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Abstract: Accurate cloud detection using medium-resolution multispectral satellite imagery (such as
Landsat and Sentinel data) is always difficult due to the complex land surfaces, diverse cloud types,
and limited number of available spectral bands, especially in the case of images without thermal bands.
In this paper, a novel classification extension-based cloud detection (CECD) method was proposed for
masking clouds in the medium-resolution images. The new method does not rely on thermal bands
and can be used for masking clouds in different types of medium-resolution satellite imagery. First,
with the support of low-resolution satellite imagery with short revisit periods, cloud and non-cloud
pixels were identified in the resampled low-resolution version of the medium-resolution cloudy
image. Then, based on the identified cloud and non-cloud pixels and the resampled cloudy image,
training samples were automatically collected to develop a random forest (RF) classifier. Finally,
the developed RF classifier was extended to the corresponding medium-resolution cloudy image to
generate an accurate cloud mask. The CECD method was applied to Landsat-8 and Sentinel-2 imagery
to test the performance for different satellite images, and the well-known function of mask (FMASK)
method was employed for comparison with our method. The results indicate that CECD is more
accurate at detecting clouds in Landsat-8 and Sentinel-2 imagery, giving an average F-measure value
of 97.65% and 97.11% for Landsat-8 and Sentinel-2 imagery, respectively, as against corresponding
results of 90.80% and 88.47% for FMASK. It is concluded, therefore, that the proposed CECD algorithm
is an effective cloud-classification algorithm that can be applied to the medium-resolution optical
satellite imagery.
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1. Introduction

Optical remote sensing data ranging from the visible to shortwave infrared are widely used for
surface cover mapping, surface parameters estimation, and ecosystem monitoring [1–4]. Nowadays,
with the increasing number of medium-resolution optical sensors, the opportunity for finer monitoring
of the global environmental has been provided [5–8]. Nevertheless, the images from these sensors
are usually contaminated by clouds. The existence of this contamination obscures the ground-surface
reflectance and reduces the accuracy of the use of optical images in various applications [9,10].
Therefore, accurately identifying and masking clouds is a preprocessing step that should be carried out
before using optical imagery.
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In general, clouds appear as bright pixels in optical imagery. They have a higher spectral reflectance
and lower brightness temperature (BT) than other surface cover types [11–14]. However, due to the
heterogeneity of images and the variable transparency of clouds, the confusion caused by non-cloud
bright surfaces and thin clouds, which are difficult to detect, makes it difficult to automatically identify
cloud pixels [1,15–18]. Although the use of thermal infrared bands can improve the accuracy of cloud
detection, this generally only works well for thick, cold clouds and the commission error in high
mountain regions may be high [14,15]. In addition, for those optical sensors that do not have thermal
infrared bands (such as Sentinel-2, SPOT4-HRVIR), effectively mitigating the disturbances caused by
bright non-cloud surfaces remains a challenge [1,15].

Nowadays, many cloud-detection methods have been developed for the accurate flagging of clouds.
These methods can be roughly divided into two categories: rule-based algorithms [1,9,11,13–15,19–21]
and machine learning-based algorithms [22–28].

Most existing cloud-detection methods that belong to the first category are mono-temporal
methods [15]. For example, Zhu et al. [12] proposed the function of mask (FMASK) algorithm to
detect clouds in Landsat and Sentinel-2 imagery. Irish et al. [20] developed an automatic cloud cover
assessment (ACCA) algorithm for classifying clouds in Landsat-7 imagery. These approaches are
simple to implement, but they often suffer from non-cloud bright surface commission and thin cloud
omission [12,29]. To reduce the confusion caused by non-cloud surfaces, several multi-temporal
methods were also proposed [1,30,31], such as multi-temporal mask (Tmask) [10] and multi-temporal
cloud detection (MTCD) [21]. These multi-temporal methods require either a cloud-free image or
multiple cloud-free observations [21,31]. However, for satellites with long revisit periods (such as
Landsat, GaoFen, SPOT), this requirement is difficult to meet. In addition, it is difficult to automatically
know whether or not cloud-free observations are available before using one of these methods [1].

To produce more accurate cloud masks, machine learning techniques for cloud detection are
introduced [22,23] For instance, Joshi et al. [22] used the support vector machine (SVM) method to mask
clouds in Landsat-8. Ghasemian et al. [32] proposed a random forest-based cloud detection method
to flag clouds in Landsat and MODIS. Recently, as a subset of machine learning, some complex deep
learning algorithms have also been used for cloud detection—for example, Li et al. [23] employed a deep
learning-based method to detect clouds for different medium and high resolution remote sensing images.
These machine-learning methods require sufficient labeled samples to determine the parameters
of classification models [24]. When the training dataset is sufficiently large and representative,
machine learning-based algorithms outperform the rule-based ones, even without using the thermal
infrared bands [22,24]. However, due to the difficulties in separating cloud pixels from non-cloud pixels,
it is hard to automatically select accurate cloud and non-cloud training samples for each scene [24,33].
Therefore, machine learning-based methods are not as popular as the rule-based ones.

Taking into account the above, it can be said that the machine learning-based approaches can
achieve a higher accuracy than the rule-based ones, but the lack of accurate and representative training
datasets is a major drawback hindering the development of machine-learning based methods.

To address the drawbacks mentioned above of machine-learning methods, some researchers
have employed a spectral signature extension strategy to compensate for the problem of insufficient
training samples [23,24]. They collect training samples from existing training datasets, and extend
the spectral signatures of the samples to classify clouds in other scenes from different spatial and
temporal domains. This strategy can produce great savings in the time and labor costs involved
in building an extensive training set; however, it is not suitable for scenes that are spatially or
temporally different from the training datasets [23,34,35]. Recently, Zhang et al. [36] proposed a novel
classification extension strategy to overcome the difficulty of collecting training samples for large-scale
land cover mapping. They developed classification models from low-resolution ls, and extended
the classification models to the corresponding medium-resolution images for land cover mapping.
Since they used low-resolution satellite imagery (with short revisit period) to develop a local adaptive
classifier for each medium-resolution image, their strategy is able to overcome the spatial and temporal
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limitations of the signature extension strategy [36,37]. Because cloud pixels can be effectively extracted
with the support of prior surface reflectance [17,21,31], and the low-resolution images provide prior
spectral signatures of surfaces at any period [17,36,38], it is possible to develop a cloud classification
model at a low-resolution level for each medium-resolution image.

