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Abstract: With the decline of operational river gauges monitoring sediments, a viable means of
quantifying sediment transport is needed. In this study, we address this issue by applying relationships
between hydraulic geometry of river channels, water discharge, water-leaving surface reflectance
(SR), and suspended sediment concentration (SSC) to quantify sediment discharge with the aid
of space-based observations. We examined 5490 Landsat scenes to estimate water discharge, SSC,
and sediment discharge for the period from 1984 to 2017 at nine gauging sites along the Upper
Mississippi River. We used recent advances in remote sensing of fluvial systems, such as automated
river width extraction, Bayesian discharge inference with at-many-stations hydraulic geometry
(AMHG), and SSC-SR regression models. With 621 Landsat scenes available from all the gauging
sites, the results showed that the water discharge and SSC retrieval from Landsat imagery can yield
reasonable sediment discharge estimates along the Upper Mississippi River. An overall relative
bias of −25.4, mean absolute error (MAE) of 6.24 × 104 tonne/day, relative root mean square error
(RRMSE) of 1.21, and Nash–Sutcliffe Efficiency (NSE) of 0.49 were obtained for the sediment discharge
estimation. Based on these statistical metrics, we identified three of the nine gauging sites (St. Louis,
MO; Chester, IL; and Thebes, IL), which were in the downstream portion of the river, to be the best
locations for estimating water and sediment discharge using Landsat imagery.
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1. Introduction

Rivers are vital components of a drainage basin. They act as habitats for aquatic organisms, serve
as drainage channels for surface water, and regulate the hydrological cycle. They provide water for
domestic, industrial and agricultural use, power generation, and navigation [1,2]. Anthropogenic
activities have increasingly altered rivers’ physical and chemical properties [3–6]. These activities
include agricultural practices, industrial operations, and land use and land cover changes, which all
tend to negatively impact surface water quality through excessive point- or nonpoint-source loadings of
pollutants [3,7–11]. A major driver of this problem is human-induced sedimentation, which affects the
hydrologic regime and water quality of a river and its drainage basin [12–14]. Human activities, such as
agriculture, forest operations, mining, and urbanization, increase erosion and sediment transport
within a drainage basin [15].
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Under natural conditions, sediment transport in rivers helps in carrying soil towards floodplains,
delivering nutrient-rich soils to improve the agricultural productivity of adjacent lands. Changes in
sediment transport impact fluvial properties and processes, such as geochemical cycling, channel
morphology, and delta development [15]. In recent decades, anthropogenic activities have changed
sedimentation across the globe, in both increasing and decreasing trends [16]. Martinez et al. [17]
reported that global changes in rainfall patterns and regional land cover changes have led to an increase
in sediment transport in the Amazon River. In contrast, Wang et al. [18] reported a marked decrease
in sedimentation in the Yellow River due to vegetation restoration and construction of sediment
trapping systems such as dams and reservoirs. Both scenarios have been reported for the Mississippi
River [19–22]. A gradual increase in sedimentation has been estimated beginning with European
settlement in 1830 due to the introduction of forest clearance and tillage practices, and continuing
with a sharp increase between 1940 and 1970, likely caused by the rise of agricultural and industrial
activities [19]. Holeman [20] estimated that, during 1951–1965, the Mississippi River’s sediment
discharge averaged 3.12 × 108 tonnes (t) annually. A subsequent report by Milliman and Meade [21]
indicated that yearly sedimentation in the Mississippi River had declined to 1.91 × 108 t during
1963–1979 due to reservoir and dam construction, the implementation of measures to control river
bank erosion, and improved soil conservation practices within the drainage basin. A later study by
Meade and Moody [22] reported a continued trend of decreasing sedimentation in the river system,
with an average annual sediment yield of 1.32 × 108 t between 1986 and 2007. The authors suggest that
the decrease was due to the reduced sediment supply upstream owing to the installation of sediment
trapping structures and soil conservation practices.

Gauging stations and hydrologic models are widely used to measure and estimate sediment
transport. Gauging stations are instrumented to directly measure river properties such as water
discharge and sediment concentration at a site; these properties are then used to estimate sediment
transport. In the US, sediment transport is commonly reported as sediment discharge, which represents
the suspended sediment load across the river and is calculated based on field-measured, time-weighted
discharge and suspended sediment concentration (SSC) [23,24]. At the watershed or regional scale,
sediment transport can be assessed using hydrologic models [25,26], which require information about
key watershed properties, such as topography, climate, soil, and vegetation [27,28]. These models are
highly dependent upon the availability of input data. In data-scarce regions, representation of physical
properties and processes as model inputs poses a challenge.

Numerous studies have assessed hydrologic processes and water quality parameters in rivers
via space-based observations. These processes and parameters include floodplain water storage in
braided rivers, inundation extent, stage variation, ice cover, turbidity, chlorophyll a, and flood wave
propagation [29–36]. These studies demonstrated the potential of monitoring rivers from space on
a broad scale as well as in cases where the study river is in a data-scarce region. River discharge,
a critical property, was also estimated recently with optical satellite data. Gleason and Smith [37]
submitted that the at-a-station hydraulic geometry (AHG) parameters (site-specific coefficients and
exponents statistically relating river width to discharge) are related across all cross-sections within
the same river, and therefore referred to such relationships as at-many-stations hydraulic geometry
(AMHG). AMHG allows reach-averaged discharge to be estimated solely by hydraulic geometry,
which is especially useful where river cross-sectional widths can be extracted from satellite data, such
as Landsat, Sentinel-2, or Cubesat imagery [38]. Hagemann et al. [39] further developed the AMHG
discharge estimation method using a Bayesian inference approach. The Bayesian-AMHG method uses
prior information on AHG parameters and discharge data from various sources, e.g., literature, in situ
measurements, and reanalysis datasets [38,39]. Given the wide coverage of remotely sensed data, there
is potential for using the AMHG approach for discharge estimation across river basins, especially for
regions where gauging stations are limited or non-existent.

