical accuracy measures based on pixels 
(user’s and producer’s accuracy and F1 score) and applies them to measures based on objects. 
Particularly, the producer’s accuracy (PA) and the user’s accuracy (UA) are calculated using the 
following equations: 𝑃𝐴 =  ெோ஼, (4) 𝑈𝐴 =  𝑀𝐷𝐶, (5) 

where PA is the producer’s accuracy, UA is the user’s accuracy, M is the number of matching crowns, 
RC is the number of reference crowns, and DC is the number of defined crowns. The relationship 
between UA and PA is described by the F1 score, from the following equation: 𝐹1 =  2 × 𝑃𝐴 × 𝑈𝐴𝑃𝐴 + 𝑈𝐴 . (6) 

The situation shown in Figure 5a was considered as matching crowns (M), while the 
relationships of reference and segmented crowns in Figure 5b–d were considered as non-matching 
crowns. The segmented crowns were counted on the basis of their overlap with the reference crowns. 
For example, the segmented crowns in Figure 5b are zero, in Figure 5c are one, and in Figure 5d are 
three. Even if significant, these measures provide a partial view of the goodness of the segmentation. 
The omission and commission errors can describe more precisely the goodness of the segmentation. 
As illustrated by Ke and Quackenbush (2011) [25], we took into consideration four possible cases of 
the relationship between the reference dataset and the segmented one: (i) match, (ii) simple omission, 
(iii) omission through under-segmentation, and (iv) commission through over-segmentation (Figure 
5Error! Reference source not found.). 

(a) (b) (c) (d) 

Figure 5. Possible cases of the relationship between reference crowns (blue border) and segmented 
crowns (red border). (a) Match. (b) Simple omission. (c) Omission through under-segmentation. (d) 
Commission through over-segmentation. 

2.5.2. Single Tree Quantitative Assessment Method 

The accuracy evaluation approach is a two-dimensional spatial assessment on four metrics. It is 
based on the works of Persello et al. (2010), Clinton et al. (2010), and Yurtseven (2019) [53–55]. The 
areal difference, the perimeter, the distance of the centroid, the under-segmentation index, the over-
segmentation index, and the completeness index are the evaluated metrics. The RMSE was calculated 
for the area and the perimeter. 

The areal distance is the most common metric used as an indicator of segmentation goodness. It 
was calculated for the reference objects and segmented objects. In the case of over-segmentation, the 
reference area was compared to the sum of the segmented objects in correspondence with the 
reference tree. 
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The perimeter measures the length of the object borders; in the case of more than one crown 
corresponding to the reference, the segmented perimeter was calculated as the sum of the perimeters 
on every single object composing the crown in exam. With this approach, over-segmented objects 
have high RMSE values. It is worth mentioning that the perimeter metrics results should be 
considered with caution. Indeed, the values can vary according to the shape and the number of tree 
branches considered in the definition of the reference crowns. 

The centroid distance represents the Euclidean distance between the gravitational centers of two 
shapes. The Euclidean distance between the centroids is calculated as the RMSE [55]; thus, it can be 
considered as the indicator of error on the distance between gravitational centers. In the event that 
more than one crown corresponded to the reference, the centroid distance was calculated between 
the reference crown and the closest centroid. 

The RMSE of perimeter and area were calculated with the following formula: 

𝑅𝑀𝑆𝐸 (𝑚) = ඨ∑ (𝑅௜௡௜ୀଵ − 𝑆௜)ଶ𝑛 , (7) 

where Ri is the value of metric m of the reference crown, and Si is the metric m for the segmented 
crown. Four indicators for the evaluation of the goodness of the segmentation were applied. The 
over-segmentation index (OS), the under-segmentation index (US), the intersection over union index 
(J), and the completeness (D) were evaluated for each reference tree. 