Inspired by the previous studies, in this work we advanced the classification extension strategy from
land cover mapping to the field of cloud detection, and proposed a novel classification extension-based
cloud detection (CECD) method for medium-resolution imagery. To achieve this goal, training samples
were first automatically extracted from low-resolution images. Then, based on the training samples
and the reflectance spectra in the resampled cloudy imagery, local adaptive random forest (RF)
classifiers were trained at a low-resolution level. Finally, the trained RF classifiers were extended to
the corresponding medium-resolution cloudy images to detect clouds. The validation results show
that CECD can accurately mask cloudy pixels in medium-resolution imagery without the need for the
thermal infrared band.

2. Test Sites and Data

2.1. Study Area

Twelve test sites (Figure 1), selected from areas where the problem of confusion between clouds
and background surfaces is most severe, were chosen to evaluate the performance of the CECD for
cloud detection. These sites were spread over six continents and covered a wide range of surface
environments. For each test site, two scenes were randomly selected to test the performance of the
CECD for Landsat-8 and Sentinel-2 data, respectively. These scenes included almost all possible
seasons and surface-cover types, from desert to ice sheet. Details of the 24 test scenes are summarized
in Table 1.Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 22 
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Figure 1. Spatial distribution of the 12 test sites and the 14 L8_Biome Landsat-8 test scenes.
The background map is the 300 m Global Land Cover Map (GlobCover 2009) [39]. Noted: L8_Biome
Test Scenes refers to the Landsat-8 test images selected from the Landsat 8 Cloud Cover Assessment
Validation Dataset.
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Table 1. Details of the Landsat-8 and Sentinel-2 image scenes from the different test sites.

Site a b c d e f

Landsat-8
Path row p120r028 p139r039 p123r032 p029r043 p039r032 p043r027

Date 2018/5/5 2019/2/22 2019/1/21 2018/9/9 2018/10/4 2018/5/25
Confused types BB, TC SN, FW, BB BI, FW, TC BB SN, FW, TC TC

Sentinel-2
Granule tile T51TXM T45RWN T50TMK T13RGH T11TQE T11TMN

Date 2019/5/4 2019/2/22 2019/8/13 2019/1/8 2019/1/11 2019/10/1
Confused types BB, TC SN, BB, TC BI, TC BB, TC SN, BB, TC SN, BI, TC

Site g h i j k l

Landsat-8
Path row p106r075 p147r032 p159r026 p190r043 p195r028 p233r073

Date 2018/12/2 2018/11/10 2018/7/24 2018/10/22 2018/10/9 2018/3/25
Confused types FW, BB, TC SN, BD, TC BB, FW BD, TC SN, BB, BI FW, TC

Sentinel-2
Granule tile T52KDB T44TLL T41UPP T32RMN T32TLS T19KFV

Date 2019/1/20 2019/2/14 2019/12/7 2019/10/18 2019/5/30 2019/12/10
Confused types BB, TC SN, BB, TC SN, BB, TC BD, TC SN, BI, TC BB, FW, TC

Noted: TC., thin cloud; SN., snow; FW., frozen water; BB., bright bare lands; BI., bright impervious; BD., bright desert.

2.2. Datasets and Preprocessing

Due to its superiority in terms of spatial resolution (300 m) and revisit period (1–2 days) [40],
Proba-V imagery was selected to generate cloud-free images. Proba-V was launched in 2013 and it
has four optical spectral channels with wavelengths from 0.440 to 1.635 nm (Table 2) [41]. Level 2A
top-of-atmosphere (TOA) reflectance images were used in this study [40]. The clouds and shadows in
the Proba-V images were masked based on the Proba-V quality band. Then, Proba-V images from
within ± 15 days of the target date were used to produce a composite cloud-free image. The median
composition method was used to generate the cloud-free image [42,43]. The median of all unmasked
observations for each respective pixel was selected as the derived composite value.

Table 2. The spectral bands of Landsat–8 and Sentinel-2 data used in this paper. The overlapping
bands used for collecting training samples (Section 3.1) are highlighted in bold letters.

Band Names Proba-V Bands (µm) Landsat-8 Bands (µm) Sentinel-2 Bands (µm)

Coastal \ Band 1 (0.435–0.451) Band 1 (0.433–0.453)
Blue Blue (0.440–0.487) Band 2 (0.452–0.512) Band 2 (0.458–0.523)

Green \ Band 3 (0.533–0.590) Band 3 (0.543–0.578)
Red Red (0.614–0.696) Band 4 (0.636–0.673) Band 4 (0.650–0.680)

Red Edge 1 \ \ Band 5 (0.698–0.713)
Red Edge 2 \ \ Band 6 (0.733–0.748)
Red Edge 3 \ \ Band 7 (0.765–0.785)
Wide NIR NIR (0.772–0.902) \ Band 8 (0.785–0.900)

Narrow NIR \ Band 5 (0.851–0.879) Band 8a (0.855–0.875)
Water vapor \ \ Band 9 (0.930–0.950)

Cirrus \ Band 9 (1.363–1.384) Band 10 (1.365–1.385)
SWIR1 SWIR (1.570–1.635) Band 6 (1.566–1.651) Band 11 (1.565–1.655)
SWIR2 \ Band 7 (2.107–2.294) Band 12 (2.100–2.280)

Two types of widely used multispectral satellite data (Landsat-8, Sentinel-2) were selected to
test the performance of the CECD. These data each have four spectral bands that overlap with
those of the Proba-V satellite. Since most multispectral data do not include thermal infrared bands,
and Joshi et al. [22] proved that clouds can be effectively detected without thermal bands, CECD uses
only the top of atmosphere (TOA) reflectance bands ranging from the visible to short-wave infrared
bands as inputs for each type of satellite image (Table 2). Because all the spectral bands in Landsat-8
data have a 30-m spatial resolution, the CECD will generate 30-m cloud masks for Landsat-8 data.
For the Sentinel-2 satellite data, since they have three different spatial resolutions of 10, 20, and 60 m for
different bands, in order to generate a uniform resolution cloud mask for Sentinel-2 imagery, the bands
with 10 and 60 m spatial resolutions were resampled to 20 m. So, the cloud masks generated for
Sentinel-2 images have a resolution of 20 m.
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2.3. Validation Dataset

For each test scene, 800 samples were randomly selected. Because we only focused on the accuracy
of the cloud detection, the samples were carefully labeled as belonging to one of two categories
(cloud or clear) by checking the original satellite images. However, sometimes it is difficult to
accurately interpret certain samples located at very thin clouds [14]. In order to ensure the reliability of
each validation sample, the difficult-to-interpret samples were excluded from the evaluation process,
and samples located at the intersection of clouds and land surfaces were moved to the interior
of the relevant clouds. As a consequence, a total of 9362 Landsat-8 samples (3799 cloud samples,
5563 cloud-free samples) and 9341 Sentinel-2 samples (4085 cloud samples, 5256 cloud-free samples)
were manually interpreted. To reduce the error in labeling [28], all the validation samples were collected
and labeled by one particular scientist.