Only a few studies have attempted to estimate sediment discharge via remotely sensed
data [17,40–42]. These studies used field-measured water discharge and estimated the sediment
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concentration using remotely sensed water-leaving reflectance (usually with 250-m MODIS (Moderate
Resolution Imaging Spectroradiometer) data) to determine the sediment discharge. A related study
also explored using satellite gravimetry to estimate the sediment discharge of major rivers to the
ocean [43]. More commonly, river sedimentation estimates from remotely sensed data are reported in
terms of suspended sediment concentration along a river reach, or volume of sediment deposition at
the river deltas or coastal zones [44–52]. In the former, SSC is estimated through empirical relationships
between the remotely sensed surface reflectance (SR) of sampling areas and field-measured SSC. In the
latter, the volume of sediment deposition is determined using channel change detection from digital
elevation models constructed from laser altimetry and image processing.

Over the next decades, land surface changes will continue to contribute to changes in terrestrial
sedimentation. Nonetheless, despite the increasing demands for sediment data [53], there has been
an evident decline and discontinuation of operational gauging stations in many areas across the US.
Monitoring operations may be hampered by accuracy requirements, cost, and safety concerns over
traditional labor-intensive field sampling methods. There is a need for alternative approaches for the
continuous monitoring of our river systems. With recent advancements in remote sensing of rivers, the
use of space-based observations could offer greater opportunities to address the need. A method using
remotely sensed information also allows us to compare rivers without gauging stations and identify
which rivers have higher sedimentation rates than others.

This study was undertaken to investigate the potential of estimating sediment discharge using
remotely sensed data, as an alternative method for providing useful hydrological information at
lower cost. Specifically, we: (1) developed a method for estimating river sediment discharge from
Landsat imagery, and applied it to nine gauging sites in the Upper Mississippi River; (2) established
relationships between suspended sediment concentration and Landsat surface reflectance; and (3)
evaluated the predictive performance of the approach for sediment discharge estimation against
field-measured sediment data from United States Geological Survey (USGS) gauging stations.

2. Materials and Methods

2.1. Study Sites and Data

The research area for this study was the Upper Mississippi River, which stretches approximately
2100 km and composes nearly half of the entire Mississippi River. The main tributaries include the
Missouri, Illinois, Wisconsin, and Iowa rivers. Three national wildlife refuges are present within
the Upper Mississippi River Basin, which supports over 120 species of fish and 300 migratory bird
species [54]. The USGS has installed 43 gauging stations to monitor the quantity and quality of water
in the Upper Mississippi River, and daily flow and sediment discharge records are available in the
USGS database for the period from 1861–2017. Of these 43 stations, nine have simultaneous records of
daily flow and sediment discharge. This study examined all nine of these gauging stations (hereafter
study sites) for the estimation of sediment discharge (Figure 1).

The nine study sites are located in four different states, namely Minnesota, Iowa, Illinois,
and Missouri, with varying periods of available flow and sediment records (Table 1). Among these
sites, the earliest flow data were recorded at St. Louis, MO, in 1861, and monitoring has continued until
the present. The earliest sediment monitoring was started in 1975 at the gauging stations of Brooklyn
Park, MN; Winona, MN; and McGregor, IA, followed by other operations in the 1980s. Most USGS
gauging stations have remained operational and still record water discharge. However, most sediment
monitoring efforts have been halted, with the last data at St. Louis, MO; Grafton, IL; Chester, IL;
and Thebes, IL, being recorded on 30 September 2017.
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Chester, IL; and Thebes, IL, being recorded on 30 September 2017. 

Table 1. General information and periods of available flow and sediment data (both suspended 
sediment concentration (SSC) and sediment discharge) for the nine Upper Mississippi River study 
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Figure 1. Study sites in the Upper Mississippi River.

Table 1. General information and periods of available flow and sediment data (both suspended
sediment concentration (SSC) and sediment discharge) for the nine Upper Mississippi River study sites
shown in Figure 1. Source: https://waterdata.usgs.gov/nwis/.

Site Longitude Latitude USGS
Gauge ID Location Flow Data Sediment

Data

1 −93.30 45.13 05288500 Brooklyn Park, MN 1931–present 1975–1996
2 −91.64 44.06 05378500 Winona, MN 1928–present 1975–1988
3 −91.17 43.03 05389500 McGregor, IA 1936–2013 1975–2004
4 −90.25 41.78 05420500 Clinton, IA 1873–present 1994–1997
5 −90.37 38.95 05587455 Grafton, IL 1997–present 1989–2017
6 −90.18 38.89 05587500 Alton, IL 1933–1987 1982–1989
7 −90.18 38.63 07010000 St. Louis, MO 1861–present 1980–2017
8 −89.84 37.90 07020500 Chester, IL 1942–present 1982–2017
9 −89.47 37.22 07022000 Thebes, IL 1933–present 1982–2017

To estimate sediment discharge using remotely sensed data, we inspected the availability of
remotely sensed imageries for three Landsat missions (5, 7, and 8) with different periods of operation
in orbit (Figure 2). Landsat 5 captured Earth images with a thematic mapper (TM) sensor from March
1984 to January 2013, when it was decommissioned. Landsat 7 started its mission in 1999 and is
presently operational with its enhanced thematic mapper plus (ETM+) sensor. However, since May
2003, it has been adversely impacted by a failure of the scan line corrector. Landsat 8 was launched
as the Landsat Data Continuity Mission with the Operational Land Imager (OLI). It began capturing
Earth images in 2013 and remains operational.

These Landsat missions share a common temporal resolution of 16-day repeat coverage, and 30-m
spatial resolution for visible, near-infrared, and shortwave infrared bands. Multi-temporal Tier 1
Landsat scenes (pre-processed Landsat data at the highest available quality) were compiled using the
Google Earth Engine platform [55], which allows a user to directly visualize, sort, and process imagery
within the cloud platform. We identified 5490 Landsat scenes from March 1984 to September 2017 for
which corresponding sediment data were available at the nine study sites in the Upper Mississippi

https://waterdata.usgs.gov/nwis/
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River (Table 2). Some study sites share similar Landsat acquisition path/row numbers (e.g., Grafton, IL;
Alton, IL; and St. Louis, MO, at 23/33), meaning that they had similar nominal scene centers.
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Figure 2. Timeline of Landsat mission operations. Source: https://landsat.gsfc.nasa.gov/.