The OS and US were proposed by Clinton et al. (2010) and Persello (2010) [53,54]. Their 
estimations are based on the relationship between the area of the segmented (S) and reference objects 
(R). OS and US are described by the following equations: 𝑂𝑆 = 1 − |𝑅௜ ∩ 𝑆௜||𝑅௜| , (8) 

𝑈𝑆 = 1 − |𝑅௜ ∩ 𝑆௜||𝑆௜|  , (9) 

Where |𝑅௜ ∩ 𝑆௜| is the overlapping area between the reference crown (𝑅௜) and the segmented crown 
( 𝑆௜ ) of object i. Zero value describes a perfect match, while values that approach 1 indicate 
disagreements between the reference and the segmented object. The OS and US indices were 
considered the maximum, minimum, median, and average values. 

The intersection over union (J), also known as the Jaccard index, quantifies also the false 
positives within the segmentation, and it is calculated as the ratio between the overlapping area (𝑅௜ ∩𝑆௜) and the union area (𝑅௜ ∪ 𝑆௜): 𝐽 = |𝑅௜ ∩ 𝑆௜||𝑅௜ ∪ 𝑆௜| (10) 

It is worthwhile to stress that when J is equal to 1, there is a perfect segmentation. 
Finally, the completeness of the segmentation was evaluated through the completeness index 

(D) [53], calculated as the distance between the OS and the US, as follows: 𝐷 = ටைௌ೔మା௎ௌ೔మଶ . (11) 

The completeness index D should be interpreted as the closeness to an ideal segmentation result 
in relation to the reference set. When the D index is close to 0, it indicates a perfect segmentation. 

2.5.3. Comparison with Segmentation Methodologies Based on Spectral, Textural and Elevation 
Information 

To evaluate the goodness of the Hölder exponent segmentation, the results were checked against 
four different segmentations based on the elaboration of spectral, textural, and elevation information. 
Namely, the following were used as terms of comparison: (i) original spectral bands (red, green, NIR), 
(ii) normalized difference vegetation index; (iii) Haralick’s sum variance measure from GLCM [37], 
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the CHM, and (iv) a multi-sourced approach that considers both the CHM and the sum variance. The 
goal of this validation was to evaluate on equal terms the performances for ITD of the Hölder 
exponent against other more common input data. Thus, the ITD from each of these measures was 
performed using the same ruleset applied for the Hölder exponent but with the tuning of the input 
parameters to achieve the best possible results. Basically, they were realized using contrast split and 
multi-resolution segmentation algorithms, with minor differences in the sequence to improve the 
final segmentation. Table A1 recaps the applied rules and parameters of each segmentation. As 
mentioned in the Introduction, the CHM was calculated as the difference between the digital surface 
model (DSM) and the digital terrain model (DTM). Then, the location of treetops was calculated by 
applying the local maxima algorithm and used in the multi-sourced segmentation. The NDVI, the 
sum variance GLCM measure, the CHM, and the local maxima were calculated using Quantum GIS. 
The selection of sum variance among all the GLCM existing measures is based on visual evaluation. 

The comparison of the Hölder-based segmentation and the other segmentations (validation 
datasets) is based on the qualitative and quantitative measures for accuracy assessment described in 
Sections 2.5, 2.5.1, and 2.5.2. 

3. Results 

3.1. Results of the Hölder Exponent Analysis and the Individual Tree Crown Definition 

Figure 6c,f show the result in a sample area of Hölder exponents α. It is apparent that there is a 
contrast between the tree crowns and other elements of the background. The tops of the trees (black 
in c,f) have lower DN values compared to the lower branches (grey in c,f), which are generally lower 
than 0.2. The screes have DNs close to 0.3, while shaded areas vary from 0.4 to 1 (white areas in c,f). 
From the visual comparison of e,f, we can see that the Hölder exponent reduces the DN variability of 
tree crowns and enhances the contrast between crowns and shaded areas. This aspect facilitated the 
segmentation process. The entire segmentation process was realized in around 13 min. 

Table 5 shows the computational time for each of the applied algorithms and the graphic 
restitution of their results. The final segmented objects were 9215, with an average area of 21 m2 and 
an average perimeter of 18 m. Figure 7 provides a sample of the segmentation results. From the very 
first visual evaluation, it appears that most of the crowns were detected. Some smaller crowns 
neighboring the scree appear slightly over-grown. 