In order to objectively evaluate the robustness of our algorithm, we also selected some public
cloud validation data from Landsat 8 Cloud Cover Assessment Validation Dataset (L8_Biome)
(https://landsat.usgs.gov/landsat-8-cloud-coverassessment-validation-data) for independent testing.
The L8_Biome was developed by Foga et al. [44], and each scene in the L8_Biome dataset has a
manually labeled cloud mask. However, due to the low quality of some masks in L8_Biome, we did
not use all the validation scenes in it. Since Li et al. [23] had screened out 19 high quality validation
scenes from the L8_biome dataset through careful visual inspection, we chose the same scenes.
In addition, because the Proba-V images were required in our calculation process, and they were
only available after about November 2013 [41], the scenes before November 2013 were removed
from the 19 validation scenes. Finally, a total of 14 L8_Biome scenes were selected for independent
testing (Figure 1). The details of these scenes are listed in Table S1. Since there was no public cloud
validation dataset for Sentinel-2 imagery, the independent validation part was only carried out on
Landsat-8 images.

3. Method

The CECD method is designed for masking clouds in images acquired by different
medium-resolution optical sensors, and does not require thermal infrared bands. The method
consists of three main parts: first, the medium-resolution cloudy image is resampled to a low-resolution
one and, together with a composited low-resolution cloud-free image, is used to identify cloud and
non-cloud pixels. Secondly, using the identified cloud, non-cloud pixels and the resampled cloudy
image, training samples are automatically collected to develop a local adaptive classification model
at a low-resolution level for each scene. Finally, the trained classifier is extended to mask clouds in
the corresponding medium-resolution image. In our particular case, the composited low-resolution
cloud-free image was derived from Proba-V data, and the medium-resolution cloudy images were
Landsat-8 and Sentinel-2 images. A flowchart of CECD method is illustrated in Figure 2.Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 22 
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3.1. Identifying Cloud and Non-Cloud Pixels with the Support of Reference Cloud-Free Imagery

Our aim is to collect training samples at a low-resolution level. However, distinguishing pixels
between bright surfaces and clouds and the detection of thin clouds are the two main obstacles
in identifying cloud and non-cloud pixels [12,18]. In order to collect accurate training samples,
the medium-resolution cloudy Landsat-8 and Sentinel-2 images were aggregated to the Proba-V
resolution to work with the composited cloud-free Proba-V images (see Section 2.2) to figure out
these problems.

First, as bright surfaces can be well separated from clouds with the help of a corresponding
cloud-free image [16,17], the composited cloud-free Proba-V images and the resampled Landsat-8 and
Sentinel-2 cloudy images were used to enhance the difference between clouds and bright surfaces.
A temporal haze optimized transformation (THOT) method, which was not sensitive to the errors
caused by inconsistencies in reflectance between cloud-free and cloudy images [16], was used for this
(Equation (1)).

THOT =
n∑

i=1

ki∆Ri + c (1)

where ∆Ri is the difference in reflectance between the cloudy and cloud-free images for an overlapping
band i for a given pixel. The bands used to calculate ∆R in this study are highlighted in bold in Table 2.
n is the number of overlapping bands; ki and c are coefficients determined by a multivariate regression
between the haze optimized transformation (HOT) and ∆Ri:

HOT =
n∑

i=1

ki∆Ri + c + ε, where HOT = sinθ ∗Rblue − cosθ ∗Rred (2)

where ε is the regression residual, and Rblue and Rred are reflectances at the TOA of the blue and
red bands in the cloudy image, respectively. θ is the angle of the “clear line” of the corresponding
cloud-free image, and the “clear line” can be fitted by a line regression of the blue and red bands in the
cloud-free image [45]. Since ∆Ri for non-cloudy pixels is close to zero and smaller than for cloudy
ones, the THOT index, which is the linear sum of ∆Ri (Equation (1)), can separate clouds from bright
surfaces well [16].

Secondly, since the combination of the fuzzy C-means (FCM) algorithm and local information
could fully compensate for the poor spectral contrast of the mixed pixels [46], a modified fuzzy
C-means (MFCM) method [47] was applied to the generated THOT image to further enhance the
contrast between thin clouds and adjacent non-cloud pixels (Equation (3)). By minimizing the objective
function, J, a corrected THOT value, x, was derived (the complete calculation process is presented in
the Appendix A).

J =
c∑

i=1

N∑
j=1

µm
ij

(
x j − vi

)2
+ a

c∑
i=1

N∑
j=1

µm
ij

(
x j − vi

)2
, x j = THOT j − β j (3)

where µm
ij is the probability that a pixel j belongs to cluster i; m is a weighting exponent, for which

a default value of 2 was used; x j is the corrected THOT value of pixel j obtained by subtracting the
gain field, β j; N is the total number of pixels; C is the number of clusters, which was set to 2 (cloud and
non-cloud); vi is the prototype of the centroid for cluster i; x j is the mean value of the pixels within a
3 × 3 window around pixel j; and a controls the neighboring effect—a default value of 0.3 was used for
this. Since Yang et al. [47] conducted comprehensive tests on these parameters, and the default values
of all parameters were the optimal values they derived, all the parameters in MFCM were set as the
default settings. An example of the application of this method to a HOT image histogram is shown
in Figure 3 below. It polarizes the image reflectance distribution of clouds and lands to generate a
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dual-mode histogram (Figure 3e), which results in an increase in the contrast between thin clouds and
neighboring surfaces in the corrected image (Figure 3c).