Table 2. Available Landsat images (5490 total) with corresponding sediment data for the Upper
Mississippi River study sites.

Site Location Flow and
Sediment Data

Landsat
Acquisition

Path/Row

Number of Landsat Images

Landsat 5 Landsat 7 Landsat 8 Total

1 Brooklyn Park, MN 1975–1996 27/29 141 - - 141

2 Winona, MN 1975–1988 25/29, 25/30,
26/29 175 - - 175

3 McGregor, IA 1975–2004 25/30 286 80 - 366
4 Clinton, IA 1994–1997 24/31, 25/31 93 - - 93
5 Grafton, IL 1989–2017 23/33, 24/33 636 609 117 1362
6 Alton, IL 1982–1989 23/33, 24/33 142 - - 142
7 St. Louis, MO 1980–2017 23/33, 24/33 786 609 180 1575

8 Chester, IL 1982–2017 22/34, 23/34,
24/34 403 317 88 808

9 Thebes, IL 1982–2017 23/34 418 323 87 828

(-) no data

2.2. River Discharge Estimation using Landsat Imagery

River widths obtained from Landsat river masks were used as inputs for the river discharge
retrievals. Prior to width extraction, the imagery collection for each site was filtered to obtain those with
less than 10% cloud obstruction at the gauging site. The cross-sectional widths along the river channels
were extracted using the RivWidthCloud algorithm in Google Earth Engine following Yang et al. [56].
RivWidthCloud automatically extracts the centerline and width transects from the river mask of the
area of interest in the Landsat imagery. The algorithm also detects widths obstructed due to clouds,
cloud shadows, and snow. The resulting river widths were visually inspected and filtered to retain only
those having midpoints within a ~1-km distance from their respective USGS gauging site (Figure 3),
so as to best represent the reach of their site. In addition, widths within the standing confluence at an
individual study site were excluded. The filtered river widths were subsequently used as inputs for
the Bayesian-AMHG inference of river discharge.

https://landsat.gsfc.nasa.gov/
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The Bayesian-AMHG [37,39] was developed based upon the classic relationship between the
hydraulic geometry of river channels and river discharge. Leopold and Maddock [57] posited a
power-law statistical relationship between a river’s width and discharge:

W = aQb (1)

where W is the river’s width, Q is its discharge, and a and b are the classic AHG parameters. For an
AMHG relationship, the AHG parameter a is substituted by the AMHG parameters, and the discharge
equation becomes:

Q =
( Wi

Wc

) 1
bi Qc (2)

where Wc and Qc are global AMHG parameters, and Wi and bi are, respectively, the river width and the
classic AHG parameter for each river cross section [37,39]. Equation (2) is the basis for the inference of
river discharge in the Bayesian-AMHG method.

Bayesian inference requires both the likelihood of data and prior probability distributions of
unknown parameters in order to obtain the full posterior distribution via Monte Carlo sampling [39].
Log-transforming Equation (2) yields a likelihood function and the prior probability distributions of
the unknown parameters (bi, Wc, Qc, and Q). Based on a large number of acoustic doppler current
profiler (ADCP) measurements at 10,081 USGS gauging stations, Hagemann et al. [39] obtained the
likelihood function:

log Wi = bi (log Q - log Qc) + log Wc + ε (3)

where ε is the AMHG error term with a standard deviation (SD) of 0.22. The prior distributions for Q
and Qc both follow a truncated normal distribution with a coefficient of variation of 1. The empirical
prior distribution of the AHG parameter b, which is normally distributed, is given by:

log b = 0.02161 + 0.4578 SD (log W) + εb (4)

where εb is the random error with a standard deviation of 0.098. Further, the prior distribution of
Wc is log-normally distributed with its center at the mean width observed for the river reach, with a
coefficient of variation of 0.01. From these likelihood and prior distributions, 1000 realizations of the
posterior distribution were generated via Monte Carlo sampling, and a mean expected value of river
discharge was obtained for each image [39].

We explored the sensitivity of the posterior mean value of Q to the prior distribution through
the use of three different central tendency metrics. Following Feng et al. [38], we examined the
potential of discharge estimation for gauged and ungauged settings. Three centers of distribution were
analyzed, specifically, the median of daily discharge records Qmedian from the USGS database (gauged
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rivers) and two empirical water balance model mean discharges (Qwbm1 and Qwbm2) obtained from
widths extracted for each study site (ungauged rivers). For the ungauged rivers, we developed an
empirical power-law function to estimate mean discharge based solely on the widths obtained from
Landsat imagery. Through reanalysis of widths and water balance model-based mean discharge for 34
independent rivers across the globe compiled by Hagemann et al. [39], we obtained this function:

Qwbm1 = 0.1813 W
1.4691

(5)

where Qwbm1 is the mean discharge from the first empirical water balance model and W is the mean
width extracted for the study site (see Supplemental files, Figure S1). Qwbm2 is the mean discharge
from the second empirical water balance model obtained by doubling Qwbm1. This additional empirical
metric was included to explore how doubling a center of distribution for Q prior affects the final
discharge estimate.