 
Figure 6. (a,d) Details of RGB dataset; (b,e) Details of RGN dataset of the same area presented in (a,d); 
(c,f) Map of the Hölder exponents determined for the area presented in (a,d). The Hölder exponent 
layer restitution is in greyscale visualization, where 0 is black and 1 is white. The shadows are 
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mitigated and the single crowns are easily identified, as well as the grasslands that are large areas of 
low DNs. 

 

Figure 7. Detail of the delineation of single crowns (red border) on RGB orthomosaic. The red square 
in the bottom-right corner indicates the location of the sample area within the entire study area. 

Table 5. Computational time graphic restitution of each step (algorithm) of the segmentation process. 
Figures in blue have no classification. The class of trees is green, the class of other is yellow, the class 
of temporary is red. 

Algorithm Computing Time  Visual Restitution 

Starting image / 

 

Contrast split segmentation 5′42′′ 

 

Multiresolution segmentation 5′31′′ 
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Chessboard segmentation 12′′ 

 

Assign class 5′′ 

 

Grow region 6′′ 

 

Remove object <0.001′′ 

 

3.2. Results of Validation 

The visual assessment of the segmentation provides positive results; indeed, only three crowns 
out of 200 references were not detected (simple omissions). Table 6 summarizes the results of the 
visual assessment of Hölder exponent segmentation (and of the validation datasets). Even if the 
simple omissions are rare, those produced through under-segmentation (OUS) are 27. The results 
underline the process’ tendency to under-segment. Although the PA is slightly better than the UA, it 
reaches 79%, against 69% of UA, while commission errors are much lower (only 13 out of 200). These 
affect the F1 score, which despite the OUS reach an acceptable value (73%). 

Table 6. Results from the visual evaluation of the Hölder exponent segmentation. 

Validation of Individual 
Tree Crown Detection 

(ITD) 
Hölder Spectral 

Normalized 
Difference Vegetation 

Index (NDVI) 
Texture 

Canopy 
Height Model 

(CHM) 

Multi-
Sourced 

No. References  200 200 200 200 200 200 
No. Segmented 228 289 529 248 247 330 

Matches 157 85 39 64 57 68 
Simple omission 3 1 9 3 38 8 

Omission through under-
segmentation 

27 59 9 45 70 56 

Commission through 
over-segmentation 

13 55 143 88 35 68 

Producer’s accuracy 0.785 0.425 0.195 0.320 0.285 0.340 
User’s accuracy 0.689 0.294 0.074 0.258 0.231 0.206 

F1 score 0.734 0.348 0.107 0.286 0.255 0.257 
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The outcome is positively confirmed by the area-based analysis. As Table 7 shows, the RMSE on 
the area represents only 14% of the average dimension of the crowns: it is 3 m2 over 21 m2 of average 
crown extension. The RMSE on the perimeter is almost 3 m over the 18 m average perimeter, 
corresponding to 15%. This may be caused by the difficulties related to the definition of the reference 
tree, but also to the non-appropriate threshold value selected for the contrast split algorithm. 

Table 7. Root mean square error, the average and the % of error on the average, of the perimeter, the 
area, and the compactness metrics of the Hölder exponent segmentation and the validation datasets. 