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 22 

 

𝐽 =  ∑ ∑ 𝜇𝑖𝑗
𝑚

𝑁

𝑗=1

𝑐

𝑖=1

(𝑥𝑗 − 𝑣𝑖)
2 + 𝑎 ∑ ∑ 𝜇𝑖𝑗

𝑚

𝑁

𝑗=1

𝑐

𝑖=1

(𝑥𝑗 − 𝑣𝑖)
2,  𝑥𝑗 = 𝑇𝐻𝑂𝑇𝑗 − 𝛽𝑗 (3) 

where 𝜇𝑖𝑗
𝑚 is the probability that a pixel 𝑗 belongs to cluster 𝑖; m is a weighting exponent, for which 

a default value of 2 was used; 𝑥𝑗 is the corrected THOT value of pixel 𝑗 obtained by subtracting the 

gain field, 𝛽𝑗; 𝑁 is the total number of pixels; C is the number of clusters, which was set to 2 (cloud 

and non-cloud); 𝑣𝑖 is the prototype of the centroid for cluster 𝑖; 𝑥𝑗 is the mean value of the pixels 

within a 3×3 window around pixel j; and 𝑎 controls the neighboring effect—a default value of 0.3 

was used for this. Since Yang et al. [47] conducted comprehensive tests on these parameters, and the 

default values of all parameters were the optimal values they derived, all the parameters in MFCM 

were set as the default settings. An example of the application of this method to a HOT image 

histogram is shown in Figure 3 below. It polarizes the image reflectance distribution of clouds and 

lands to generate a dual-mode histogram (Figure 3e), which results in an increase in the contrast 

between thin clouds and neighboring surfaces in the corrected image (Figure 3c). 

Finally, as the contrast between surfaces and clouds was effectively enhanced, it was reasonable 

to draw a conclusion that accurate cloud and non-cloud pixels could be easily identified by using an 

appropriate threshold. A simple automatic thresholding method, OTSU, proposed by Otsu [48], was 

then applied to the corrected THOT image to identify cloud and non-cloud pixels. 

 

Figure 3. Graph showing the principle of the function used in the modified fuzzy C-means (MFCM) 

using the case of a Landsat-8 image (p120r028) of site a. (a) is the RGB image, (b) is the temporal haze 

optimized transformation (THOT) image, and (d) is the histogram of the THOT image; (c) is the THOT 

image after MFCM correction, and (e) is its corresponding histogram. 

3.2. Classification Extention-Based Cloud Detection Model 

3.2.1. Collection of Training Samples 

The training samples were automatically collected using the identified cloud and non-cloud 

pixels (see Section 3.1) and the blue band of the resampled low-resolution Landsat-8 and Sentinel-2 

cloudy image. As the reliability and representativeness of the training samples directly affect the 

accuracy of classification, a bin-based sample selecting approach proposed by Zhu et al. [1] was 

employed to search for representative cloud and non-cloud samples with different brightnesses. We 

first divided the 0–1.0 range of the blue reflectance values in the resampled cloudy image into 5 bins 

with equal intervals. Then, each bin was divided into cloud and non-cloud sub-bins based on the 

identified cloud and non-cloud pixels, and the erosion operator [49] was used to remove the “salt-

and-pepper” pixels in each sub-bin. Finally, training samples of clouds and non-cloud surfaces were 

Figure 3. Graph showing the principle of the function used in the modified fuzzy C-means (MFCM)
using the case of a Landsat-8 image (p120r028) of site a. (a) is the RGB image, (b) is the temporal haze
optimized transformation (THOT) image, and (d) is the histogram of the THOT image; (c) is the THOT
image after MFCM correction, and (e) is its corresponding histogram.

Finally, as the contrast between surfaces and clouds was effectively enhanced, it was reasonable
to draw a conclusion that accurate cloud and non-cloud pixels could be easily identified by using
an appropriate threshold. A simple automatic thresholding method, OTSU, proposed by Otsu [48],
was then applied to the corrected THOT image to identify cloud and non-cloud pixels.

3.2. Classification Extention-Based Cloud Detection Model

3.2.1. Collection of Training Samples

The training samples were automatically collected using the identified cloud and non-cloud pixels
(see Section 3.1) and the blue band of the resampled low-resolution Landsat-8 and Sentinel-2 cloudy
image. As the reliability and representativeness of the training samples directly affect the accuracy
of classification, a bin-based sample selecting approach proposed by Zhu et al. [1] was employed to
search for representative cloud and non-cloud samples with different brightnesses. We first divided
the 0–1.0 range of the blue reflectance values in the resampled cloudy image into 5 bins with equal
intervals. Then, each bin was divided into cloud and non-cloud sub-bins based on the identified cloud
and non-cloud pixels, and the erosion operator [49] was used to remove the “salt-and-pepper” pixels
in each sub-bin. Finally, training samples of clouds and non-cloud surfaces were derived from the
remaining pixels in each sub-bin. In order to optimize the distribution of the samples, samples were
collected from sub-bins in proportion to the area occupied by each sub-bin [50,51].

3.2.2. Modeling of Random Forest Classifier

As a local adaptive classification model can achieve a higher classification accuracy than a single
global model [52], a local adaptive model was developed for each scene based on the collected
training samples from that scene (Section 3.2.1). First, the spectral data of the training samples in the
resampled low-resolution Landsat-8 and Sentinel-2 image were extracted to build the training data.
Due to the complex spectral characteristics of clouds and surface objects, objects can exhibit similar
spectral behavior to clouds in certain spectral bands [32]. It is a challenge to accurately detect clouds
using a limited number of spectral bands [23]. Therefore, in order to make full use of the spectral
information, all Landsat-8 and Sentinel-2 bands mentioned in Table 2 were used. Then, a local adaptive
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classification model was trained using the training data derived from the low-resolution Landsat-8 and
Sentinel-2 image. It should be noted that, since our method is a local adaptive classification method,
it is not sensitive to radiometric and reflectance calibration [53]. Therefore, both top-of-atmosphere and
surface reflectance data can be used for model training. Finally, the modelled classifier was extended
to the original medium-resolution Landsat-8 and Sentinel-2 image to classify cloudy pixels.

According to the previous investigations [37,52], the RF classifier is capable of processing highly
dimensional multicollinear data, and rarely affected by noise and feature selection. In addition, it proves
to be more accurate and efficient than other widely used classifiers such as the support vector machine
(SVM), artificial neural network (ANN), and classification and regression tree (CART) classifiers [54–58].
Considering the advantages of RF classifier, it was employed in this study. The RF classifier has two
parameters: the number of classification trees (Ntree) and the number of selected predication features
(Mtry). Since many researchers have demonstrated that there is almost no correlation between these
two parameters and the classification accuracy [54], a value of 100 for Ntree and the square root of the
total number of training features for Mtry were selected.