2.3. Estimating Suspended Sediment Concentration

To estimate the SSC at the study sites, we fit the relationship between SSC and surface reflectance
(SR) of Landsat images using a different set of images from those used in the discharge retrieval
(see Supplemental files, Table S1). Using different image sets allowed an independent performance
assessment of SSC and sediment discharge estimation. We identified and obtained the corresponding
standard Landsat SR data, which were pre-processed using specialized atmospheric correction methods.
The standard Landsat SR was generated from the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) for Landsats 5 and 7, and from the Surface Reflectance Code (LaSRC) for Landsat
8. Using Google Earth Engine, we applied a water mask for all Landsat imagery to identify for each
study site a sampling area (diameter 240 m, except for study site 1 for which a radius of 120 m was
used) that was at the center of the river reach, near the USGS gauge location, and clear of obstructions
(e.g., bridges, ports, etc.) (Figure 4). Mean surface reflectance within the sampling area was calculated
for each available Landsat image.
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Related studies reported a correlation between SSC and the ratio of red band (0.63–0.69 µm: Band
3 for Landsat 5 and 7, Band 4 for Landsat 8) to green band (0.52–0.60 µm: Band 2 for Landsat 5 and
7, Band 3 for Landsat 8) reflectance in Landsat imagery. This correlation was adopted for this study
given the reasonable goodness of fit (R2 > 0.5) [48–51]. Regression functions relating SSC and SR were
developed using the in situ SSC measurements and the water-leaving red to green reflectance ratio for
each of the specified sampling areas of the nine gauging stations, and for the Upper Mississippi River
as a whole using the pooled data. A total of 1854 scenes with corresponding SSC data were used to
develop the gauge-specific and the regional-scale regressive SSC-SR functions (for a detailed image
count at each study site, see Supplement file, Table S1). These functions were then applied to a set of
621 Landsat images (1) that were successfully used for river discharge estimation, and (2) for which
USGS sediment data were available to estimate the mean SSC from surface reflectance. We assume that
the estimated mean SSCs are also representative of the channel depth as the in situ SSC measurement
of the USGS follows the sampling techniques described by Edwards and Glysson [58]. Accordingly,
this set of images with estimated Q and SSC was used for the final sediment discharge estimation.

2.4. Sediment Discharge Estimation and Performance Evaluation

The relationship between river sediment discharge, river discharge, and SSC is described by
Porterfield [23] as:

Qs = k × Q × SSC (6)

where Qs is the sediment discharge (t/d), Q is the river discharge (m3/s), SSC is the mean suspended
sediment concentration (mg/L), and k is a coefficient based on the units of the river discharge that
assumes a specific weight of 2.65 for sediment (0.0864 in SI units). We applied this relationship to
obtain sediment discharges for each gauging station. Figure 5 summarizes the main steps to estimate
river sediment discharge based on Landsat imagery.
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We evaluated the predictive performance of our approach to estimate river discharge, SSC, and
sediment discharge for the study sites in the Upper Mississippi River with the set of 621 Landsat
images from 1984 to 2017. Four statistical indicators, the Nash–Sutcliffe Efficiency (NSE), relative
bias, mean absolute error (MAE), and the relative root mean square error (RRMSE), were calculated
following Equations (7)–(10):

NSE = 1−

∑N
i=1

(
yi − y′i

)2∑N
i=1 (yi − y)2 (7)

Relative bias =
1
N

∑N
i=1

(
y′i − yi

)
y

(8)

MAE =
1
N

N∑
i=1

∣∣∣yi − y′i
∣∣∣ (9)

RRMSE =
1
y

√∑N
i=1

(
yi − y′i

)2

N
(10)

where yi is the observed value (discharge, SSC, and sediment discharge), yi’ is the estimated value, ȳ is
the average of the observed values, and N is the number of observations.

3. Results

3.1. River Widths and Landsat Surface Reflectance Retrieval

Out of 5490 Landsat images available for the nine study sites (Table 2), 779 yielded river widths
through the use of RivWidthCloud and post-processing techniques (Table 3). The narrowest river
channel, 121.8 m at Brooklyn Park, MN, was at the study site farthest upstream. The widest river
channel, 947.6 m, was at Grafton, IL, toward the middle of the Upper Mississippi River. An advantage
of automating the image-based width extraction is the consistency of width delineation from the
river water mask, as seen in the similar coefficient of variation (CV) values. Such consistency reduces
the uncertainty that would have been incurred by manually delineating river widths from remotely
sensed images.

Table 3. Statistics of river widths obtained from Landsat imagery for the nine study sites.

Site Location N
Minimum Maximum

Mean (m) SD (m) CV (%)
(m) (m)

1 Brooklyn Park, MN 34 81.0 181.8 121.8 17.2 14.1
2 Winona, MN 24 124.1 326.2 237.3 29.8 12.6
3 McGregor, IA 99 175.1 390.8 273.4 28.1 10.3
4 Clinton, IA 37 335.5 565.1 445.7 51.3 11.5
5 Grafton, IL 107 657.4 1337.5 947.6 98.9 10.4
6 Alton, IL 22 571.8 982.1 755.8 68.8 9.1
7 St. Louis, MO 121 300.8 641.6 452.4 48.3 10.7
8 Chester, IL 166 300.7 761.2 552.8 67.5 12.2
9 Thebes, IL 169 403.8 908.5 637 72.3 11.4

From the same pool of 5490 images, those lacking either reflectance values in the sampling areas or
corresponding sediment records from the USGS database were removed, leaving 2475 Landsat images
for mean surface reflectance across the nine study sites. Lower mean surface reflectance was observed
from the coastal aerosol, blue, and infrared bands rather than from green and red bands (Figure 6).
For Landsat 5, a higher mean reflectance in the red band (Band 3, 0.63–0.69 µm) was observed at
St. Louis, MO, and Chester, IL. The remaining seven study sites had higher mean reflectance in the green
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band (Band 2, 0.52–0.60 µm), which can be associated with the presence of chlorophyll a and algae on
the river surface due to lower turbulence in the water column [59–61]. On the other hand, the highest
water-leaving reflectance was observed in the red band for both Landsat 7 (Band 3, 0.63–0.69 µm)
and Landsat 8 (Band 4, 0.64–0.67 µm). A higher blue band reflectance indicates clear water while a
lower infrared band reflectance confirms high absorption of water in the infrared spectrum. Further, a
high water-leaving reflectance in the red band indicates a turbid river water column that brings up
the red or brown suspended sediment areas visible on the water surface at the time of image capture.
In remote sensing, the terms turbidity and SSC are used interchangeably because they tend to be highly
correlated [46,62]. Note that the study sites in St. Louis, MO; Chester, IL; and Thebes, IL, have the
highest water-leaving reflectance among the nine study sites.
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3.2. River Discharge Estimation