 Metric RMSE Average RMSE/Average 

Hölder 
Area (m2) 2.903 21.099 14% 

Perimeter (m) 2.727 17.972 15% 

Spectral Area (m2) 4.367 21.299 21% 
Perimeter (m) 10.378 18.055 57% 

NDVI 
Area (m2) 3.758 21.407 18% 

Perimeter (m) 6.590 18.130 36% 

Texture 
Area (m2) 4.025 20.885 19% 

Perimeter (m) 5.574 17.863 31% 

CHM 
Area (m2) 2.090 23.126 9% 

Perimeter (m) 5.961 18.982 31% 

Multi-Sourced 
Area (m2) 3.432 21.772 16% 

Perimeter (m) 4.812 18.356 26% 

Table 8 presents the summary statistics regarding the over-segmentation (OS), under-
segmentation (US), completeness (D), intersection over union (J) indices, and the distance between 
centroids. The minimum, maximum, and average values for each index were computed. What stands 
out is the high values of under-segmentation, which confirm the results of the visual estimation. The 
completeness (D) and the intersection over union (J) indices show significant positive results that 
confirm the accuracy of the ITD. The median values of D and J are respectively 0. 18 and 0.72. The 
mean distance between the centroids of the reference and segmented crowns is 83 cm, while the 
median distance is exceptionally 45 cm. This value is promising and indicates that the results are 
close to a 4-pixel error in crown localization. 

Table 8. Summary statistics of the over-segmentation index (OS), the under-segmentation index (US), 
the completeness index (D), the Jaccard index (J), and the distance between centroids. 

Parameter OS US D J Centroids Distance 
average 0.084 0.284 0.227 0.661 0.830 

min 0.000 0.002 0.037 0.047 0.021 
max 0.533 0.953 0.674 0.935 4.077 

median 0.056 0.214 0.181 0.718 0.458 

Overall, the assessment depicts a positive scenario. The method used identifies the location of 
the crowns (centroid distance is below 50 cm) as well as their extensions, with a segmentation mean 
error of 14% on the area. Figure 8 presents the median values of the Jaccard index plotted against the 
area of the reference crowns. It can be seen that the proposed method is very efficient on larger 
crowns and prone to under-segmenting on smaller crowns. Indeed, the J index for the medium 
extension crowns (10–30 m2) is mostly above 0.5. The lowest values of J are recorded on very small 
crowns (less than 5m2). 
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Figure 8. Distribution of the Jaccard index (y-axis) values according to the crown size (x-axis). 

Concerning the comparison with the ITD based on spectral, textural, and elevation information, 
Table 6 and Table 7 show respectively the results from the visual evaluation and the RMSE for the 
other validation segmentation methodologies. Generally, the Hölder exponent performs better as an 
input feature for the segmentation ruleset. Regarding the visual assessments, at equal condition, the 
results from the Hölder exponent outclassed those obtained from the other five validation datasets. 
For all methods, the producer’s accuracy shows higher values. Indeed, the number of objects 
describing the reference dataset, in any case, is less than 228 (the number of segments from Hölder 
analysis). The segmentation generated from the spectral information has the highest F1 score within 
the validation datasets, although it is very far from the F1 score of Hölder exponent segmentation 
(0.734 of Hölder against the 0.348 of spectral bands). The CHM methods show the larger value of 
simple omission, which might be attributable to the inaccuracies of photogrammetric DTM in areas 
with sloping. 

The geometrical accuracy does not reflect the performance of the visual assessment. Indeed, the 
spectral information, even if quite-well performing in the F1 score, does not provide a good 
geometrical match with the reference crowns, while the geometrical accuracy of the CHM method 
outperforms the Hölder exponent results. It is worth underlining that the CHM samples amount to 
only 162 reference objects due to the simply omitted crowns. Within the RMSE analysis, the 
performance of the multi-sourced approach is the closest to that of the Hölder exponent. 

Analyzing the median values of the indices in Figure 9, the under-segmentation (US) index does 
not reveal any significant difference between the Hölder exponent and other segmentation 
procedures. Meanwhile, in the analysis of the over-segmentation (OS), we have similar values from 
Hölder, sum variance, and the NDVI. The mixed and CHM approaches show the worst results in the 
completeness (D) and OS. The lowest value of centroid distance is that detected by CHM. It appears 
that the results of the segmentation based on the NDVI and the multi-sourced inputs (CHM and sum 
variance textural analysis) are the closest to those of the Hölder exponent. Nevertheless, no methods 
provided results as accurate as those of the Hölder exponent by using the same simple segmentation. 
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Figure 9. The plot of the over-segmentation index (OS), under-segmentation index (US), ompleteness 
index (D), Jaccard index (J), and the distance between centroids (CD) calculated on the Hölder 
exponent dataset and the validation datasets (spectral information, NDVI, sum variance textural 
information, CHM, and the mixed input data). 