4. Results and Accuracy Assessment

4.1. Performance of CECD Using the Landsat-8 and Sentinel-2 Imagery

4.1.1. Cloud Masking in Landsat Imagery

The cloud-detection results for the 12 Landsat-8 test scenes are illustrated in Figure 4: it can be seen
that there is significant agreement between the CECD cloud cover and the actual cloud distribution.
All kinds of cloud-contaminated pixels, including thick and thin clouds, are accurately separated from
snow, bright sand, bright impervious surfaces and bright rocks—surfaces that are usually confused
with clouds using traditional methods. Therefore, the proposed CECD can effectively extract clouds
and mitigate the disturbances caused by other bright land surfaces with similar spectral reflectance.
For example, a large proportion of snow, bright bare lands, and bright impervious surfaces are shown in
Figure 4b–e,g,h,k, but there is no overestimation of clouds in the corresponding CECD results. Moreover,
the thin clouds over different land-cover types are also accurately captured in the detection results
(Figure 4a,c,f,j,l). It can be observed that the details of the cloud boundaries and internal structures are
well described in our cloud-mask maps, which further reveals the effectiveness of the proposed CECD.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 22 
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4.1.2. Cloud Masking in Sentinel-2 Imagery

The second experiment was conducted on the 12 Sentinel-2 test images, and the corresponding
cloud-detection results are given in Figure 5. Unlike for Landsat-8 imagery, due to the lack of thermal
bands, the separation between clouds and other bright surfaces is always a big problem when using
conventional automated cloud-detection methods for Sentinel-2 images [12,14]. However, this issue
can be greatly alleviated by using CECD (Figure 5). Both thick and thin clouds are well separated from
the bright surfaces in the results shown. For instance, the scenes in Figure 5b,d,e,h–k are very complex
cases containing snow, bright bare lands, and bright rocks. The cloud pixels are also well identified
in the corresponding CECD cloud masks. In addition, the low-altitude thin clouds that are usually
underestimated by traditional cloud-detection methods are also effectively detected by the CECD cloud
masks (Figure 5a,d,f–j,l). Therefore, it can be said that the CECD method can also achieve a reasonably
good performance when applied to Sentinel-2 images without using the thermal infrared bands.
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4.2. Comparison with FMASK Cloud-Detection Algorithm

The CECD was compared with the function of mask (FMASK) algorithm for the 24 Landsat-8 and
Sentine-2 test scenes (see Section 2.1). FMASK is a cloud-mask algorithm that was designed for masking
clouds in Landsat and Sentinel-2 imagery, and it was the operational method used for Landsat data
products [11]. The latest FMASK version, FMASK 4.0 [14] (https://github.com/gersl/fmask), which is
the state-of-the-art FMASK cloud detection technique, was used for comparison with the CECD.
In order to ensure the objectivity of the comparison, the dilation parameter in FMASK was set to 0
to be consistent with the CECD. Except for this, because the default values of all other parameters
in FMASK are the optimal thresholds obtained by performing sensitivity analysis using images in
different environments around the world [14], these default thresholds are applicable to different types
of clouds and different regions. Therefore, all the other parameters in FMASK were set to the default
parameter settings described in Qiu et al. (2019).

To quantitatively evaluate the accuracy of the results, three traditional metrics [59] including the
user accuracy (U.A.), producer accuracy (P.A.), and kappa coefficient (K.C.) were calculated using
the validation samples independently selected from each test scene (Section 2.3). In addition,

https://github.com/gersl/fmask
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the F-measure (F.M.), which is a single class-specific accuracy metric and the complement of
the commission, omission, and overall error, was also calculated using a balanced weighting
(β = 1) [22,60,61]. Table 3 summarizes the quantitative accuracy results, and Figure 6 illustrates
a comparison between the cloud-detection results produced by CECD and FMASK for three typical
Landsat-8 scenes and three Sentinel-2 scenes. As shown in Table 3 and Figure 6, for both algorithms,
the overall accuracy was high for most of the test scenes. However, CECD produced a more robust
performance than FMASK in the case of both Landsat-8 and Sentinel-2 images. The average F-measure
value for CECD was 97.65% and 97.11% for Landsat-8 and Sentinel-2, respectively. In comparison,
FMASK gave an average F-measure value of 90.80% and 88.47% for the Landsat-8 and Sentinel-2
imagery, respectively. FMASK did not perform as well with the Sentinel-2 dataset as it did with the
Landsat-8 imagery. For instance, it can be observed that FMASK omits many low-altitude clouds in
the corresponding Sentinel-2 cloud mask (Figure 6f), while even the very thin clouds are well depicted
in the Landsat-8 classification results (Figure 6e). Without thermal bands, it is problematic for FMASK
to detect low-altitude thin clouds. Moreover, for scenes containing a large amount of snow/ice and
bright impervious surfaces (Landsat-8 scenes at site b, c, h, k, and l; Sentinel-2 scenes at site b, c, e, h, i,
and k), the accuracy of FMASK is much less than that of CECD (average F-measure value of CECD is
97.65% and 96.19% as against 83.59% and 81.57% for FMASK for the Landsat-8 and Sentinel-2 images,
respectively). As clearly illustrated by Figure 6a–d, there is noticeable misclassification by the FMASK
method in these scenes. A large number of bright surfaces are mistakenly labeled as clouds in the
FMASK results, whereas the CECD performs well for these scenes.

Table 3. Accuracy assessment results for CECD and function of mask (FMASK) based on the application
of these methods to the Landsat-8 and Sentinel-2 scenes at the 12 test sites [%].

a b c d e f g h i j k l A. A.

La
nd

sa
t8

N
pt

s C. S. 545 244 253 164 420 357 83 423 274 417 125 494 /

N. S. 235 537 507 578 340 426 705 331 505 470 647 282 /

C
EC

D

P. C. 95.91 95.27 97.86 98.75 96.18 97.66 96.97 96.41 98.72 97.18 97.43 95.33 96.88
U. C. 99.51 96.48 99.59 95.33 99.75 98.88 99.98 98.90 99.53 98.01 99.63 99.89 98.64
P. N. 99.74 98.31 99.79 97.92 99.51 98.23 99.95 98.91 99.77 96.89 99.98 99.17 98.11
U. N. 98.26 97.21 97.29 98.55 93.61 93.28 98.47 96.23 97.94 92.59 98.07 94.05 96.67
F. M. 97.86 95.75 98.71 95.84 97.85 97.77 98.25 97.75 99.14 96.85 98.65 97.37 97.65
K. C. 95.75 93.12 95.69 92.86 94.64 92.94 98.31 95.49 96.56 91.26 94.55 91.51 94.33