3.2.1. Sensitivity Analysis for Q Prior

The dependence and sensitivity of the discharge estimates were demonstrated relative to the
center of Q prior distribution. Overlaying the three centers of distribution on in situ discharge record
density plots revealed which best estimated the peak of the density plot for three representative study
sites (Figure 7). Qwbm1 is most adjacent to the peak of the discharge density plot for the study site at
McGregor, IA (Figure 7a). As expected, using this center for Q prior yielded a better discharge estimate
than using either of the other two centers of distribution (Figure 7b). Similarly, Qmedian appears most
adjacent to the peak of the in situ discharge density plot for the study site at Grafton, IL (Figure 7c),
so using Qmedian as the center of distribution for Q prior led to better performance in estimating the
discharge than using either Qwbm1 or Qwbm2 (Figure 7d). For the study site at Thebes, IL (Figure 7e,f),
the use of Qwbm2 as the center for the Q prior distribution produced the best discharge estimate because
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this center is the most adjacent to the peak of the discharge density plot for this river segment. Using
an underestimated center for the Q prior distribution tends to underestimate the discharge, and using
an overestimated center for the Q prior will likely overestimate the discharge.
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Figure 7. Effect of the centers of distribution for Q prior on discharge estimates with study sites 3, 5,
and 9 as examples. Top panel: three different centers of distribution over the density plot of gauge
discharge records (a,c,e):. Bottom panel: effect of the centers on the discharge estimates for the first 25
events from available Landsat imagery (b,d,f).

3.2.2. Width-Based Discharge Estimates

The performance of Bayesian-AMHG inference using the river widths obtained from the 779
Landsat images (filtered and post-processed) and three different Q prior centers is summarized in
Table 4. Results varied across the nine study sites. As expected, the relative bias was found to be lower
with the aid of USGS gauge records (for Qmedian) than the approximated mean discharge obtained from
either empirical water balance model. An average relative bias of ±0.12 was obtained for all the study
sites and found within the “satisfactory” (±0.25) category [63]. Large errors were observed with the
use of Qwbm1 and Qwbm2 with frequent underestimation (negative bias) and overestimation (positive
bias). These results are similar in terms of RRMSE. A lower RRMSE with an average of 0.49 was
obtained using Qmedian, whereas the estimations with empirically approximated Q priors resulted in a
higher average RRMSE (>0.60). Further, the highest NSE was also obtained with Qmedian, averaging
0.36 for all the study sites. Among all sites, study site 5 at Grafton, IL, produced the highest MAE
(>1850 m3/s) and RRMSE (>0.70) with negative NSEs regardless of which Q prior was used. Even
with a rather large number of images (N = 107), this site posed a challenge for river width inference,
possibly due to the large width (947.6 m) and standard deviation (98.9 m) (Table 3). In relative terms,
study sites 7, 8, and 9, the three farthest downstream sites, were the best sites for predicting discharge
using either Qmedian or Qwbm2 as prior information. Despite the unexpected result that Qwbm2 improved
the discharge estimates for these three sites, the estimates themselves were poor for the remaining
sites, as indicated by a higher positive bias and RRMSE averaging 0.62 and 0.92, respectively.
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Table 4. Performance of the three Q prior centers (Qmedian, Qwbm1, and Qwbm2) for estimating river discharge.

Site Location Observed
Range (m3/s)

N
Relative Bias MAE (m3/s) RRMSE NSE

Qmedian Qwbm1 Qwbm2 Qmedian Qwbm1 Qwbm2 Qmedian Qwbm1 Qwbm2 Qmedian Qwbm1 Qwbm2

1 Brooklyn Park, MN 60–968 34 0.07 −0.14 0.71 145 139 282 0.60 0.57 1.10 0.25 0.35 −0.46
2 Winona, MN 187–2720 24 −0.09 −0.22 0.54 389 393 650 0.68 0.75 0.98 0.25 0.16 −0.08
3 McGregor, IA 295–4420 99 0.21 −0.2 0.52 527 426 794 0.54 0.52 0.80 0.11 0.19 −0.29
4 Clinton, IA 547–3630 37 0.13 −0.11 0.38 550 503 848 0.32 0.32 0.53 0.45 0.40 0.10
5 Grafton, IL 813–11400 107 −0.19 0.23 1.09 1850 2260 4070 0.73 0.8 1.44 −0.02 −0.21 −0.88
6 Alton, IL 1010–8160 22 −0.06 −0.19 0.49 1430 1630 2150 0.45 0.49 0.69 0.30 0.29 0.16
7 St. Louis, MO 1940–22800 121 0.13 −0.68 −0.35 1470 4370 2320 0.47 0.82 0.45 0.58 0.56 0.84
8 Chester, IL 1870–16500 166 0.16 −0.66 −0.19 1760 4120 1410 0.37 0.79 0.37 0.59 0.36 0.63
9 Thebes, IL 2720–23600 169 −0.05 −0.59 −0.18 1540 4520 1800 0.28 0.68 0.32 0.70 0.55 0.72

Average across study sites ±0.12 ±0.34 ±0.49 1074 2040 1590 0.49 0.64 0.74 0.36 0.29 0.08
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Discharge estimates were generally improved by using Qmedian in the priors (Figure 8).
The Bayesian-AMHG estimates and the in situ discharge records are agreeable (NSE ≥ 0.25) for all the
study sites except McGregor, IA, and Grafton, IL. Further, the performance of the Bayesian-AMHG
was the best for the three farthest downstream sites, which generally matched the measured discharge
with an average relative bias of 0.08, MAE of 1591 m3/s, RRMSE of 0.37, and NSE of 0.62.

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 25 

 

 
Discharge estimates were generally improved by using Qmedian in the priors (Figure 8). The 

Bayesian-AMHG estimates and the in situ discharge records are agreeable (NSE ≥ 0.25) for all the 
study sites except McGregor, IA, and Grafton, IL. Further, the performance of the Bayesian-AMHG 
was the best for the three farthest downstream sites, which generally matched the measured 
discharge with an average relative bias of 0.08, MAE of 1591 m3/s, RRMSE of 0.37, and NSE of 0.62. 