4. Discussion 

The results of this very first application of multifractals analysis of UAV imagery for the 
identification of single tree crowns are promising. In a relatively short time (around 13 min), it was 
possible to analyze 38 hectares of forest using one input layer only. The Hölder exponent analysis 
results in a clear image of the single tree crowns. 

The pixels corresponding to the border of crowns present higher values of Hölder exponent. 
This most probably led to the underestimation of the dimension of the crowns after the contrast split 
segmentation. Nevertheless, growing the segmented objects of three pixels and smoothing them 
allowed us to limit such errors on most of the crowns. 

The assessment of the classification reveals promising results. The visual evaluation suggests 
more than 73% of the F1 score, which is in accordance with similar studies. Indeed, the very recent 
application of Qiu et al. [8] reaches an accuracy level of 76% in the VHR imagery segmentation, but 
this is also higher than the producer’s and user’s accuracy values obtained by Ke and Quackenbush 
in 2011 [25]. Mohan’s and Vieira’s works [5,56], respectively, reached 86% and 70% of the F1 score. It 
is worth mentioning that these comparisons should be interpreted with caution since many aspects 
can influence the goodness of the ITD. Firstly, the high level of subjectivity affects visual evaluations. 
Secondly, the characteristics of the study areas have a dominant role in the results of the ITD. Indeed, 
the illumination distortions due to the topography, the density, and the structure of the stand, along 
with the dominant species, can influence the results (and the goodness) of the segmentation. To fairly 
compare the results, we should have at least similar case studies; indeed, the works mentioned above 
are realized in flat or low-sloped areas over different types of forest stands. The selected ruleset is an 
additional influencing factor: it must be underlined that the segmentation applied in this study is 
intentionally plain and can be further improved, especially in the refining phase. 

As already mentioned, the visual evaluation is limited in the assessment of the goodness of the 
segmentation. Several other aspects regarding the shape and the size of the individual tree crowns 
can be taken into account. The results of the quantitative assessment are clear: the positions of the 
crowns, as well as their extension, are very well-identified. As evidence, the median value of the 
centroid distance is 45 cm. Additionally, the area difference is not particularly relevant, since the 
RMSE represents only 14% of the average crown area. Thanks to the smoothing process, there is an 
evident match between the borders of the segmented and reference objects (the RMSE on the 
perimeter is almost 3 m). Although the validation indicates a good segmentation, it is important to 
underline the difficulty of the manual segmentation of references: even for the human eyes, the 
identification of single trees is not immediate. This is a quite common weakness of ITD (and, more 
generally, segmentation) researches. The RMSE of the perimeter has been calculated by Yurtseven et 
al. in their ITD research [55]. They obtain a 6-m RMSE on the perimeter metric, even though they had 
the chance to identify the crowns on a 1.2 cm/pixel RGB orthomosaic, as an additional demonstration 
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of the subjectivity and complexity of the reference dataset identification. Compared to the existing 
works of ITD and segmentation, the Hölder exponent provides results that are perfectly in line with 
the literature. 

The tendency of the proposed method to under-segment more than over-segment is evident also 
from the comparison of US (0.284) and OS indices (0.084). The Jaccard indicator is 72%, a result which 
is in line with other studies, despite of the high variability of the delineation of the reference dataset. 
Hussin et al. [57] applied the OS and US indicators to the assessment of tree segmentation, using 
satellite imagery of 2-m resolution, and they obtained comparable values for both under-
segmentation and over-segmentation. However, in their work, they faced the opposite situation: 
over-segmentation errors are more dominant than under-segmentation ones. Persello et al. and 
Clinton et al. [53,54] obtained very similar OS and US results too, even though both studies focused 
on the segmentation (and classification) of satellite imagery in urban areas. The 0.18 median value 
resulting from the D index mirrors the values in the literature and it is a relatively good result. The 
literature reports values between 0.31 and 0.42. Again, these metrics and comparison should be 
interpreted with caution since they are the results of segmentation from satellite imagery and this 
does not include the extraction of single tree crowns. Finally, the Jaccard index, or intersection over 
union index, values vary between 0.05 and 0.95, with 0.72 as the median value. 