FM
A

SK

P. C. 98.86 99.62 99.60 98.48 98.04 89.25 90.22 97.92 99.03 94.39 98.79 96.42 97.06
U. C. 97.65 59.18 78.14 92.06 93.64 99.99 99.97 82.38 99.10 98.58 60.31 88.71 87.47
P. N. 94.59 66.17 85.60 97.46 87.89 99.99 99.97 79.19 99.53 97.93 86.62 80.61 89.62
U. N. 99.99 99.72 99.76 99.26 99.29 90.04 98.22 97.68 99.07 92.14 99.29 93.12 97.29
F. M. 98.27 72.70 87.19 94.95 94.34 94.31 94.73 91.43 99.08 95.96 73.71 92.94 90.80
K. C. 96.04 56.06 76.98 92.04 90.36 83.15 88.17 79.34 97.35 90.90 65.82 78.52 82.88

Se
nt

in
el

-2

N
pt

s C. S. 441 272 143 203 408 186; 523 383 490 637 167 232 /

N. S. 339 518 649 571 369 610 268 385 218 138 634 557 /

C
EC

D

P. C. 96.00 95.27 95.01 96.63 96.24 97.93 98.07 97.65 97.39 97.03 96.22 96.19 96.46
U. C. 99.76 96.48 95.00 98.41 94.25 99.46 98.28 95.41 94.38 99.82 98.59 99.67 97.46
P. N. 99.71 98.31 98.94 99.47 93.67 99.84 97.11 94.93 91.90 98.89 99.69 99.46 97.66
U. N. 95.08 97.21 98.49 97.09 95.85 99.67 96.76 97.40 99.10 89.03 99.37 95.9 96.66
F. M. 97.85 96.00 95.10 97.55 95.30 98.69 98.29 96.33 96.91 98.37 97.49 97.41 97.11
K. C. 95.15 93.12 92.71 97.41 89.99 98.94 95.11 92.67 92.19 92.60 97.41 92.81 94.18

FM
A

SK

P. C. 98.99 98.62 93.01 97.12 97.07 99.47 84.37 97.18 87.35 93.96 97.96 98.09 95.01
U. C. 92.41 59.18 74.70 99.47 82.82 97.82 99.76 73.54 73.67 99.64 61.57 92.13 83.81
P. N. 89.68 66.17 91.55 99.82 78.73 99.35 99.64 57.10 57.26 97.78 86.62 93.20 84.74
U. N. 98.86 98.72 98.42 97.26 93.67 99.84 78.39 92.35 76.78 83.81 99.48 96.64 92.36
F. M. 95.68 74.98 80.40 98.29 89.75 98.68 91.43 80.88 84.66 96.65 78.76 91.50 88.47
K. C. 90.63 56.06 72.73 97.80 74.24 98.26 79.11 55.32 43.54 88.55 67.19 88.97 76.03

Noted: Npts., number of sample pixels; C. S., cloud samples; N. S., non-cloud samples; P. C., producer’s accuracy of
cloud; U. C., user’s accuracy of cloud; P. N., producer’s accuracy of non-cloud; U. N., user’s accuracy of non-cloud;
F. M., F-measure; K. C., kappa coefficient; A. A., averaged accuracy.
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bare land, impervious, snow/ice, or water classes based on their spectral characteristics. The average 

cloud-detection accuracies of the two algorithms for these surface covers were calculated and shown 

in Figure 7. The robust non-parametric McNemar’s statistics (chi-square (χ2) and 95% confidence 

interval probability) [62] were calculated to evaluate the statistical significance of differences (refer 

Table 4). Note that only when p < 0.05 and χ2 >3.841 does it indicate a statistically significant change, 
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Figure 6. Comparison of cloud-detection results obtained by applying the CECD and FMASK
methods to three typical Landsat-8 scenes and three typical Sentinel-2 scenes. (a,c,e) are Landsat-8
images corresponding to site c, b, and a; (b,d,f) are Sentinel-2 images covering sites c, k, and g.
(a,b) are clouds over bright impervious surface-cover types; (c,d) are clouds over mixed snow,
bright bare lands/ forest areas; (e,f) are thin clouds over barren lands. For each scene, the upper row
shows a complete color-composited image and the cloud masks for the two algorithms; the lower images
are enlargements of the corresponding upper images. Clouds in the cloud masks are colored orange.

To comprehensively evaluate the performance of FMASK and CECD in relation to specific
surface cover types, the pixels in the 24 test scenes (Table 1) were visually classified as vegetation,
bare land, impervious, snow/ice, or water classes based on their spectral characteristics. The average
cloud-detection accuracies of the two algorithms for these surface covers were calculated and shown in
Figure 7. The robust non-parametric McNemar’s statistics (chi-square (χ2) and 95% confidence interval
probability) [62] were calculated to evaluate the statistical significance of differences (refer Table 4).
Note that only when p < 0.05 and χ2 > 3.841 does it indicate a statistically significant change, and all
these accuracy metrics were derived using a sample set aggregated from the 24 selected test scenes
(Table 1). The two sets of results show the highest statistically significant differences in the snow/ice,
followed by the impervious regions. As for barren lands, the cloud detection of the two methods was
significantly different in the Sentinel-2 images, but there is no noticeable advantage at the chi-square
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and the 95% significance level in the Landsat-8 scenes. Moreover, the performance of CECD was
comparable to that of FMASK in the water and vegetation areas. These difference were also notable in
the accuracy assessment of Figure 7. Compared with FMASK, the CECD results show a significant
improvement for the snow/ice-covered regions in the Landsat-8 (F-measure of 96% against 88%)
and Sentinel-2 images (F-measure of 95% against 82%), and impervious areas were also improved
(F-measure of 96% against 90% for Landsat-8, and 97% against 85% for Sentinel-2). In addition,
the improvement of CECD for the Sentinel-2 images was higher than that for the Landsat-8 images in
the barren land surfaces. Furthermore, both FMASK and CECD produced good results for areas of
both vegetation and water.
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Figure 7. Average cloud detection accuracy obtained using FMASK and CECD for typical surface-cover
types. (a) Average accuracy of the cloud detection for Landsat-8 imagery. (b) Average accuracy of the
cloud detection for Sentinel-2 imagery. Noted: F. M., F-Measure; P. C., producer’s accuracy for cloud;
U. C., user’s accuracy for cloud.

Table 4. McNemar’s test for the difference between the results for the FMASK and CECD cloud masks
for specific environments.