 

 
Figure 8. Estimated and observed river discharges (1984–2017) for the nine study sites in the Upper 
Mississippi River. The dashed line represents the 1:1 relationship. 

3.3. Suspended Sediment Concentration Estimation 

3.3.1. Gauge-specific SSC-SR Model 

The regression models for SSC vs. SR are significant at a significance level of 0.05 for all study 
sites (Table 5). SSC tends to increase as the water-leaving reflectance from the red band exceeds that 
from the green band. The functions are similar for study sites 1, 2, 3, 4, and 6 with an average R² of 
0.28. Meanwhile, study sites 5, 7, 8, and 9 have similar regression coefficients, with higher slopes and 
an average R2 of 0.61. Of the nine sites, the three farthest downstream have the greatest R² for the 
SSC-SR regressions: 0.66 for St. Louis, MO; 0.64 for Chester, IL; and 0.54 for Thebes, IL.  

Table 5. Gauge-specific functions developed for SSC estimation. 

Site Location 
SSC range 

(mg/L) N Function* p-value R² 

1 Brooklyn Park, MN 2–46 38 y = 0.05x + 0.78 0.004 0.21 
2 Winona, MN 3–56 37 y = 0.06x + 0.72 0.006 0.20 

Figure 8. Estimated and observed river discharges (1984–2017) for the nine study sites in the Upper
Mississippi River. The dashed line represents the 1:1 relationship.

3.3. Suspended Sediment Concentration Estimation

3.3.1. Gauge-Specific SSC-SR Model

The regression models for SSC vs. SR are significant at a significance level of 0.05 for all study
sites (Table 5). SSC tends to increase as the water-leaving reflectance from the red band exceeds that
from the green band. The functions are similar for study sites 1, 2, 3, 4, and 6 with an average R2 of
0.28. Meanwhile, study sites 5, 7, 8, and 9 have similar regression coefficients, with higher slopes and
an average R2 of 0.61. Of the nine sites, the three farthest downstream have the greatest R2 for the
SSC-SR regressions: 0.66 for St. Louis, MO; 0.64 for Chester, IL; and 0.54 for Thebes, IL.
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Table 5. Gauge-specific functions developed for SSC estimation.

Site Location SSC Range (mg/L) N Function * p-Value R2

1 Brooklyn Park, MN 2–46 38 y = 0.05x + 0.78 0.004 0.21
2 Winona, MN 3–56 37 y = 0.06x + 0.72 0.006 0.20
3 McGregor, IA 3.2–190 86 y = 0.07x + 0.71 <0.001 0.26
4 Clinton, IA 2–127 12 y = 0.03x + 0.84 0.017 0.45
5 Grafton, IL 12.2–796 349 y = 0.13x + 0.37 <0.001 0.40
6 Alton, IL 12.4–324 54 y = 0.06x + 0.64 <0.001 0.27
7 St. Louis, MO 27.4–2340 747 y = 0.13x + 0.36 <0.001 0.66
8 Chester, IL 35–1280 226 y = 0.15x + 0.28 <0.001 0.64
9 Thebes, IL 23.6–961 305 y = 0.13x + 0.36 < 0.001 0.54

* y = red to green band reflectance ratio, x = ln (SSC).

3.3.2. Regional-Scale SSC-SR Model

The regional SSC-SR model is significant at a significance level of 0.05 for all missions: Landsat
5 (p-value < 0.001, R2 = 0.44), Landsat 7 (p-value < 0.001, R2 = 0.64), and Landsat 8 (p-value < 0.001,
R2 = 0.62). Landsats 7 and 8 exhibit similar patterns of clustering, while as previously discussed, the
dispersion in the low SSC range in the Landsat 5 regression is due to the upstream Landsat 5-dominated
sites. The regression model for the region with data from all three missions used was also significant at
the 0.05 level (p-value < 0.001, R2 = 0.50) and “acceptable” (Figure 9) [63].
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The estimation of SSC with the regional model results in a high positive bias, RRMSE, and mostly
negative NSEs for most of the gauging sites (Table 6). The only positive NSE was obtained for the study
site at Alton, IL, with a relative bias of −0.13 and MAE of 77.9 mg/L. In comparison to the regional
model, most gauge-specific models yielded a lower RRMSE and higher NSE. Interestingly, the SSC



Remote Sens. 2020, 12, 2370 15 of 24

estimates for the three farthest downstream sites at St. Louis, MO; Chester, IL; and Thebes, IL, using
their respective gauge-specific models, were all reasonable, with an SSC ranging from 2–1250 mg/L
and NSE averaging 0.20. These results were supported by other statistical metric averages: a relative
bias of 0.19, MAE of 116.3 mg/L, and RRMSE of 0.67.

Clearly, using gauge-specific models is better than using a regional model in estimating the SSC
for the study sites. The regional model led to an overall MAE of 182.2 mg/L, RRMSE of 2.16, and
a negative NSE of −3.06 (Figure 10). In contrast, the gauge-specific SSC-SR models yielded better
estimations, with a lower MAE of 94.7 mg/L, RRMSE of 0.90, and a positive NSE of 0.25.
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Table 6. Performance of gauge-specific and regional SSC-SR models.

Site Location Observed
Range (mg/L)

N
Relative Bias MAE (mg/L) RRMSE NSE

Gauge-Specific Regional Gauge-Specific Regional Gauge-Specific Regional Gauge-Specific Regional

1 Brooklyn Park, MN 5.6–100 29 0.78 0.22 30.8 45.6 2.52 2.68 −6.71 −4.34
2 Winona, MN 6.0–26 22 0.19 1.32 13.7 22.0 1.46 2.35 −9.36 −17.7
3 McGregor, IA 4.0–361 93 0.28 1.09 31.4 42.5 1.85 2.17 −1.33 −1.43
4 Clinton, IA 2.0–198 20 1.23 0.58 109 50.7 2.31 1.06 −5.56 −0.34
5 Grafton, IL 19.9–487 105 0.35 0.95 95.3 183 1.30 3.06 −2.18 −16.1
6 Alton, IL 19.8–373 11 1.40 −0.13 241 77.9 2.66 0.84 −6.11 0.06
7 St. Louis, MO 34.0–1250 115 0.09 0.30 98.4 153 0.59 1.06 0.50 −0.56
8 Chester, IL 39.0–863 79 0.25 1.04 122 324 0.68 2.14 0.16 −6.31
9 Thebes, IL 44.3–1110 147 0.22 0.86 129 294 0.73 1.95 −0.07 −5.83