On the same segmentation process, the results of Hölder exponent segmentation clearly outclass 
the others from spectral, textural, and CHM information. From this first application, it emerged that 
Hölder exponent can facilitate the ITD from UAV VHR imagery. Indeed, by applying a basic 
segmentation process, we obtained satisfying results in line with the literature, but in a relatively short 
time and with one elevation-independent input layer only. With this approach, the ITD from optical 
imagery of densely forested areas might be more accurate than simple spectral and elevation-based 
analysis. Naturally, this work should not be interpreted as an attempt to discredit ITD from the spectral 
and CHM dataset but as an alternative and computational low-demanding solution to ITD. 

5. Conclusions 

The purpose of the current study was to determine the local Hölder exponent connected with 
multifractal theory and use it for the description of VHR UAV optical imagery and the detection of 
individual single tree crowns. Although multifractals analysis has been applied in image processing 
in many different fields, from the medical field to satellite remote sensing, their use for UAV imagery 
has not been confirmed. The high radiometric variability is typical of the VHR datasets that often 
introduced noise, which is reflected in imprecision in automatic segmentation and classifications. 
This aspect was reduced by the multifractal analysis, and the single tree crowns clearly emerged. The 
Hölder exponent makes the segmentation easier and simpler based on the threshold of the local 
contrast. The results of the validation are generally satisfying and in line with similar research 
realized on optical and LiDAR datasets. The main detected errors were classified as under-
segmentation problems. 

Unfortunately, as far as we know, little research on ITD applies quantitative methods similar to 
those that we used for the assessment of the segmentation. Indeed, a strong limit in the assessment 
of ITD is the subjectivity in the definition of the reference dataset. Nevertheless, the obtained results 
confirm the Hölder exponent applied to VHR imagery as a potentially powerful tool in the ITD. The 
analysis required a relatively short time and low computational power. Additionally, RGB and NIR 
sensors mounted on UAVs are systems that are becoming cheaper and easily operable. The present 
study lays the groundwork for future research into ITD from VHR optical imagery. Since this is its 
very first application, several aspects still need to be addressed and further investigated. Our focus 
area was coniferous-dominant, with crowns that present fractal patterns from a nadiral view; we 
might have very different results on broadleaves forests. Moreover, we worked with the Hölder 
exponent only and it would be interesting to explore additional measures in different forest types 
and try to work with different spatial resolutions, spectral bands, and parameters. Additionally, it 
may be worth testing different neighborhood sizes for the calculation of the Hölder exponent to verify 
its influence on the analysis. It is worth mentioning that multifractal descriptors can be applied in 
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parallel with the DEM-based method, through the definition of the treetops from the CHM and the 
delineation of the crown boundaries with segmentation from the multifractal analysis. This may help 
to ease up the process with the optical sensor on the individual tree crown detection. Among others, 
some of the most interesting applications of the Hölder–ITD might be for the update of forestry 
inventories at the local scale and the multi-temporal monitoring of specific forest indicators (and 
parameters) related to crown size. An additional application of this methodology might be VHR 
satellite imagery. Several additional analyses and tests can still be conducted, and it is our intention 
to do so—our research is only the first application that moves in this direction. 