Vegetation Water Barren Impervious Snow

Landsat-8
χ2 0.36 2.44 3.23 54.39 215.43

p-value 0.55 0.11 0.07 0.00 0.00

Sentinel-2
χ2 0.13 1.12 17.06 60.01 232.07

p-value 0.72 0.28 0.00 0.00 0.00

An independent validation experiment was performed using the 14 Landsat-8 images selected
from the L8_Biome dataset (Figure 1). All the non-cloud classes (clear and cloud shadow) in the
reference mask of each image were merged into the non-cloud class, and the cloud classes (cloud and
thin cloud) were aggregated to the cloud class. These processed cloud masks were used as ground
truth to compare the robustness of CECD and FMASK (Figure 8). It can be seen from the results that
the accuracy of CECD and FMASK are both high in these scenes, and the accuracy of CECD is higher
than that of FMASK (F-measure value of 96.95% against 93.45%). Moreover, the standard deviation
error of CECD on each accuracy metric is less than that of FMASK. Therefore, according to all results in
Figures 6–8, and the accuracy assessment in Tables 3 and 4, it can be concluded that our CECD method
is a robust cloud detection method.
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5. Discussion

5.1. Effectivenss of Classification Extention Strategy in Cloud Detection

Zhang et al. [36] proposed a classification extension strategy for land cover mapping.
They developed local adaptive classifiers using the 500 m resolution MODIS surface reflectance
dataset and extended them to classify the corresponding 30 m Landsat surface reflectance images.
This strategy is able to overcome the difficulty of collecting training samples in large-scale land cover
mapping [36]. However, it was based on the assumption that the two different remote sensing datasets
have highly consistent spectral reflectance. In this study, the training spectral data were derived from
the resampled Landsat-8 and Sentinel-2 images, and the target datasets for model extension were
the original medium-resolution Landsat-8 and Sentinel-2 datasets themselves. Therefore, except for
the errors caused by resampling, the spectral signatures used for training were basically the same
as those of target datasets. All selected Landsat-8 images (Table 1) were used as a case to illustrate
the consistency between the original medium-resolution TOA reflectance and the resampled 300 m
low-resolution TOA reflectance (Figure 9). As shown in Figure 9, all eight bands of the original
Landsat-8 OLI data were in a good agreement with the resampled ones, and the average coefficient of
determination (R2) and the root mean square error (RMSE) of all bands are higher than 0.88 and less
than 0.053, respectively. Similarly, Li et al. [23] found that the model trained at a resolution 10 times
lower than the spatial resolution of the target image could still be effectively used to detect clouds of
the original target image. Therefore, the classification extension-based cloud detection method can be
considered as a suitable method for classifying cloudy pixels of medium-resolution optical images.
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Figure 9. Box plots of average coefficient of determination (R2) and the root mean square error
(RMSE) for measuring the consistency of 30-m Landsat-8 TOA reflectance and the corresponding 300-m
resampled Landsat-8 TOA reflectance. Horizontal lines in each box plot represent the location of the
10th, 25th, 50th, 75th, 90th percentiles; the circles are the 5th and 95th percentiles.
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5.2. Reliability of the Collected Training Samples

In this study, we used the THOT and the MFCM methods to separate clouds from background
surfaces to obtain accurate training samples. The THOT method was used to enhance the difference
between clouds and bright surfaces, and the MFCM method was to highlight the features of thin cloud
pixels. Because the reliability of training samples is directly related to the accuracy of classification [63],
it is also very important to evaluate the accuracy (proportion of correct samples) of training samples.
Generally, evaluating the accuracy of all training samples is difficult and time-consuming. Fortunately,
since each scene in the L8_Biome dataset has a manually labeled cloud mask, we measured the
reliability of the training samples in Landsat-8 imagery by comparing the training samples collected
in the 14 selected L8_Biome images with their corresponding cloud masks. We found that these
training samples achieved overall accuracies of 96.97% and 93.58% for clouds and non-cloud surfaces
in the Landsat-8 scenes, respectively. In addition, since there were no available cloud masks for
Sentinel-2 imagery, the accuracy of training samples in Sentinel-2 images was validated by visual
inspection. We randomly selected 200 training samples from each Sentinel-2 test scene (Table 1),
and visually checked the correctness of the samples based on the original images. The overall
accuracies were 97.6% and 94.5% in the Sentinel-2 scenes for clouds and non-cloud samples, respectively.
Although the training samples still contained a small number of erroneous points, the random forest
model was demonstrated to be resistant to noise and the presence of erroneous samples [54]. Meanwhile,
Gong et al. [64] found that the decrease in overall accuracy of RF classifier was less than 1% when the
error in the training samples was less than 20%. Therefore, the training samples derived in this study
were accurate enough for use in detecting cloud pixels.

5.3. Computational Efficiency

In order to comprehensively analyze the efficiency of our algorithm, we took the 12 Landsat-8
test scenes (Table 1) as an example and compared the CECD with two other popular cloud detection
approaches: the rule-based approach and the operational single classifier-based machine learning
approach (classify images using a single global classifier) (Figure 10). The FMASK 4.0 was used as a
rule-based example, and the single classifier-based machine learning (hereafter SCML) approach was
realized by using a single RF classifier trained from all validation samples (Section 2.3). Considering that
the FMASK method included the process of cloud shadow detection, in order to ensure the objectivity
of the comparison, the time consumed by the cloud shadow detection in FMASK was excluded.
The hardware environment of our test was: CPU: i7-4720HQ on a 2.6 GHZ, RAM: 16GB.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 22 
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From Figure 10, we could see that the computational efficiency of the machine learning-based
methods of CECD and SCML was more stable than the rule-based FMASK 4.0 method. The time
required for CECD and SCML to calculate a Landsat image was about 4.3 min, while FMASK took 2
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to 5 min for different scenes. Since the efficiency of FMASK depends on the size and complexity of
images [14], the time FMASK spent on different images varied greatly. In addition, since our CECD
method trained local adaptive classifiers at a low-resolution scale (300 m), the time cost of training was
relatively small for each scene (about 5 s), and thus the efficiency of our method was very close to that
of using a single global classifier. Therefore, our CECD algorithm can be regarded as suitable as an
operational method.