Average across Study Sites ±0.53 ±0.72 96.6 132 1.57 1.92 −3.41 −5.84
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3.4. Sediment Discharge Estimation

By combining the discharge estimates with the SSC estimates from the gauge-specific model, we
calculated sediment discharge for the nine study sites for 621 Landsat images (Figure 11). Interestingly,
the site with the best sediment discharge estimates, in terms of RRMSE (0.88) and NSE (0.51), is 5,
Grafton, IL. Estimated and observed sediment discharges are generally agreeable among the nine
sites, following a similar trend over time. However, extreme events were noticeably overestimated for
some images, especially for McGregor, IA; Clinton, IA; and Alton, IL. The second-best study site is 7,
St. Louis, MO, with an RRMSE of 1.05 and NSE of 0.47. The estimation appeared problematic at study
site 3, McGregor, IA, with a high RRMSE (2.44) and a negative NSE (−5.33).Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 25 
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Figure 11. Estimated and observed sediment discharges for the individual study sites.

Combining the discharge and SSC retrieval from Landsat imagery for certain river segments
can produce reasonable sediment discharge estimates, as confirmed by comparison with in situ field
measurements ranging from 1.78 × 102 to 1.64 × 106 t/d. The relative biases and errors were reduced by
using the discharge estimates for gauged settings and a gauge-specific SSC retrieval model. We obtained
an average relative bias of 0.23, RRMSE of 0.95, and NSE of 0.40 in simulating the sediment discharge
at the USGS gauging sites at Winona, MN; Grafton, IL; St. Louis, MO; Chester, IL; and Thebes, IL
(Table 7). On the other hand, the estimations for the remaining sites were problematic with a higher
relative bias (>0.60) and lower NSE (<0.20).
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Table 7. Model performance of sediment discharge estimation for the individual study sites.

Site Location Observed Range (t/d) N Relative
Bias

MAE
(t/d) RRMSE NSE

1 Brooklyn Park, MN 7.7 × 101–6.95 × 103 29 1.38 8.78 × 102 1.42 0.18
2 Winona, MN 1.78 × 102–6.11 × 103 22 0.03 7.64 × 102 0.94 0.37
3 McGregor, IA 1.46 × 102–1.96 × 104 93 0.63 3.48 × 103 2.44 −5.33
4 Clinton, IA 2.41 × 102–5.58 × 104 20 1.18 2.17 × 104 2.29 −1.77
5 Grafton, IL 2.09 × 102–2.64 × 105 105 −0.09 2.62 × 104 0.88 0.51
6 Alton, IL 5.44 × 103–2.63 × 105 11 1.38 7.18 × 104 2.46 −0.69
7 St. Louis, MO 8.56 × 103–1.64 × 106 115 0.25 8.88 × 104 1.05 0.47
8 Chester, IL 7.52 × 103–1.01 × 106 79 0.40 1.16 × 105 0.99 0.34
9 Thebes, IL 1.38 × 103–1.29 × 106 147 0.22 1.02 × 105 0.90 0.33

The overall performance of the sediment discharge estimation is illustrated in Figure 12. With 621
Landsat scenes available across all study sites, we obtained a relative bias of−25.4, MAE of 6.24 × 104 t/d,
RRMSE of 1.21, and NSE of 0.49. Moriasi et al. [63] recommended that model performance for sediment
simulation have a relative bias ± 0.55 and NSE > 0.50 in order to be classified as satisfactory. Their
model performance rating is aimed at monthly time step hydrologic simulations for a drainage basin,
whereas the method described here is for independent events, at time intervals given by available
Landsat imagery for the river reach.
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4. Discussion

Our results of estimating river discharge using Landsat imagery support the finding of
Feng et al. [38] that the use of Bayesian-AMHG provides better discharge estimates for gauged
rivers than for an ungauged setting for which Q priors are approximated from data reanalysis. We also
observed that the closer the center of distribution for Q prior was to the peak of the discharge density
plot, the more likely the discharge estimate would agree with the observed value. Hence, future studies
should further explore how to best approximate the center of distribution of river discharge solely
from remotely sensed data.
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Our results also suggest that outputs from RivWidthCloud can be effectively used for
Bayesian-AMHG discharge inference. The consistency of this automated width retrieval provides
a substantial advantage over manual delineation of river widths from remotely sensed imagery.
The sediment discharge estimates for the three study sites farthest downstream were “satisfactory”
(±0.25 relative bias and NSE > 0.50) following the model performance evaluation criteria recommended
by Moriasi et al. [63]. We posit that these results are associated with the morphologic difference
between reaches of the study sites. The Rosgen Type I plan view classification of natural rivers broadly
characterizes channels as relatively straight (class A), low sinuosity (class B), meandering (class C),
braided (class D), anastomosed (class DA), and tortuously meandering (class E) [64]. Study sites
1–6 possess class D channel type features (see Figure 4): complex multiple or braided channels with
wide eroding banks. In contrast, study sites 7, 8, and 9 have entrenched and stable channels, more
characteristic of class A or B. Consequently, we consider that the selection of a representative reach for
a river system is crucial for multi-river studies because the performance in estimating discharge from
optical sensors varies widely from one reach to another.