Author Contributions: Conceptualization, E.B., A.W., E.W., N.G., M.P.; methodology, E.B., A.W., E.W., N.G., 
M.P.; software, E.B., A.W., E.W., N.G., M.P.; validation, E.B., A.W., E.W., N.G., M.P.; formal analysis, E.B., A.W., 
E.W., N.G., M.P.; investigation, E.B., A.W., E.W., N.G., M.P.; resources, E.B., A.W., E.W., N.G., M.P.; data 
curation, E.B., A.W., E.W., N.G., M.P.; writing—original draft preparation, E.B., A.W., E.W., N.G., M.P.; 
writing—review and editing, E.B., A.W., E.W., N.G., M.P., visualization, E.B., A.W., E.W., N.G., M.P.; 
supervision, E.B., A.W., E.W., N.G., M.P.; project administration, E.B., A.W., E.W., N.G., M.P.; funding 
acquisition, E.B., A.W., E.W., N.G., M.P. All authors have read and agreed to the published version of the 
manuscript. 

Funding: The data collection campaign was supported by the project RockTheAlps (grant n° ASP462) from the 
European Union’s InterregAlpine Space Programme. A.W. was supported by the Polish National Science Centre 
(NCN) through grant 2016/23/B/ST10/01151. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Table A1. Ruleset applied for the validation datasets. 

Ruleset Algorithm Parameters Values Computing 
Time  

RGN spectral 
information 

Contrast split 
segmentation 

Minimum 
threshold  

40,000 

7′54′′ 

Maximum 
threshold 

100,000 

Step size 500 
Stepping type Add 

Layer NIR 
Class for bright 

objects Trees 

Class for dark 
objects Other 

Multiresolution 
segmentation 

Scale parameter 1200 

4′56′′ 
Layer NIR, RED, GREEN 
Shape 0.05 

Compactness 0.5 
Remove object Condition  Area < 80 px 1′43′′ 

NDVI 
Contrast split 
segmentation 

Minimum 
threshold  0.18 

11′29′′ 

Maximum 
threshold 0.25 

Step size 5 
Stepping type Add 

Layer NDVI 
Class for bright 

objects 
Trees 
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Class for dark 
objects Other 

Remove object Condition  Area < 80 px 6′′ 

Contrast split 
segmentation 
(Trees only) 

Minimum 
threshold  0.26 

7′89′′ 

Maximum 
threshold 

1.00 

Step size 10 
Stepping type Add 

Layer NDVI 
Class for bright 

objects Other 

Class for dark 
objects Trees 

Remove object Condition  Area < 80 px 6′′ 

Multiresolution 
segmentation 
(Trees only) 

Scale parameter 11 

4′28′′ 
Layer NDVI 
Shape 0.05 

Compactness 0.5 
Remove object Condition  Area < 80 px 6′′ 

CHM 

Contrast split 
segmentation 

Minimum 
threshold  5 

5′42′′ 

Maximum 
threshold 100 

Step size 5 
Stepping type Add 

Layer CHM 
Class for bright 

objects Trees  

Class for dark 
objects Other 

Multiresolution 
segmentation 
(Trees only) 

Scale parameter 25 

5′31′′ 
Layer CHM 
Shape 0.05 

Compactness 0.5 
Remove object Condition  Area < 80 px <0.001′′ 

Sum Variance 
GLCM 

Contrast split 
segmentation 

Minimum 
threshold  1 

5′13′′ 

Maximum 
threshold 10 

Step size 5 
Stepping type Add 

Layer Sum variance 
Class for bright 

objects 
Trees 

Class for dark 
objects 

Other 

Multiresolution 
segmentation 
(Trees only) 

Scale parameter 12 

7′35′′ 
Layer Sum variance 
Shape 0.05 

Compactness 0.5 



Remote Sens. 2020, 12, 2407 22 of 25 

 

Remove object Condition  Area < 80 px <0.001′′ 

Multi-sourced 

Contrast split 
segmentation 

Minimum 
threshold  5 

1′29′′ 

Maximum 
threshold 100 

Step size 5 
Stepping type Add 

Layer CHM 
Class for bright 

objects Trees 

Class for dark 
objects Other 

Multiresolution 
segmentation 

Scale parameter 12 

5′29′′ 
Layer 

Sum Variance with 
CHM local maxima 
as input thematic 

layer 
Shape 0.05 

Compactness 0.5 
Remove object Condition  Area < 80 px <0.001′′ 
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