5.4. The Importance of Input Features for Different Environments

In this paper, we trained the CECD model using all optical bands of Landsat-8 and Sentinel-2
imagery (Table 2). However, it is also important to evaluate the need to use multi-spectral information for
cloud masking. To quantify the importance of each band for cloud detection in different environments,
the 24 test scenes (see Table 1) were visually classified into five landscapes: vegetation, bare land,
impervious, snow/ice, and water. Since the RF model can measure the importance of a variable
by calculating ‘out-of-bag’ data for the variable while keeping all the other variables constant [65],
this operation was carried out using the RF model, and the results were obtained using all samples
from the 24 selected scenes, as shown in Figure 11.
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The results indicate that the coastal and visible bands contributed the most to mask clouds over
vegetation and barren land surfaces. Meanwhile, the cirrus band of Landsat-8 and the water vapor
and cirrus bands in Sentinel-2 images also had a great contribution to cloud detection over barren
land surfaces. In addition, as for cloud detection over the impervious regions, the two water vapor
absorption bands (940 nm water vapor band and 1380 nm cirrus band) in Sentinel-2 imagery were
found to be the most important features, followed by the coastal and blue bands. In comparison,
the coastal, visible, and cirrus bands had the greatest contribution to cloud detection over impervious
areas in Landsat-8 images. Moreover, when detecting clouds over snow/ice areas, the SWIR bands
had been shown to be the most important for Sentinel-2 and Landsat-8 imagery. As for water regions,
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except for the cirrus band, the importance of other bands was basically the same in the Landsat-8
imagery, and the NIR and SWIR2 bands had the greatest contribution. Similarly, it was found that
the contribution of each Sentinel-2 band was also not much different when detecting clouds over
water, and the NIR and water vapor bands were shown to be the most important features. Due to the
different importance of each band in different environments, it is necessary to make full use of spectral
information when masking clouds in complex landscapes.

5.5. Limitations of the Use of CECD for Cloud Detection

Firstly, to produce a composite cloud-free image, multi-temporal low-resolution images are
needed. Fortunately, there are already some composited cloud-free low-resolution datasets available
that can be used directly, such as MOD09A1. In addition, with the advent of the Google Earth Engine
(GEE) platform, the requirements for compositing cloud-free images can easily be met by using the
free-access GEE cloud-computation platform [66].

Secondly, although our proposed CECD can easily be adapted for use with different sensors,
it may fail in some complex scenes for imagery with only visible and near-infrared reflectance channels,
as the SWIR bands are crucial for distinguishing the snow/ice class from clouds [11,30]. Therefore,
in the absence of SWIR bands, the CECD may give a reduced accuracy in high-altitude snow-covered
regions. Due to the limited number of features that can be used to discriminate between classes and
the similar spectral reflectance, snow/ice pixels are often confused with clouds in the visible and
near-infrared bands.

Thirdly, although the classifier derived from the resampled low-resolution Landsat-8 and Sentinel-2
images was successfully used to classify clouds in the corresponding 30 m and 20 m images, this classifier
may not be suitable for classifying clouds in images with very high spatial resolutions (such as images
with a resolution higher than 5 m). Dorji et al. [67] evaluated the impact of different spatial resolution
images on the observation results, and found that the characteristics of the object in the image with a
resolution of 2 m are completely different from the characteristics in the image with 1 km resolution.
When the difference in spatial resolution is too large, the spectra of the training dataset taken from the
resampled low-resolution image will be a bit different from those obtained from the high-resolution
cloudy image, resulting in classification errors. Therefore, more investigation should be undertaken to
analyze the impact of the resolution difference between the resampled low-resolution imagery and the
original high- or medium-resolution cloudy imagery.

6. Conclusions

Due to the complex surface structures and the variable cloud types, cloud detection is usually a
challenging task for optical images, especially when using imagery that does not have thermal bands.
Although machine learning-based methods can improve the accuracy of cloud detection, the lack
of accurate and representative training datasets is a major drawback hindering the development of
these methods.

In this paper, a novel classification extension-based cloud detection (CECD) algorithm was
proposed for masking clouds in medium-resolution optical remote sensing imagery. In contrast to other
classification-related methods, our CECD method overcame the expense of collecting representative
and sufficient training samples by using a classification extension strategy. It first identified cloud and
non-cloud pixels in a resampled low-resolution version of the medium-resolution cloudy image with
the support of low-resolution satellite imagery that had a short revisit period. Based on the identified
cloud and non-cloud pixels and the resampled low-resolution cloudy image, training samples were
then automatically collected to train a RF classification model. Finally, the developed RF classification
model was extended to mask clouds in the corresponding medium-resolution image. The CECD
method was tested using Landsat-8 and Sentinel-2 images at 12 sites, and compared to the results of
using the classic FMASK method. The validation results show that the CECD was more accurate and
robust than FMASK, and gave an average F-measure value of 97.65% and 97.11% as against 90.80%
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and 88.47% for FMASK using Landsat-8 and Sentinel-2 imagery, respectively. Therefore, it can be
concluded that the proposed CECD is an effective cloud-detection algorithm that can be used for
masking clouds in multispectral optical satellite images. Furthermore, as the CECD is a sample-driven
method, it can be directly applied to other types of optical satellite imagery.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/15/2365/s1,
Table S1: Details of the 14 Landsat-8 scenes selected from the Landsat 8 Cloud Cover Assessment Validation
Dataset (https://landsat.usgs.gov/landsat-8-cloud-coverassessment-validation-data).
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Appendix A. Estimation of the Corrected THOT Value by a Minimization of Objective Function

To address the problem of minimizing the objective function (Equation (3)), one Lagrange
multiplier can be introduced to the objective function to construct a constrained function Om.

Om =
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where λ is the Lagrange multiplier, and
∑C

i=1 µi j = 1. Then, by setting the derivative of the Lagrange
function with respect to µi j, vi, and β j to zero, an optimal solution can be obtained, which results in the
following three optimal parameters:
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the prototype of the centroid for cluster i:
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and the gain field of the pixel j:

β∗j = THOTj −

C∑
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µm
ij vi/

C∑
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µm
ij (A4)

The cluster prototypes v are continuously updated until the centroids distance between two
consecutive iterations is less than 0.001. When the iteration ends, the derived βj is the desired optimal
bias field, and the THOT value can be corrected by THOTj −βj. The initial cluster centers vi are derived

http://www.mdpi.com/2072-4292/12/15/2365/s1
https://landsat.usgs.gov/landsat-8-cloud-coverassessment-validation-data
https://github.com/liuliangyun01/CECD
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by adopting a bimodal Gaussian distribution to fit the image histogram. The peak value of each model
was chosen as the initial clutter center. The initial βj is equal to 0.
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