We also observed different patterns in our developed SSC-SR retrieval models. Study sites 1, 2,
3, 4, and 6, which have nearly identical regression functions (Table 5), were likely influenced by the
low SSC levels (2–324 mg/L) and by Landsat 5 being the predominant sensor platform used to acquire
their images. The lower SSC levels at these study sites may have led to a weaker correlation with the
water-leaving reflectance captured in the Landsat 5 images. Further, most of these sites have a higher
mean green band than red band reflectance (Figure 6), suggesting that the river segments with low
SSC levels or turbidity do not fully illuminate the brownish sediment color in Landsat imagery. This is
further confirmed with the regional SSC-SR retrieval model, which shows clearly that Landsat 5 data
points differ from Landsats 7 and 8 data points, while the latter two closely match each other (Figure 9).
The matching functions for study sites 5, 7, 8, and 9 may be a result of the dominance of the Landsat
sensor used and to the proximity of the study sites. In most cases, these study sites were in the same
Landsat image, as they share adjacent or similar Landsat acquisition paths/rows (path 24, row 33 and
path 23, row 34; Table 2). It is worth noting that SSCs at these sites are higher (12.2–2340 mg/L) than
the other five sites, suggesting that sites with lower SSC levels and captured by Landsat 5 likely have a
lower coefficient of determination for the SSC-SR model.

Most published SSC–SR models were based on data from a single Landsat mission (e.g., Landsat
8). Pham et al. [51] presented SSC-SR models (R2 = 0.75) using the red to green band ratio from Landsat
8, with 40 images and SSC levels ranging from 22.4–178 mg/L. A related study by Pereira et al. [49]
using the red to green band reflectance ratio of 26 Landsat 8 images yielded an SSC-SR model with a
similarly high coefficient of determination (R2 = 0.86) for SSC levels of 49–533 mg/L. Despite these
models being developed with a smaller sample and a lower SSC range in their respective river systems,
our results show that the red to green band reflectance ratio from multiple Landsat missions can be
used to estimate SSCs of certain reaches in the Upper Mississippi River. This result is consistent with
the findings of Markert et al. [48] and Peterson et al. [50], both of which reported SSC-SR models with
R2
≈ 0.5 using SR data from multiple Landsat missions (5, 7, and 8). Nonetheless, some biases and

errors in our SSC estimates were related to the low sediments in the water column captured by the
Landsat 5 sensor. As such, other band combinations should be explored when using Landsat 5 surface
reflectance data. Note that the errors may also be due to other variables, such as higher blue and red
absorption with the presence of chlorophyll and algae during low flows, and the presence of organic
materials upstream in the Upper Mississippi River [59,65].

Studies estimating annual sediment discharge using gauge records and composited remotely
sensed data (250-m MODIS) have shown good agreement with observed data with a ±2% mean
relative difference [17,42]. Compared with these studies, we demonstrated a “per event” or “per image”
estimation approach where we approximated the sediment discharge based on gauge records and
30-m Landsat data. Extreme events, such as the “Great Flood of 1993,” a 100-year flood event, were
also covered in our simulations for the nine gauge sites of the Upper Mississippi River. Given that the
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approach is highly dependent on the accuracy of the discharge and SSC estimates, the uncertainties in
their estimates can either increase the magnitude of errors or improve the final sediment discharge
estimates, as illustrated in Figure 13. For instance, study site 5 (Grafton, IL), shows a negative relative
bias (−0.19) in Q estimates and a positive relative bias (0.35) in SSC estimates. As a result, the Q
and SSC errors offset each other to yield an unexpectedly good match between sediment discharge
estimates and measurements. Unlike study site 5, site 7 (St. Louis, IL) has a minimal relative bias
(<0.15) in both Q and SSC estimates. Thus, we can reasonably expect that this site will have good
overall sediment discharge estimates with a low relative bias and better model fit. For this reason, we
regard the St. Louis site as the best site within the Upper Mississippi River for estimating sediment
discharge using Landsat data.Remote Sens. 2020, 12, x FOR PEER REVIEW 21 of 25 
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Future efforts should be devoted to improving the Q and SSC estimation to further advance the
utility of Landsat data or other optical remote sensing platforms for sediment discharge estimation in
river systems. A river’s Q can be estimated based on channel width, but prior discharge information
is required to perform the Bayesian-AMHG inference. Readily accessible prior mean discharge
of river reaches, e.g., from Lin et al. [66], may be examined to apply discharge estimations to
ungauged rivers. Alternative approaches to estimating SSC, such as non-linear regression and machine
learning estimation [50], should be explored. Last, even without gauge records for calibrations, a
method estimating water and sediment discharge in rivers using remotely sensed data would still
be useful in evaluating and screening for those susceptible to extreme flooding events or exhibiting
excessive sedimentation.

5. Conclusions

We explored the potential of using remotely sensed images to estimate the discharge of water
and sediment in a river system. In many cases, traditional monitoring operations are hampered
by accuracy requirements, cost, and safety concerns regarding their labor-intensive field sampling
methods. For this reason, the number of active gauging stations in many areas across the US continues
to decline, despite increasing demands to monitor flow, sediment transport, and other aspects of river
health. Our alternative approach, using space-based observations to assess the status of river systems,
helps to address this need.

Conclusions from this study are:
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1. Width outputs from RivWidthCloud can be effectively used for Bayesian-AMHG inference of
river discharge.

2. Discharge estimations are influenced by both prior information and morphologic features along
the river.

3. Higher biases and errors in SSC estimates tended to result from Landsat 5 sensors capturing
scenes with low sediment levels in the water column. This suggests that for Landsat 5 surface
reflectance data, additional band combinations should be explored.

4. Landsat imagery-based estimates of Q and SSC can yield reasonable sediment discharge estimates.
In this study of the Upper Mississippi River, estimates had a relative bias of −25.4, MAE of
6.24 × 104 t/d, RRMSE of 1.21, and NSE of 0.49.

5. Because sediment discharge estimates are the product of two other independent estimates (water
discharge and SSC), biases and errors from these component estimates can either increase or
decrease the magnitude of errors in the sediment discharge estimates.

6. Even without gauge records for calibrations, this method can be used to estimate water and
sediment discharges of rivers, and to evaluate and screen for rivers susceptible to extreme flooding
or exhibiting excessive sedimentation.

This study demonstrates the potential of estimating water and sediment discharges—crucial
hydrological information—using remotely sensed data as an alternative to labor-intensive field methods.
Future efforts should be devoted to refining the Q and SSC estimation to further advance the utility of
Landsat data for sediment discharge estimation in river systems.
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